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SUMMARY

In this paper, a transient injection flow at low Mach number regime is investigated. Three different
methods are used and analyzed. Two of them are based on asymptotic models of the Navier-Stokes
equations valid for small Mach numbers, whereas another is based on the full compressible Navier-
Stokes equations, with particular care given to the discretization at low Mach numbers. Numerical
solutions are computed both with or without the gravity force. Finally, the performance of the solvers in
terms of CPU-time consumption is investigated and the sensitivity of the solution to some parameters
which affect CPU-time is also performed. Copyright c© 2000 John Wiley & Sons, Ltd.

key words: finite element method; finite volume method, BDF2, low Mach number flows, injection,

laminar flow

1. INTRODUCTION

In nuclear engineering applications, Computational Fluid Dynamics (CFD) codes are
increasingly becoming an important tool for design and analysis problems. For instance, CFD
tools have been widely used for safety issues in the analysis of hypothetical loss-of-coolant
accidents in Pressurized Light Water Reactor (see for instance [11, 25, 30]). CFD codes are
also used for the design and analysis of systems for the next generation nuclear power plants,
including the so-called High Temperature Gas Reactors [7].
According to [9, 22], when the temperature variations are large, the Boussinesq incompressible
model cannot be used even if the Mach number is extremely low. In this case, low Mach number
models can be used to take into account the compressibility effects due to the large variation
of temperature. To assess the capabilities of CFD codes in computing low Mach number flows,
a thorough validation process is needed, which includes calculation of experiments [29] as
well as of analytical test cases. A reference test case for steady low Mach number flows is
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2 A. BECCANTINI ET AL.

the modeling and the computation of the natural convection in a square cavity with large
temperature differences, presented in [5, 13, 20, 21] and which has been the object of an
international workshop [15]. The purpose of our article is to provide an analytical test case
for transient low Mach number flows and, more precisely, for injection problems in the low
Mach number regime. Moreover, in this work, the behavior of different models in computing
this kind of problems is also investigated.

As explained in [17], the main difficulty in constructing numerical methods for low Mach
number flows is the fact that, in the transition from compressible to incompressible flows, the
governing equations change nature: the Euler equations for compressible flows are hyperbolic
and become hyperbolic-elliptic as the characteristic flow speed becomes zero compared with
the sound speed.
There exists two families of solvers to compute flows at low Mach number regime.
The so-called density-based methods have widely been used to compute supersonic and
transonic flows. Here the pressure is linked to the density and the internal energy via an
equation of state. It is well-know that they cannot be used to compute flows at low-Mach
regime without modification. The reason is the existence of a large disparity between the
eigenvalues of the Euler equation which, as described in [35], reduces the accuracy of the
solver. In the last decade, different techniques have been developed to extend these solvers
to the quasi-incompressible regime [33], based on the modification of the time dependent
properties of the governing equations (to cluster the eigenvalues of the Euler equations) or by
only modifying the numerical viscosity of the scheme, as in [35].
The so-called pressure-based methods have been widely used to compute incompressible flows.
Here the pressure variations are independent from the equation of state and are coupled to
the divergence condition on the velocity. Pressure is always computed implicitly, for example
as the solution of a Poisson-like equation. It is well-known that the Boussinesq incompressible
model cannot be used if the temperature variations are large even if the Mach number is
extremely low [9]. Then, when the temperature variations are too high and/or when the
characteristic Mach number is not negligible, pressure-based methods which solves low Mach
number equations arising from the asymptotics of the compressible equations have been
developed. In [17] it is stated that these methods are more robust than density-based solvers.
Nevertheless, the range of validity of pressure-based solvers arising from asymptotics is in
general more limited than the one of density-based solver (which can be developed to compute
flows at all speeds).

This paper is divided into several sections. In section 2 we describe the injection test case.
As in the benchmark of the square cavity with large temperature differences [13, 21, 20], we
restrict our attention to a single-component, calorically perfect gas and laminar flow. As already
mentioned, in the benchmark of the square cavity with large temperature differences only
stationary test cases are investigated; the injection problem considered here is time-dependent.
The description of fully compressible equations and the ones arising from asymptotic analysis
with respect to the Mach number is the object of section 3 (some details concerning asymptotic
analysis of the compressible equations are presented in appendix 9). In sections 4 and 5 we
present the density-based and pressure-based solvers we use to compute the injection problem.
All of them use unstructured grids in order to be able to investigate complex geometries.
Nevertheless, the numerical results presented here have been obtained on Cartesian regular
grids to enhance their accuracy. In section 6, we present the numerical solution of the problem.
Finally, in section 7, we investigate the performance of the solvers in terms of CPU cost and
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Figure 1. 2D planar rectangular cavity initially filled with a gas at rest. Hot gas is injected through
the opening at the bottom.

accuracy of the solution; we also perform a sensitivity analysis of the solution with respect
to some numerical parameters, such as the CFL or the convergence error in the fixed-point
iteration, which allow us to reduce the CPU time. As we show, the larger the CFL, the lower
the CPU time; the larger the convergence error in the fixed-point iterations, the lower the
CPU time. Unfortunately, the accuracy is strongly affected. Conclusion follows (section 8).

2. THE INJECTION TEST-CASE

We consider the 2D planar rectangular cavity of figure 1. We suppose that it is initially filled
with a calorically perfect gas, with constant temperature T0 and constant pressure p0. We
inject the same gas from the bottom part of the cavity (l is the opening width). The cavity
walls are assumed to be impermeable and adiabatic. The injected flow temperature is TH ; the
momentum shape at the inlet is parabolic and symmetric with respect to the y-axis; it is zero
on the cavity walls (non-slip boundary conditions).

The dimensions of the cavity are

L = 3 m,
H = 7 m,

while the dimension of the injection opening is

l = 0.2 m.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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4 A. BECCANTINI ET AL.

The gas specific heat ratio and gas constant are

γ = 1.4,

R = 287 J kg−1 K−1

respectively.
At the beginning the gas in the cavity is at rest, with pressure, temperature and density given
by

p0 = 105 Pa,

T0 = 300 K,

ρ0 =
p0
RT0

.

The injection boundary conditions are given by an average momentum and a temperature

ṁH = 1.0 kg/m2/s,
TH = 600 K;

The parabolic profile of the momentum, parallel to the y-axis is

ρuy =
6ṁH

l2

(

l2

4
− x2

)

.

The reason for specifying such boundary conditions on the mass flow and the temperature is
that, when injection experiments are performed, these are the quantities that we know when
the injection is realized using a high pressure reservoir coupled with a de Laval nozzle. In low
Mach number flows, the temperature at the injection is equal to reservoir temperature (the
total enthalpy being constant and the kinetic energy at the injection being negligible), and the
average mass flow is constant in time (insensitive to the value of the internal pressure) and
given by the sonic condition at the throat.
Note that, with the given numerical values, the flow is subsonic and in a low Mach number

regime. Indeed, the order of magnitude of the flow velocity in the vessel is the same as in the
injection region:

uH ≈ ṁH

ρH
≈ ṁH

p0
RTH ≈ 1.7 m/s.

The sound speed is initially about
√
γRT0 = 350 m/s in the cavity and 500 m/s at the injection,

i.e. much larger than the flow velocity. Then we can define a reference Mach number

M =
ṁH

p0
RTH · 1√

γRT0

≈ 4.86 · 10−3.

For the sake of simplicity, we suppose that the dynamic viscosity and thermal diffusivity are
constant. We define them by introducing reference Reynolds and Prandtl numbers

Re =
ṁH l

µ
,

Pr =
µ

λ
cp =

µ

λ

γ

γ − 1
R,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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INJECTION FLOW AT LOW MACH NUMBER REGIME 5

which imply that the dynamic viscosity and the thermal conductivity are given by

µ =
ṁH l

Re
,

λ =
ṁH l

Re Pr

γ

γ − 1
R.

In this work, we restrict our attention to two different test cases:

C1. gravity g = 0, Re= 40., Pr=0.71;
C2. gravity g = 9.81 m s−2 Re= 40., Pr=0.71;

namely we consider the same (laminar) case and we neglect or not the gravity force. In the
latter case the value of the Froude number is

Fr =
u2
H

gH
≈ 0.042,

i.e. we expect that the gravity drastically changes the flow obtained in the case C1.

In both cases we represent the numerical results at t = 6 s. At this time, as we will see, in
the former case the entering gas only occupies a region closed to the injection; in the latter
case, because of buoyancy effects, the entering gas reaches the top of the cavity.

