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THE QUASI-INVARIANT LIMIT FOR A KINETIC MODEL

OF SOCIOLOGICAL COLLECTIVE BEHAVIOR

LAURENT BOUDIN AND FRANCESCO SALVARANI

Abstract. The paper is devoted to the study of the asymptotic be-
haviour of a kinetic model proposed to forecast the phenomenon of opin-
ion formation, with both effect of self-thinking and compromise between
individuals.

By supposing that the effects of self-thinking and compromise are
very weak, we deduce, asymptotically, some simpler models who lose
the kinetic structure. We explicitly characterize the asymptotic state
of the limiting equation and study the speed of convergence towards
equilibrium.

1. Introduction

The main goal of sociophysics consists in giving a statistical physics mod-
eling of large scale social phenomena, like opinion formation, cultural dis-
semination or crowd behaviour. This branch of research started in the early
eighties with a pioneering paper of Galam, Gefen and Shapir [11].

In the last twenty-five years, a substantial community, which includes
mathematicians, physicists and sociologists, has produced many works on
the topic: for example, several articles study how to predict the behaviour
of voters during an election process, a referendum or some public opinion
tendencies [13, 8, 9, 10].

In the literature, different techniques and viewpoints are available.
For instance, several authors base their analysis on Ising models, intro-

duced in social and political sciences by Galam et al. [12, 11] (see also, for
example, [17, 16]).

Recently, some strategies based on nonequilibrium statistical mechanics
have ben fruitfully applied [19, 1, 4, 7]. These papers show how the methods
of this discipline, originally devoted to the classical field of the kinetic theory
of rarefied gases, allow to study the collective behaviour of a large enough
number of individuals, where none of which has a dominant role with respect
to the others.

In particular, in a previous work [4], we have considered a classical issue
of sociophysics, namely the evolution of the opinion about a binary question
(for example, the answer to a referendum) in a closed community. Our goal
was to make compatible two requirements. First, we wanted to reproduce
some sociological collective behavior (being conscious that individuals are
not a physical system) and, at the same time, to provide a mathematical
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analysis of the equations to go beyond numerical experiments. The model is
based on the assumption that the process of opinion formation is obtained
through the competition of two opposite effects, described by two operators
whose mathematical properties are quite different.

The first one is the binary exchange of ideas between individuals, with a
tendency to compromise, described by a collision operator. The second one is
the self-thinking process and is modelled as a weighted linear diffusion which
vanishes on the boundary of the opinion space. The opinion of individuals
is represented by a one-dimensional real variable between (−1) and (+1).
The choice of the closed interval [−1, 1] instead of R means that extreme
opinions can actually be reached, and not only asymptotically.

The crucial assumption on the closure of the community means that the
total number of individuals is constant and that no phenomenon of birth and
death is taken into account. This obviously means that the model provides
forecasts on the opinion evolution in a short-time scale. Moreover, here the
population dynamics has been neglected.

Hence, from the modelling viewpoint, the time asymptotics problem may
not seem relevant, since it means considering immortal individuals with no
descendants. In fact, it may be seen as a first step of a later study including
a coupling of our model with population dynamics equations.

From a mathematical point of view, the study of the large-time behaviour
of the kind of equations proposed in [4] is an active area of research. Indeed,
the presence of two phenomena, described by operators with drastically dif-
ferent large-time behaviours, makes the time asymptotics quite interesting:
the asymptotic regime, if any, should be driven either by the “dominant”
operator or by a state which inherits some properties of both operators as
time grows.

In this article, we intend to adopt the mathematical point of view, and
consider the time asymptotics of the model proposed in [4]. We shall