2.1. Conservation properties

2.1.1. Mass conservation. According to the boundary conditions, the total mass in the cavity
can be computed as a function of time:

∫

V

ρ(~r, t)dV =

∫

V

ρ(~r, 0)dV + ṁH lt. (1)

2.1.2. Energy conservation. At low Mach number the kinetic energy is small compared to
the internal energy (see appendix 9); then we can write that the total energy

ρet ≈
1

γ − 1
p.

The total energy flux into the cavity is given by

ṁH

γ

γ − 1
RTH + ṁH0.5~u · ~u− λ

∂T

∂y
≈ ṁH

γ

γ − 1
RTH

(

1− l

THRe Pr

∂T

∂y

)

.

If we neglect the contribution of the diffusive term, the average pressure can be computed as

∫

V

p(~r, t)dV ≈
∫

V

p(~r, 0)dV + γṁHRTH lt. (2)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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6 A. BECCANTINI ET AL.

2.2. Entropy behavior.

The injection of hot gas in the cavity causes the compression of the cold gas inside. From a
physical point of view, this is due to the acoustic waves, which travel into the cavity to establish
a mechanical equilibrium, i.e. constant thermodynamic pressure. Because of this compression,
even in the region far from the injection and at the initial time (i.e. before that the entering
gas reaches this region), the temperature instantaneously increases. Indeed,

Tds = dh− 1

ρ
dp

=
γR

γ − 1
dT − RT

p
dp.

Far from the injection, the flow is initially subjected to an adiabatic and isentropic compression
only. Then, in this region, we have Tds = 0, i.e.

γ

γ − 1

dT

T
=

dp

p
,

which gives

T = T0

(

p

p0

)
γ−1

γ

. (3)

3. GOVERNING EQUATIONS

We consider the Navier-Stokes equations for a compressible, calorically perfect gas, namely























































∂ρ

∂t
+ ~∇ · (ρ~u) = 0

∂ρ~u

∂t
+ ~∇ · (ρ~u⊗ ~u+ pI) = ρ~g +

(

~∇ · τ
)

∂ρet
∂t

+ ~∇ · (ρ~uht) = ~∇ ·
(

λ~∇T
)

+ ρ~g · ~u+ ~∇ · (τ · ~u)

p = ρRT = (γ − 1) ρ

(

et −
1

2
~u · ~u

)

(4)

where ρ is the density, ~u the velocity, p the pressure, ~g the gravity, τ the viscosity stress tensor,
defined by

τ = µ

(

~∇⊗ ~u+
(

~∇⊗ ~u
)T

− 2

3

(

~∇ · ~u
)

I

)

,

et the unit mass total (kinetic+internal) energy and ht the unit mass total enthalpy, T the
temperature, µ the dynamic viscosity and λ the thermal conductivity. The first equation of (4)
expresses the mass conservation, the second one the momentum conservation, the third one
the energy conservation. The last one is the equation of state.
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INJECTION FLOW AT LOW MACH NUMBER REGIME 7

In [16, 35], single time scale and single space scale asymptotic analysis for the Navier-Stokes
equations at low-Mach number regime is presented, under the hypotheses

ρgL

p
<< 1

and
M2

Re
<< 1,

where M is the reference Mach number. By inserting the asymptotic expansions of the variables
with respect to the reference Mach number in the fully-compressible Navier-Stokes equations
(see appendix 9 for details), it can be shown that the pressure can be split in two terms, i.e.

p(~r, t) = P (t) + p′(~r, t), (5)

in which P (t) is the so-called (constant in space) thermodynamic pressure (P = O(1)
with respect to the reference Mach number) and p′(~r, t) is the so-called dynamic pressure
(p′ = O(M2)). According to single time scale and single space scale asymptotics, in the
particular case of a calorically perfect gas, we have to find P (t), ~u(~r, t), T (~r, t) and p′′(~r, t),
solutions of the initial value problem



































1

γP

dP

dt
+
(

~∇ · ~u
)

=
γ − 1

γP
~∇ ·

(

λ~∇T
)

∂T

∂t
+

(

~u · ~∇
)

T =
γ − 1

γ

T

P

(

dP

dt
+ ~∇ ·

(

λ~∇T
)

)

∂~u

∂t
+
(

~u · ~∇
)

~u =
RT

P

(

−~∇p′′ + ~∇ · τ
)

+ ~g

(

1− T P0

T0 P

)

(6)

where p′′ = p′ + ρ0gy.
The first equation of (6) is the equation of conservation of internal energy (which is equal

to zero-th order total energy with respect to M). It can be written in the form

~∇ · ~u = − 1

γP

dP

dt
+

γ − 1

γP
~∇ ·

(

λ~∇T
)

. (7)

The first term appearing in the RHS of (7) is constant (in space) and is linked to the isentropic
compression of the fluid elements due to infinitely fast acoustic waves. The second term
expresses the variation of the velocity divergence linked to the temperature distribution in
space. The second equation of (6) is a time-evolution equation for the temperature. Here
we can see three terms which represent the three mechanisms which are responsible for
the temperature variation: the convection term, the diffusion term and the compression
(which produces temporal variation of the thermodynamic pressure everywhere because of the
infinitely fast acoustic waves). We also note that the temperature and the velocity are linked
by the coefficient appearing in the velocity equation but also via the divergence condition (7).

As far as the computation of P (t) is concerned, different approaches are possible [8].
Integrating the first equation of (6) over the volume of the cavity (V = LH), we obtain,
in our case,

1

γ − 1

dP

dt
LH +

γ

γ − 1
RTHṁH l = −

∫

∂Ωinj

λ
∂T

∂y
dS, (8)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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8 A. BECCANTINI ET AL.

where the last integral involves the injection surface. Equation (8) expresses the internal energy
conservation over the total volume.
If we integrate the equation of state over the volume, we obtain

∫

Ω

ρ dV =
P

R

∫

Ω

1

T
dV, (9)

i.e. in this particular case
P

R

∫

Ω

1

T
dV = ρ0LH + ṁH lt. (10)

Equation (10) expresses mass conservation in the cavity.
Then we can compute the thermodynamic pressure by imposing the conservation of energy
(equation (8)) or the conservation of mass (equation (10)). Nevertheless in stationary
problems, such as the previously mentioned problem of the natural convection in a square
cavity [13, 20, 21], the use of conservation of energy to determine the thermodynamic pressure
prevents the algorithm from converging in time, since the temperature is not computed via
a conservative equation and the integral of the heat flux over the surface is affected by the
spatial numerical errors and is not zero. For this reason, in this work we have preferred to
compute the thermodynamic pressure by imposing the conservation of mass (equation (10)).

The initial problem (6) can be also formulated as follows (see appendix 9 for details). We
have to determine P (t), ~u (~r, t), T (~r, t), p′′ (~r, t) and ρ (~r, t) such that



































~∇ · ~u = −1

ρ

(

∂ρ

∂t
+ ~u · ~∇ρ

)

ρ
∂~u

∂t
+ ρ~u · ~∇~u = −~∇p′′ + ~∇ · τ + (ρ− ρ0)~g

ρcp
∂T

∂t
+ ρcp~u · ~∇T = ~∇ ·

(

λ~∇T
)

+
dP

dt

(11)

cp being the specific heat at constant pressure (in this case cp = γR/(γ − 1)).
As in the case of the system of equations (6), the thermodynamic pressure P (t) is recovered

by imposing the conservation of mass (equation (10)).
The density ρ (~r, t) is recovered from the equation of state which, in the particular case of a

calorically perfect gas, reads

ρ (~r, t) =
P (t)

RT (~r, t)
. (12)

By comparing the systems of equations (6) and (11), we can say that:

• In the former system only 4 variables have to be computed while in the latter the variables
are 5.

• As we will show, the first equation of the systems (6) and (11) are used as a divergence
condition. In a Galerkin approach, they are projected over the space of the test (and
shape) functions of the dynamic pressure. Since in the system (6) second order derivatives
are involved, it is necessary that these test functions are at least continuous. Conversely,
in system (11) discontinuous shape functions for the pressure can be used.

• The approach used for (11) can be extended in a straightforward manner to other cases
in which the gas is not calorically perfect and the equation of state is different from (12).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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INJECTION FLOW AT LOW MACH NUMBER REGIME 9

In conclusion, if we use continuous shape and test functions for the pressure, the solution of
the system of equations (6) is easier. Nevertheless, since the extension to gases with a general
equation of state is easier for (11), we have developed two numerical approaches, one based on
the former system, one on the latter.

4. THE DENSITY-BASED SOLVER

The Navier-Stokes equations (4) can be written in compact form as

P−1
c

∂w

∂τ
+

∂w

∂t
+ ~∇ ·

(

fE − fV
)

= S (13)

where w is the “vector” of the conserved variable (ρ, ρ~u, ρet)
T , τ a pseudo or dual-time, t the

physical time, fE and fV are respectively the convective flux and viscous flux (E standing for
Euler, V for viscous), S is the source term involving ~g, Pc is a preconditioning matrix which
takes, in the present work, the form proposed in [32].
In the density-based solver (or fully-compressible solver), we solve the conservative

equations (13) using unstructured Finite Volume approach for space discretization and BDF2
(second order accurate Backward Difference Formula) for the real time discretization and the
Euler implicit scheme (or BDF1) for the “preconditioned” dual-time. Implicit schemes are
necessary if we want to use time steps larger than the ones based on the CFL condition, which
involves the acoustic wave speed. The numerical scheme thus obtained can be written as

(P−1
c )n,ℓi

∆wn,ℓ
i

∆τn,ℓi

+
3

2
(wn,ℓ

i − wn
i )− 1

2
∆wn−1

i

∆t

+
1

Ωi

∑

k

(

HE
i,k −HV

i,k

)n,ℓ+1 · ~ni,k Si,k = Sn,ℓ+1

i ,
(14)

where ℓ is the pseudo-iteration (on dual-time) counter, n is the time step counter, ∆wn,ℓ =
wn,ℓ+1 − wn,ℓ, ∆wn−1 = wn − wn−1, i is the cell counter, k is the counter for the face center
(index “i, k” represents the center of the k-th interface of the i-th cell), Ωi is the volume of
the i-th cell, HE (respectively HV ) is the numerical approximation of the non-viscous flux
(respectively viscous flux), S is the numerical approximation of the gravity terms, ~n is the
outward normal, S is the surface. Scheme (14) can be expressed also written as

(P−1
c )n,ℓi

∆wn,ℓ
i

∆τn,ℓi

+
3

2

∆wn,ℓ
i

∆t
+

1

Ωi

∑

k

(∆Hi,k)
n,ℓ · ~ni,k Si,k − (∆Si)

n,ℓ
= − (R)

n,ℓ
i , (15)

where the explicit residuum is given by

(R)
n,ℓ
i =

1

Ωi

∑

k

(Hi,k)
n,ℓ · ~ni,k Si,k +

3

2
(wn,ℓ

i − wn
i )− 1

2
∆wn−1

i

∆t
− (Si)

n,ℓ

and H = HE −HV .
As one can see, once the convergence on the counter ℓ (i.e. the steady state for τ) is reached,

namely
lim
ℓ→∞

∆wn,ℓ = 0,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 A. BECCANTINI ET AL.

the LHS of equation (15) goes to 0. Then, the numerical approach used to compute the LHS of
equation (15) does not affect the (space and time) accuracy of the method (providing that the
convergence on ℓ is reached) but only the convergence speed. For this reason, the numerical
schemes used to compute the LHS (15) can be simpler to deal with than the ones used to
compute the RHS. In this case, it is said that the numerical approach used to compute the
LHS of (15) is not consistent with the one used in the RHS [23].
As far as the RHS of (15) is concerned, inviscid fluxes are computed using the HLLC scheme

of Toro [31], extended to (theoretical) second order using the primitive variable reconstruction
of Barth and Jespersen, described in [1] and belonging to the MUSCL family; moreover the
numerical dissipation of the inviscid scheme is corrected taking into account Low Mach number
preconditioning [14]. Viscous fluxes are approximated using a linearly-exact extension of the
diamond method of Noh [19].
Concerning the inviscid flux for the LHS of (15), we linearize (around wn,ℓ) the Rusanov

first-order accurate scheme (in which the numerical dissipation is corrected taking into account
low Mach number preconditioning). Conversely the diffusive flux and source term have been
exactly linearized. Then, the computation of the state ∆wn,ℓ+1 is performed using GMRES(50)
(restart performed each 50-th iteration) coupled with the ILUTP preconditioner (the dimension
of which is taken 1.5 times larger than the matrix involved in the linear system) [26, 27]. This
algorithm is implemented in the CEA code CAST3M (described in [4]).

5. THE PRESSURE-BASED SOLVERS

5.1. Time discretization

As already mentioned, time discretization is performed via a Finite Difference approach.
For the sake of simplicity, let us consider the backward Euler implicit formula (BDF1); the
extension to BDF2 is straightforward.

Asymptotic approach 1. Let us consider the initial value problem (6). This problem is non-
linear. In order to treat the non-linearities, we use a fixed-point approach. We suppose that, at
t = tn, we know the variables Pn, Tn, ~un, p′′

n
. Let us describe how to compute Pn+1, Tn+1,

~un+1, p′′
n+1

.
In the following, we let ℓ denote the index referring to the fixed-point iteration. Note that,

for ℓ = 0, the generic variable an+1,ℓ is equal to an.
At the ℓ-th fixed-point iteration, we first compute the pressure via equation (10):

Pn+1,ℓ+1

R

∫

Ω

1

Tn+1,ℓ
dV = ρ0LH + ṁH ltn+1. (16)

Then we compute the average velocity at the injection. Indeed, at the injection boundary,
the average velocity is

ṁH

ρn+1,ℓ+1
=

ṁH

Pn+1,ℓ+1
RTH .

Then, at the injection boundary, the velocity is given by

un+1,ℓ+1
y =

6ṁHRTH

Pn+1,ℓ+1

(

1

4
− x2

l2

)

. (17)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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INJECTION FLOW AT LOW MACH NUMBER REGIME 11

Now, using the compatibility condition arising from (7)†

1

γPn+1,ℓ+1

(

dP

dt

)n+1,ℓ+1

LH +
ṁHRTH

Pn+1,ℓ+1
l =

γ − 1

γPn+1,ℓ+1

∫

∂Ω

~∇ ·
(

λ~∇Tn+1,ℓ
)

dS, (18)

we evaluate the time derivative of the pressure in the divergence condition.
Then the condition on the divergence of ~un+1 is given by

1

γPn+1,ℓ+1

(

dP

dt

)n+1,ℓ+1

+
(

~∇ · ~un+1,ℓ+1
)

=
γ − 1

γPn+1,ℓ+1
~∇ ·

(

λ~∇Tn+1,ℓ
)

. (19)

Note that, the velocity field ~un+1,ℓ, used in the non-linear convective term in a fixed-point
strategy, does not satisfy the compatibility condition for the velocity (which varies with ℓ) until
the convergence of the fixed-point is reached. In order to enforce this condition for each ℓ, we
correct the velocity ~un+1,ℓ on the injection by imposing the condition (17). From a practical
point of view, this correction enhances the convergence speed of the fixed-point strategy.
Let us evaluate the temperature Tn+1,ℓ+1:

(

Tn+1,ℓ+1 − Tn

∆t

)

+
(

~un+1,ℓ · ~∇
)

Tn+1,ℓ+1 =
γ − 1

γ

Tn+1,ℓ

Pn+1,ℓ+1







Pn+1,ℓ+1 − Pn

∆t

+ ~∇ ·
(

λ~∇Tn+1,ℓ+1
)






.

(20)

Finally, we have to compute the velocity ~un+1 and the dynamic pressure p′′
n+1

. We have
used a “fully implicit approach”, in which we solve

~un+1,ℓ+1 − ~un

∆t
+
(

~un+1,ℓ · ~∇
)

~un+1,ℓ+1 =
RTn+1,ℓ+1

Pn+1,ℓ+1

(

−~∇p′′ n+1,ℓ+1 + ~∇ · τn+1,ℓ+1
)

+ ~g

(

1− Tn+1,ℓ+1 P0

T0 Pn+1,ℓ+1

)

,

(21)
coupled to the divergence constraint (19).

Asymptotic approach 2. Let us consider the system of equation (11). We suppose that, at
t = tn, we know the variables Pn, Tn, ~un, p′′n and the density ρn. Let us describe how to
compute Pn+1, Tn+1, ~un+1, p′′n+1. The non-linearities are solved with a fixed point algorithm.
At the ℓ-th fixed-point iteration, we first compute the pressure via equation (9):

Pn+1,ℓ+1

∫

Ω

1

RTn+1,ℓ
dV = ρ0LH + ṁH ltn+1 (22)

†This compatibility condition is obtained by integrating equation (7) over the volume. Here we enforce the
discrete solution to satisfy such compatibility condition.
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12 A. BECCANTINI ET AL.

Then we compute the injection velocity using (17), i.e.

un+1,ℓ+1
y =

6ṁHRTH

Pn+1,ℓ+1

(

1

4
− x2

l2

)

.

The condition on the divergence of ~un+1 is given by:

~∇ · ~un+1,ℓ+1 = − 1

ρn+1,ℓ

(

ρn+1,ℓ − ρn

∆t
+ ~un+1,ℓ · ~∇ρn+1,ℓ

)

+B. (23)

The constant B is introduced to exactly satisfy the compatibility condition
∫

Ω

(

~∇ · ~u
)

dV =
ṁHRTH

Pn+1,ℓ+1
l,

i.e.

B =
1

V

[

ṁHRTH l

Pn+1,ℓ+1
+

∫

Ω

1

ρn+1,ℓ

(

ρn+1,ℓ − ρn

∆t
+ ~un+1,ℓ · ~∇ρn+1,ℓ

)

dV

]

.

Let us evaluate the velocity ~un+1,ℓ+1 and the pressure p′′n+1,ℓ+1 using a “fully implicit
approach”‡:

ρn+1,ℓ ~u
n+1,ℓ+1 − ~un

∆t
+ ρn+1,ℓ

(

~un+1,ℓ · ~∇
)

~un+1,ℓ+1 =

−~∇p′′n+1,ℓ+1 + ~∇ · τn+1,ℓ+1 + ~g
(

ρn+1,ℓ − ρ0
)

.

(24)

The viscosity stress tensor τn+1,ℓ+1 is evaluated using:

τn+1,ℓ+1 = µ

(

~∇⊗ ~un+1,ℓ+1 +
(

~∇⊗ ~un+1,ℓ+1
)T

− 2

3

(

~∇ · ~un+1,ℓ
)

I

)

.

The temperature Tn+1,ℓ+1 is evaluated via

ρn+1,ℓT
n+1,ℓ+1 − Tn

∆t
+ ρn+1,ℓ

(

~un+1,ℓ+1 · ~∇
)

Tn+1,ℓ+1 =

1

cp

(

dP

dt

)n+1,ℓ+1

+
1

cp
~∇ ·

(

λ~∇Tn+1,ℓ+1
)

.

(25)

Finally the density ρn+1,ℓ+1 is evaluated introducing into the Equation of State the values
Pn+1,ℓ+1 and Tn+1,ℓ+1.

5.2. Space discretization

The space discretization of the equations is performed via the finite element solver available
in the CAST3M code [4]. Several couples of finite elements are available to discretize the
pressure/velocity couple in the Navier-Stokes equations.

‡Once again, “fully implicit” means that equation (24) is solved together with the divergence condition (23).
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INJECTION FLOW AT LOW MACH NUMBER REGIME 13

Asymptotic approach 1. The velocity is approximated by using Lagrange complete quadratic
polynomials (Q2). These polynomials involve linear combinations of 1, x, y, x2, xy, y2, xy2,
x2y x2y2 (in the frame of the reference element, see [6]). The pressure is approximated by
using bilinear polynomials (Q1). These polynomials involve linear combinations of 1, x, y, xy.
The temperature is approximated by using Lagrange complete quadratic polynomials (as the
velocity). We emphasize that the chosen couple of elements for the velocity and the pressure
gives a LBB stable discretization for the Stokes problem [2] (with appropriate initial and
boundary conditions).

Asymptotic approach 2. The velocity, the temperature (and the density) are approximated in
the same manner as in the asymptotic approach 1. The pressure is approximated by using
linear non conforming polynomials (discontinuous at the interfaces of the elements). The
chosen couple of elements (Q2 -P1 NC) for the velocity and the pressure gives a LBB stable
discretization for the Stokes problem [2]. According to [10], page 464, for the incompressible
Navier-Stokes equations the element “Q2 -P1 NC” is “probably the most accurate 2D element”.
Note also that, on a mesh with the same number of elements, the degrees of freedoms of the
pressure are larger in this approach than in the asymptotic approach 1.

In both approaches, the solution of the linear systems arising from the linearization of the
non-linear problem is obtained using GMRES(50) coupled with an ILUTP preconditioner.

6. NUMERICAL RESULTS

6.1. Case C1: g = 0 and Re = 40.

6.1.1. Solution analysis. Let us present the numerical results in the first case (no gravity) at
t = 6 s. These results have been obtained via the asymptotic approach 1 using a regular mesh
of 120× 120 elements and a reference CFL (Courant-Friedrich-Levy) number

CFL =
ṁH∆t

ρ0∆x
= 2 (26)

The results obtained with the other approaches are very close to these ones (as we will show
further in the grid convergence study).
In figure 2 we represent the velocity field, some streamtraces (lines which are tangent to the
velocity field) and the temperature isocontours. In figure 3 we represent the divergence of ~u.
In figures 4 and 5 we show the evolution of ux, uy and T along some horizontal and vertical
lines. The computed thermodynamic pressure is 1.139 bar, very close to the one given using
formula (2) (1.138 bar), which does not take into account the heat flux at the injection due to
thermal diffusion.
As one can see in figure 2, the solution is symmetric with respect to the y-axis (x = 0). The

inlet of flow in the cavity generates two vortices, which at t = 6 s, are in (x, y) ≈ (±0.45, 2.2).
Note that the streamtraces (lines which are tangent to the velocity field) are not closed lines.
Indeed neither ρ~u nor ~u are divergence free vectors; i.e. we cannot construct a streamline
function whose isolines are tangent to the velocity vector.
As already mentioned in the analysis of the equation (7), we can decompose the velocity
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14 A. BECCANTINI ET AL.

Table I. Case C1. Some values (SI units) along the axis x = 0 at t = 6 s respectively given by the
fully-compressible, the asymptotic 1 and the asymptotic 2 algorithms: grid convergence study. ǫT and

ǫuy are defined by equation (27).

y T ǫT (%) uy · 100 ǫuy (%)
Coarse Medium Fine Fine Coarse Medium Fine Fine

0.5 557.11 560.06 561.45 0.6 167.67 165.92 164.93 0.3
564.92 565.17 565.00 0.07 164.46 163.90 164.29 0.1
567.23 565.25 564.96 161.72 164.34 164.47

1.0 520.69 522.82 524.02 0.6 137.46 135.33 134.14 0.4
526.87 527.48 527.24 0.02 132.69 133.45 133.48 0.08
528.79 527.49 527.14 131.23 133.51 133.59

1.5 497.34 499.80 500.90 0.7 122.26 120.68 120.52 0.9
504.12 504.76 504.48 0.02 119.80 119.35 119.37 0.07
505.45 504.69 504.36 119.46 119.43 119.45

2.0 476.77 478.78 479.55 0.7 126.72 127.69 128.49 0.3
483.63 483.62 483.15 0.04 128.82 128.70 128.83 0.05
484.17 483.37 482.95 127.91 128.88 128.89

2.5 462.77 465.04 466.80 0.6 114.53 110.94 106.64 0.1
471.51 470.57 469.95 0.08 105.27 106.43 106.36 0.1
472.75 470.21 469.57 98.170 105.89 106.49

3.0 441.20 426.93 404.13 2 50.890 41.814 36.055 4
392.35 397.81 397.18 0.01 34.013 34.013 34.491 0.7
364.70 394.62 397.14 29.916 34.512 34.744

3.5 311.80 311.36 311.34 0.02 15.673 13.998 12.988 2
311.67 311.51 311.45 0.01 12.650 12.809 12.785 0.06
311.51 311.44 311.41 11.734 12.720 12.793

4.0 311.33 311.33 311.33 0.03 7.8681 7.4009 7.1132 0.6
311.64 311.51 311.45 0.01 7.0494 7.0809 7.0698 0.01
311.50 311.44 311.41 6.7753 7.0526 7.0707

4.5 311.33 311.33 311.33 0.03 5.0494 4.9022 4.8125 0.1
311.64 311.51 311.45 0.01 4.80901 4.81646 4.81169 0.1
311.50 311.44 311.41 4.7100 4.8007 4.8066

5.0 311.33 311.33 311.33 0.03 3.5966 3.5509 3.5223 0.1
311.64 311.51 311.45 0.01 3.5334 3.5348 3.5317 0.1
311.50 311.44 311.41 3.4897 3.5232 3.5268

5.5 311.33 311.33 311.33 0.03 2.5679 2.5542 2.5454 0.2
311.64 311.51 311.45 0.01 2.5585 2.5576 2.5555 0.2
311.50 311.44 311.41 2.5350 2.5497 2.5515

6.0 311.33 311.33 311.33 0.03 1.6732 1.6695 1.6671 0.3
311.64 311.51 311.45 0.01 1.6771 1.6759 1.6746 0.2
311.50 311.44 311.41 1.6637 1.6708 1.6718
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2 347

1 329

CFL = 2

Figure 2. Case C1. From the left to the right: the velocity, the streamtraces and the temperature at
t = 6 s (SI units).

divergence into two parts. The first term in the RHS of (7), is constant in space. It is linked
to the variation of volume of each fluid element because of the isentropic compression caused
by the incoming hot gas. At t = 6 s, its value is

− 1

γP

dP

dt
≈ − 1

1.4 · 113800
13800

6
s−1 ≈ −0.0144 s−1;

This value is the value of the velocity divergence in the region in which there are no thermal
effects due to the hot gas. As one can see in figure 3, there is a strong variation of the
velocity divergence at the extremities of the injection region, where it reaches its maximum
and minimum values (respectively about 2 and−2 s−1). In this region the constant temperature
hot gas enters into the cavity and the cold gas, drawn by the hot one, moves toward the hot
one, as one can see in the streamtraces of figure 2. Then the heat transport by convection (with
the cold gas moving toward the hot one) counteracts to the heat diffusion and increases the
strong variation of temperature (the temperature isolines are more dense at the extremities
of the inlet than elsewhere). Moreover, since we impose a constant inlet temperature, we do
not allow its variation by thermal diffusion, thus enhancing the temperature gradient at the
extremities of the inlet. Even in the region far from the injection but reached by the injected
gas, the velocity divergence cannot be considered constant: for instance in x ≈ 0 and y ≈ 1
the velocity divergence is about −0.16 s−1, i.e. far from the value in the “undisturbed” region.
We also note a large variation of the velocity divergence around the point x = 0 and y = 3 m,
which corresponds to the region reached by the injected gas at t = 6 s. It follows that the
second term of the RHS of the divergence condition (7) cannot be neglected.
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16 A. BECCANTINI ET AL.

Figure 3. Case C1. The velocity divergence at t = 6 s (SI units). On the top, zoom close to the y-axis,
in the region 1 < y < 3.5 m. On the bottom, zoom close to the injection, in the region y < 1 m.
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Figure 4. Case C1. Evolution of ux (top), uy (medium), T (bottom) along the lines x = 0 and x = −L/4
at t = 6 s. All the quantities are expressed in SI units.
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Figure 5. Case C1. Evolution of ux (top), uy (medium), T (bottom) along the lines y = H/4, y = H/2
and y = 3H/4 at t = 6 s. All the quantities are expressed in SI units.
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The temperature isolines show that the temperature varies from 600 K at the injection to
a constant value far from the injection. This constant value is 300 K at t = 0 but increases
because of the isentropic compression and it is about 311 K (formula (3) gives the same result)
at t = 6 s. In figure 4 we show the evolution of the temperature along the axis x = 0. As
one can see in this figure, as well as in the temperature isolines of figure 2, close to the axis
x = 0 the temperature continuously decreases from 600 to 470 K from the inlet (y = 0 m)
to y = 3 m. In this region, the decrease of temperature is mainly due to the mixing of the
injected hot gas with the cold one arriving from the sides and transported by the vortices.
Then, around y = 3 m, we have an important variation of temperature, mainly due to the
thermal diffusion.
As far as the velocity is concerned, the maximum value of uy as well as the maximum value

of the speed occurs at the injection (2.27 m/s). The maximum value of ux is about 0.4 m/s
and occurs at (±0.4, 2.7) m, i.e. in the region close to the vortex.

6.1.2. Comparison of solvers. Let us now compare the results obtained using the different
approaches. As far as the fully compressible solver is concerned, we compute the numerical
solutions on three differently refined meshes. The coarsest one has 80×80 elements, the medium
one 120×120, the finest 160×160. We take the CFL=2 (the CFL being defined by formula (26),
i.e. based on the flow velocity) and we use the BDF2 scheme for the time discretization. At each
time step, fixed-point (internal) iterations are performed until the convergence error on the

total energy decreases 5 orders of magnitude. Concerning the value of dual-time step (∆τn,ℓi

in formula (14)), we take this value extremely high in order to remove the pseudo-time term.
In our experience, this term is extremely useful in computing flows in open domains, in which
the thermodynamic pressure does not vary in time. Indeed it enhance the condition number
of the matrix involved in the quasi-Newton method, thus reducing the number of iterations
performed by the GMRES solver. Conversely, in closed domains, this term prevents the time
variation of thermodynamic pressure.
In the case of the asymptotic approaches, we compute the numerical solutions on a different
set of refined meshes. The coarsest one has 40 × 40 elements, the medium one 80 × 80, the
finest 120× 120 (fewer elements than in the fully compressible approach, but more degrees of
freedom). As far as the time-step is concerned, in order to obtain numerical results converged
in time, we take a CFL=2 (the CFL being defined by formula (26)) and we use the BDF2
scheme for the time discretization. At each time step, fixed-point (internal) iterations are
performed until the convergence error on T decreases 6 orders of magnitude. Streamline
numerical diffusivity is not added (i.e. the convective term is treated with a pure Galerkin
approach). The thermodynamic pressure is computed by imposing the conservation of the
mass (equation (10)).
In table II we give the computed thermodynamic pressure. In the fully-compressible approach,
the energy-balance is affected by the discretization error on the thermal diffusion; then the total
pressure computed on the coarse mesh is slightly lower than the one computed on the medium
and fine meshes. In the asymptotic approaches, the thermodynamic pressure is computed
using the mass conservation instead of using the energy conservation. Nevertheless, the finer
the mesh, the lower the difference of the thermodynamic pressure values computed using the
different approaches. In table I we give some values of T and uy on the axis x = 0 at t = 6 s,
computed via the fully-compressible and the asymptotic algorithms. As one can see, the finer
the mesh, the lower the differences between the values obtained using the different approaches.
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20 A. BECCANTINI ET AL.

Table II. Case C1. Some values of the thermodynamic pressure at t = 6 s respectively given by the
fully-compressible, the asymptotic 1 and the asymptotic 2 algorithms: grid convergence study.

P (bar)
Coarse Medium Fine Eq (2)

1.1384 1.1385 1.1385 1.1380
1.1421 1.1405 1.1399 ”
1.1407 1.1399 1.1395 ”

We also show, on the fine meshes, the relative difference between the values obtained using the
fully-compressible and the asymptotic approach 1 with respect to the asymptotic approach 2,
namely

ǫT =
|T − Tref |

Tref

,

ǫuy
=

|uy − uy,ref |
|uy,ref |

,

(27)

the reference values being the one given by the asymptotic approach 2 (which according to [10],
should give the most accurate results). As one can see, for the fully-compressible approach ǫT
goes from 0.03% to 2% and the maximum difference occurs at the strong gradient region
at y ≈ 3 m. For the asymptotic approach 1, ǫT goes from 0.01% to 0.08%. For the fully-
compressible approach ǫuy

goes from 0.1% to 4% and the maximum difference occurs at the
strong gradient region at y ≈ 3 m. For the asymptotic approach 1, ǫT goes from 0.05% to
0.1%.

6.2. Case C2: g = 9.81 m s−2 and Re = 40.

6.2.1. Solution analysis. We proceed as in the previous case, i.e. we present the numerical
results at t = 6 s obtained via the asymptotic approach 1 using a regular mesh of 120 × 120
elements and a reference CFL number (always defined using formula (26)) equal to 2. Once
again, the results obtained with the other approaches are very close to these.
In figure 6 we represent the velocity field, some streamtraces and the temperature field. In
figure 7 we represent the divergence of ~u. In figures 8 and 9 we show the evolution of ux, uy

and T along some horizontal and vertical lines.
The computed thermodynamic pressure is 1.142 bar, very close to the one given using

formula (2) (1.138 bar), which does not take into account the heat flux at the injection due to
thermal convection.
As in the previous case (case C1), the solution is symmetric with respect to the y-axis. But

in this latter case, we note that the hot region has reached the top of the cavity. This is due
to the buoyancy force, which is very important with respect to the inertial force linked to the
injection, according to the fact that the Froude number is equal to 0.042. In the case C1, at
t = 6 s, the maximum values of uy at the injection occurs at the y-axis, and it is equal to
2.2 m/s. In the case C2, at t = 6 s uy at the injection is equal to 2.2 m/s (as in the case C1,
since this is due to the injection boundary conditions). Nevertheless, the maximum value of uy
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Table III. Case C2. Some values (SI units) along the axis x = 0 at t = 6 s respectively given by the
fully-compressible, the asymptotic 1 and the asymptotic 2 algorithms: grid convergence study. ǫT and

ǫuy are defined by equation (27).

y T ǫT (%) uy · 100 ǫuy (%)
Coarse Medium Fine Fine Coarse Medium Fine Fine

0.5 514.36 517.80 519.78 1 2.6771 2.7615 2.7990 2
527.17 525.82 525.64 0.02 2.8586 2.8608 2.8611 0.02
529.16 526.17 525.73 2.8885 2.8617 2.8617

1.0 458.41 460.65 461.87 0.8 3.0327 3.0954 3.1241 2
465.71 465.88 465.71 0.002 3.1998 3.1813 3.1812 0.01
466.55 465.92 465.70 3.1956 3.1816 3.1816

1.5 429.53 431.20 432.07 0.6 3.2661 3.3174 3.3415 2
434.81 435.10 434.95 0.005 3.3871 3.3957 3.3955 0.06
435.17 435.03 434.93 3.4088 3.3968 3.3957

2.0 411.84 413.15 413.84 0.6 3.4510 3.4977 3.5197 2
415.91 416.29 416.16 0.007 3.5566 3.5765 3.5759 0
416.18 416.22 416.13 3.5907 3.5784 3.5759

2.5 399.86 400.91 401.47 0.5 3.5975 3.6458 3.6689 2
403.07 403.54 403.43 0.007 3.7177 3.7329 3.7316 0.008
403.37 403.48 403.40 3.7411 3.7323 3.7313

3.0 391.45 392.33 392.78 0.4 3.6649 3.7081 3.7311 1
393.77 394.57 394.50 0.01 3.8128 3.7854 3.7803 0.01
394.31 394.57 394.46 3.7866 3.7699 3.7799

3.5 385.54 386.40 386.80 0.5 3.6532 3.6494 3.6510 0.2
386.98 388.50 388.49 0.09 3.8244 3.6582 3.6435 0.03
387.94 388.57 388.45 3.7102 3.6420 3.6447

4.0 380.35 381.44 381.98 0.5 3.9013 3.9083 3.9119 2
382.14 383.74 383.77 0.01 3.8465 3.9812 3.9980 0.07
382.92 383.67 383.73 4.0740 4.0434 3.9983

4.5 373.31 374.48 375.14 0.4 4.6538 4.7651 4.8090 3
377.65 376.88 376.69 0.008 4.4967 4.9489 4.9789 0.05
377.03 376.47 376.66 4.9753 5.0130 4.9763

5.0 366.06 366.97 367.47 0.3 5.2890 5.3985 5.4430 2
371.71 368.93 368.61 0.005 5.3291 5.5542 5.5598 0.005
369.43 368.50 368.59 5.5340 5.5643 5.5601

5.5 361.04 361.51 361.80 0.2 3.4510 3.4977 5.5045 1
365.15 362.97 362.64 0.008 5.6427 5.5745 5.5668 0.07
363.23 362.65 362.61 5.4869 5.5347 5.5707

6.0 357.86 358.05 358.18 0.2 4.9469 5.0068 5.0280 0.005
360.31 359.22 358.91 0.008 5.2202 5.0257 5.0236 0.08
359.27 359.02 358.88 4.8862 4.9760 5.0277
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Figure 6. Case C2. From the left to the right: the velocity, the streamtraces and the temperature at
t = 6 s (SI units).

on the y-axis is 5.6 m/s and occurs at y ≈ 5.3 m. The maximum value of ux is about 3.5 m/s
and occurs at (x, y) = (±0.6, 6.9) m, i.e. on the top of the cavity. Here, the hot gas arrives
and deviates on the left and on the right, thus generating a significant velocity in horizontal
direction.
As far as the velocity divergence is concerned, as in the case C1 it cannot be considered

constant in space. Indeed the constant part of the velocity divergence is given by

− 1

γP

dP

dt
≈ − 1

1.4 · 114100
14100

6
s−1 ≈ 0.0147s−1.

Its extremal values are −3.7 and 4.2 s−1 and occurs at the extremities of the inlet.
The temperature isolines show that the temperature varies from 600 K at the injection to

a constant value far from the injection (311 K), as in the case C1. The quantity of hot gas
entering the cavity is the same as in the case C1 but, because of the buoyancy forces, its shape
is different. In the former case, the hot gas is around the inlet, while in this case it moves faster
toward the top in a narrow region close to the y-axis. In figure 8 we show the evolution of the
temperature along the axis x = 0 and in figure 9 we shows its evolution on some horizontal
lines. As one can see in this figure, as well as in the temperature isolines of figure 6, close to
the axis x = 0 the temperature continuously decreases from 600 to 360 K from the inlet to
top. In this narrow region around the y-axis, the decrease of temperature is mainly due to
the mixing of the injected hot gas with the cold one arriving from the sides and transported
by the vortices. Note that, because of the buoyancy force, the velocity values are larger than
in the case C1. The larger the velocity values, the larger the mixing, the more significant the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



INJECTION FLOW AT LOW MACH NUMBER REGIME 23

Figure 7. Case C2. The velocity divergence at t = 6 s (SI units). On the top, the whole region. On the
bottom, zoom close to the injection, in the region y < 1 m.
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Figure 8. Case C2. Evolution of ux (top), uy (medium), T (bottom) along the lines x = 0 and x = −L/4
at t = 6 s. All the quantities are expressed in SI units.
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Figure 9. Case C2. Evolution of ux (top), uy (medium), T (bottom) along the lines y = H/4, y = H/2
and y = 3H/4 at t = 6 s. All the quantities are expressed in SI units.
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Table IV. Case C2. Some values of the thermodynamic pressure at t = 6 s, respectively given by the
fully-compressible, the asymptotic 1 and the asymptotic 2 algorithms: grid convergence study.

P (bar)
Coarse Medium Fine Eq (2)

1.1385 1.1387 1.1389 1.1380
1.1444 1.1429 1.1419 ”
1.1447 1.1427 1.1417 ”

Table V. Case C2. CPU time (s) spent on a Linux PC after 6 s of physical time.

Approach CPU time (s)
Coarse Medium Fine

Fully-comp. 7850 38500 105000
Asymptotic 2 2450 23400 105000

temperature variation.

6.2.2. Comparison of solvers. Let us now compare the results obtained using the different
approaches. In table IV we represent the computed thermodynamic pressure. Note the fully-
compressible approach and the asymptotic ones converge to a value between 1.39 and 1.41 bar.
Once again, the finer the mesh, the lower the difference between the values given by the different
approaches. In table III we represent some values of T and uy on the the axis x = 0 at t = 6 s,
computed via the fully-compressible and the asymptotic algorithms. On the fine grids the
relative differences between the fully-compressible approach and the asymptotic approach 2
are less than 1% for the temperature and less than 3% for the velocity; the relative differences
between the asymptotic approach 1 and the asymptotic approach 2 are less than 0.1% for the
temperature and for the velocity.

7. PERFORMANCE AND SENSITIVITY ANALYSIS

In this section we investigate the performances of the fully-compressible approach and of the
asymptotic solver 2 (concerning the asymptotic solver 1, we only report that its performances
are slightly better than the ones of the asymptotic solver 2, because on a mesh with the same
number of elements the number of degrees of freedom for the dynamic pressure are fewer;
see [10] for the discussion on conformal P1 versus non-conformal P1 elements for the dynamic
pressure). We also perform the sensitivity analysis of the solution with respect to the variation
of some numerical parameters which allow to easily and drastically reduce the CPU time
consumption.
In table V, we show the CPU-time consumption of the two approaches on a LINUX PC with

two Intel Xeon Processors with a CPU frequency of 3 GHz and with 2Mb of RAM memory.
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We emphasize that, in practical applications, our calculations involve 3D domains and several
hours of physical time. Then a problem arises: how to reduce the CPU time consumption.

Concerning the fully compressible approach, we recall that it is theoretically second order
accurate in space. The number of degrees of freedom are linear with the number of elements.
In the coarse, medium and fine mesh, the degrees of freedom are respectively 80 × 80 × 4,
120 × 120 × 4 and 160 × 160 × 4 (25600, 57600, 102400). In the asymptotic approach 2, we
expect to be third order accurate for the velocity and the temperature and second order
accurate for the dynamic pressure. The degrees of freedom for each component of the velocity
and for the temperature are about 4×40×40, 4×80×80, 4×120×120 (6400, 25600, 57600);
the degree of freedom for the dynamic pressure are 3 × 40 × 40, 3 × 80 × 80, 3 × 120 × 120
(4800, 19200, 43200); i.e. the total number of degrees of freedom are about 24000, 96000,
216000. Numerical experiments confirm that in the fully compressible approach, the results
obtained are less accurate than the ones obtained with the asymptotic approach and its CPU
consumption is greater. This is due to the fact that, in the fully-compressible approach, the
governing equations are solved simultaneously and all the conservative variables are coupled,
while in the asymptotic approach we solve two separate systems (one for the velocity and
the dynamic pressure, the other for the temperature). Moreover the matrix involved in the
linear system of the quasi-Newton method is ill-conditioned, and this is due to the fact that
the time step is much larger than the time that the acoustic waves take to cross a mesh. In
the literature, this problem has been solved using the dual-time preconditioning matrix. As
already mentioned, in problems in which the thermodynamic pressure is time-dependent this
approach cannot be used since it prevents the thermodynamic pressure variation. The storage
of the matrix involved in the linear system of the quasi-Newton method is also a problem.
In [12], an efficient algorithm is presented which avoids the storage of this matrix and allows
one to save the CPU-time with respect to the fully-compressible approach. This approach
efficiently works in dealing with open domains (in which the thermodynamic pressure stays
constant) but presents some problems in closed domains. Nevertheless, even in a problem on
an open domain, like the study of a tee junction, the CPU-time consumption is greater than
in the asymptotic approach.

CPU-time consumption of the asymptotic approach can be reduced by increasing the CFL
number and/or reducing the non-linear iterations. For instance, if we take the CFL number
(defined by (26)) equal 20 (ten times larger than the one previously used), the number of
non-linear iterations (involving the index ℓ in the algorithm presented in section 5) as well as
the number of linear iterations in the GMRES solver are almost the same as in the case of
CFL equal 2; then the CPU time is reduced by a factor 10. If, instead of performing non-linear
iterations to reduce the error on temperature of a factor 105 (which require around 10 and
15 iteration over the index ℓ), we just perform one non-linear iteration, this also drastically
reduces the CPU time (of a factor larger than 10). Finally we can both increase the CFL and
just perform one non-linear iteration. In figure 10 we show the results obtained using all these
different approaches on the medium grid (which, as we have seen in table III, already gives
accurate results). From the top to the bottom and from the left to the right, we have shown
the temperature isolines for the following cases.

1. The solution obtained with the approach described in the previous section (namely with
the BDF2 scheme for time discretization and iterating over the index ℓ).

2. A first order accurate solution in time (implicit Euler scheme or BDF1 for time
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discretization).
3. A second order accurate solution in time with CFL=20 (and iterating over the index ℓ).
4. A solution obtained using the BDF2 scheme but without iterating over the index ℓ (with

CFL=2).
5. A solution obtained using the BDF2 scheme with CFL=20 without iterating over the

index ℓ.
6. A solution obtained with the BDF2 scheme for time discretization, with CFL=2, iterating

over the index ℓ but with lumped mass matrices.

Cases 2 and 6 are considered for comparisons, because they do not involve any CPU time
reduction; nevertheless the result on the case 6 becomes interesting if fractional step with
explicit approach for the convection is used. The cases closest to the reference solution are
respectively the case 6 and 2. Note that case 4 can also be interpreted as a fractional step
approach: we first determine the velocity together with the dynamic pressure and then the
temperature. This fractional steps approach gives results which are much less accurate that the
ones obtained with case 2 (BDF1 for time discretization) and case 3 (CFL=20 but non-linearity
correctly taken into account): in case 4 the hot gas has not reached the top of the cavity. This
shows the importance of the coupling between the temperature and the velocity (via the
coefficients in the equation for the velocity but also via the temperature in the divergence
condition). Case 5 gives results which are completely different from the converged ones (the
mass of hot gas is still at the bottom of the cavity).
We emphasize that, in 3D applications, the storage of the matrix of the problem involving the
velocity and the dynamic pressure can be a problem. It follows that fractional steps, in which
thermodynamic pressure and velocity are solved separately, are necessary. Some models have
been proposed in the literature (see for instance [18]). Nevertheless a validation on injection
test cases is necessary, as confirms the loss of accuracy in case 4.
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Figure 10. Case C2. Asymptotic approach 2. Sensitivity analysis. Temperature isolines at t = 6 s.
From the top to the bottom and from the left to the right: reference solution, solution first-order
accurate in time (BDF1), solution for CFL=20, solution for CFL=2 without performing non-linear
iterations, solution for CFL=20 without performing non-linear iterations, solution with lumped mass

matrices.
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8. CONCLUSION

In this work, we have investigated a problem of injection of hot gas into a cavity filled with the
same gas. Three different approaches have been used: a fully-compressible approach (density-
based solver) and two asymptotic approaches (pressure-based solvers), which differ from one
another on the number of variables involved and the way in which the divergence condition is
taken into account. The convergence analysis shows that the different solvers give results very
close to one another, thus proving the accuracy of the results here provided.
The fully compressible approach gives results which are less accurate than the ones obtained

with the other approaches. Moreover it takes more CPU time. This is due to the fact that, in
the former case, all the equations are solved simultaneously and the matrix arising from the
quasi-Newton method is ill-conditioned. However, the fully compressible solver can solve flows
at all speeds, while asymptotic approaches solve a system of equations arising from one-time
scale and one-space scale asymptotic analysis. Future work will concern the improvement of
the fully compressible solver by implementing a Jacobian-free implicit which avoids the storage
of the matrix arising from the quasi-Newton method and of its preconditioning matrix, with
the same strategy as the one presented in [14].
Concerning the asymptotic approaches it has been shown that, if the non-linear coupling

between the temperature and the velocity, due to the coefficients appearing in the velocity
equation but also in the divergence condition, is not correctly solved, the loss of accuracy
is significant. Nevertheless, the fixed-point iteration procedure used to solve this non-linear
coupling increases the CPU time-consumption (of a factor larger than 10). As already
mentioned, in 3D applications, the storage of the matrix of the problem involving the velocity
and the dynamic pressure can be a problem. It follows that fractional steps, in which
thermodynamic pressure and velocity are solved separately, are necessary. Some models have
been proposed in the literature (see for instance [18]). Nevertheless a validation on injection
test cases is necessary, as confirms the investigation performed in the previous section, and
will be the object of a future work.
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9. APPENDIX. Asymptotic analysis and asymptotic models (6) and (11)

In this section we explain in details how the asymptotic systems of equations (6) and (11)
are obtained from the compressible Navier-Stokes equations via the single time scale and
single space scale asymptotic analysis. The single time scale and single space scale asymptotic
analysis of the compressible Navier-Stokes equations at low Mach number regime can be found
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in many other works (see for instance [22], in which Paolucci derives the low Mach number
Navier-Stokes equations used in [5] to compute the natural convection in a square cavity with
large temperature differences). Nevertheless, the purpose of this appendix is to clarify which
terms are neglected in the asymptotic models here considered. We emphasize that we follow
here the same approach as in [35]; i.e., using the same reference scales as in [35], we write in
non-dimensional form the equation of conservation of internal energy and the time-evolution
equations for the velocity and for the temperature. Once again, we restrict our attention to a
calorically perfect gas, with constant thermal diffusivity λ and dynamic viscosity µ.

9.1. Non-dimensional compressible Navier-Stokes equations

The compressible Navier-Stokes equations can be written in the conservative form (4). As
noticed in [35], chapter 1, page 16, (see also [3], chapter VI, for details), combining these
equations, we can get

• the equation of conservation of internal energy

∂ρe

∂t
+ ~∇ · (ρ~ue) + p~∇ · ~u− τ : ~∇~u− ~∇ ·

(

λ~∇T
)

= 0 (28)

where

e = et −
1

2
~u · ~u =

1

γ − 1

P

ρ
,

• the time-evolution equation for the temperature

ρcp

(

∂T

∂t
+ ~u · ~∇T

)

−
(

∂p

∂t
+ ~u · ~∇p

)

− τ : ~∇~u− ~∇ ·
(

λ~∇T
)

= 0, (29)

• the time-evolution equation for the velocity

ρ
∂~u

∂t
+ ρ~u · ~∇~u = −~∇p+ ~∇ · τ + ρ~g. (30)

Let us now write equations (4), (28), (29) and (30) in non-dimensional form. For density,
velocity, length and pressure we take as reference scales ρref , uref , lref and pref ; for time, energy
and temperature we take

tref =
lref
uref

,

eref =
Pref

ρref
,

Tref =
eref
cv

=
Pref

ρrefcv
.

Using the notation a∗ = a/aref for a generic variable a, we write the compressible Navier-Stokes
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equations (4) in non-dimensional form as



























































∂ρ∗

∂t∗
+ ~∇∗ · (ρ∗~u∗) = 0

∂ρ∗~u∗

∂t∗
+ ~∇∗ ·

(

ρ∗~u∗ ⊗ ~u∗ +
1

γM2
p∗I

)

=
~g

g

1

Fr
ρ∗ +

1

Re

(

~∇∗ · τ∗
)

∂ρ∗e∗t
∂t∗

+ ~∇∗ · ((ρ∗e∗t + p∗)~u∗) =
γ

RePr
~∇∗ ·

(

~∇∗T ∗
)

+
γM2

Fr

~g

g
· ρ∗~u∗ +

γM2

Re
~∇∗ · (τ∗ · ~u∗)

p∗ = (γ − 1) ρ∗T ∗ = (γ − 1) ρ∗
(

e∗t −
γM2

2
~u∗ · ~u∗

)

= (γ − 1) ρ∗e∗

with

τ∗ =

(

~∇∗ ⊗ ~u∗ +
(

~∇∗ ⊗ ~u∗
)T

− 2

3

(

~∇∗ · ~u∗
)

I

)

,

M2 =
u2
refρref
γPref

=
1

γEu
,

Re =
urefρref lref

µ
,

Pr =
cpµ

λ
,

Fr =
u2
ref

glref
,

where M is the Mach number, Eu the Euler number, Re the Reynolds number, Fr the Froude
number and Pr the Prandtl number.

The equation expressing the conservation of internal energy (28) can be written in non-
dimensional form as

∂ρ∗e∗

∂t∗
+ ~∇∗ · (ρ∗~u∗e∗) + p∗~∇∗ · ~u∗ − γM2

Re
τ∗ : ~∇∗~u∗ − γ

RePr
~∇∗ ·

(

~∇∗T ∗
)

= 0 (31)

where

e∗ = e∗t −
γM2

2
~u∗ · ~u∗ =

1

γ − 1

p∗

ρ∗
= T ∗.

The time-evolution equation for the temperature (29) can be written in non-dimensional
form as

ρ∗
(

∂T ∗

∂t∗
+ ~u∗ · ~∇∗T ∗

)

− 1

γ

(

∂p∗

∂t∗
+ ~u∗ · ~∇∗p∗

)

−M2

Re
τ∗ : ~∇∗ ~u∗− 1

RePr
~∇∗ ·

(

~∇∗T ∗
)

= 0. (32)

The time-evolution equation for the velocity can be written in non-dimensional form as

ρ∗
∂~u∗

∂t∗
+ ρ∗~u∗ · ~∇∗~u∗ = − 1

γM2
~∇∗p∗ +

~g

g

1

Fr
ρ∗ +

1

Re

(

~∇∗ · τ∗
)

. (33)
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9.2. Single time scale and single space scale asymptotic analysis

Let us perform the single time scale and single space scale asymptotic analysis of the system
involving the equation of conservation of internal energy (31), the time-evolution equation for
the temperature (32) and the time-evolution equation for the velocity (33). In these equations,
we insert the asymptotic expansion of the variables ρ∗, ~u∗, p∗ and T ∗ with respect to M. For
the generic non-dimensional variable a∗ we can write

a∗ = a∗0 +Ma∗1 +M2a∗2 +O(M3)

Inserting these expansions in the time-evolution equation for the velocity (33) and equating
the terms with identical power of M, under the hypotheses

1 >>
γM2

Fr
=

ρrefglref
pref

and
M2

Re
<< 1,

we deduce that

− 1

γM2
~∇∗p∗0 = 0

and

− 1

γM
~∇∗p∗1 = 0,

i.e. p∗0 and p∗1 should be constant in space. It follows that

p∗(~r∗, t∗) = (p∗0(t
∗) +Mp∗1(t

∗)) +M2p∗2(~r
∗, t∗) + O(M3)

= P ∗(t∗) + p′
∗
(~r∗, t∗)

(34)

with p′
∗
(~r∗, t∗) = O(M2). Equation (34) is the non-dimensional form of equation (5). Inserting

expression (34) in the non-dimensional equation of state, we find that

P ∗(t∗) + O(M2) = (γ − 1)ρ∗T ∗ = (γ − 1)ρ∗e∗ (35)

which, neglecting the term O(M2) in the pressure asymptotic expansion, becomes

P ∗(t∗) = (γ − 1)ρ∗T ∗ = (γ − 1)ρ∗e∗. (36)

According to the (asymptotic) equation of state (36), the first term P ∗(t∗) in the RHS of
equation (34) is called thermodynamic pressure. The second term p′

∗
(~r∗, t∗) is called dynamic

pressure; as already mentioned it is O(M2). Inserting expressions (34) and (35) in the equation
of conservation of internal energy (31), we find that

1

γ − 1

∂

∂t∗
(

P ∗(t∗) + O(M2)
)

+
1

γ − 1
~∇∗ ·

(

(P ∗(t∗) + O(M2))~u∗
)

+ (P ∗(t∗) + O(M2))~∇∗ · ~u∗

−γM2

Re
τ∗ : ~∇∗~u∗ − γ

RePr
~∇∗ ·

(

~∇∗T ∗
)

= 0
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which, neglecting the term O(M2) in the pressure asymptotic expansions and the viscous
dissipation, gives

1

γ − 1

d

dt∗
P ∗(t∗) +

γ

γ − 1
P ∗(t∗)~∇∗ · ~u∗ − γ

RePr
~∇∗ ·

(

~∇∗T ∗
)

= 0.

This equation is the non-dimensional form of the first equation of (6).
Let us now insert expression (34) in the time-evolution equation for the temperature. We find
that

ρ∗
(

∂T ∗

∂t∗
+ ~u∗ · ~∇∗T ∗

)

− 1

γ

(

∂

∂t∗
(

P ∗(t∗) + O(M2)
)

+ ~u∗ · ~∇∗
(

P ∗(t∗) + O(M2)
)

)

−M2

Re
τ∗ : ~∇∗ ~u∗ − 1

RePr
~∇∗ ·

(

~∇∗T ∗
)

= 0

which, neglecting the term O(M2) in the pressure asymptotic expansions and the viscous
dissipation, gives

ρ∗
(

∂T ∗

∂t∗
+ ~u∗ · ~∇∗T ∗

)

− 1

γ

d

dt∗
P ∗(t∗)− 1

RePr
~∇∗ ·

(

~∇∗T ∗
)

= 0.

This equation is the non-dimensional form of the time-evolution equation for the temperature
in (11). If we insert the equation of state (35) in this equation and we neglect the term O(M2)
in the pressure asymptotic expansion, we obtain

P ∗

(γ − 1)T ∗

(

∂T ∗

∂t∗
+ ~u∗ · ~∇∗T ∗

)

− 1

γ

d

dt∗
P ∗(t∗)− 1

RePr
~∇∗ ·

(

~∇∗T ∗
)

= 0,

which is the non-dimensional form of the time-evolution equation for the temperature in (6).

Finally, let us summarize the approximations thus introduced in the asymptotic models (6)
and (11).

• In the asymptotic model (11), the first equation, the equation of conservation of mass, is
not affected by any low Mach number approximation. We note that the time-evolution
equation for the speed is not affected by the asymptotic analysis, in the sense that we
can always subtract from the pressure a term which is constant in space [28, 34]. In the
time-evolution equation for the temperature we neglect the term O(M2) in the pressure
asymptotic expansion and the viscous dissipation. In all the equations, the computation
of the density is performed via the (asymptotic) equation of state (36), which does not
take into account the contribution of the dynamic pressure.

• In the asymptotic model (6), the equation of conservation of internal energy is obtained
neglecting the contribution of the dynamic pressure in the internal energy and the viscous
dissipation. In the time-evolution equation for the temperature, we neglect the term
O(M2) in the pressure asymptotic expansion as well as the temperature variation due to
the viscous dissipation. In all the equations, the density is replaced using the (asymptotic)
equation of state (36), in which the contribution of the dynamic pressure is neglected.

In passing, we notice that in the literature there exist, for the Euler equations, asymptotic
models which uses asymptotic analysis just to rearrange the terms in order to decide how
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to build the numerical method, without neglecting terms in the compressible Navier-Stokes
equations (see for instance [34] and [24]). It would be interesting to extend such approaches
to the Navier-Stokes equations and analyze them on this test case in terms of accuracy and
CPU-time consumption.
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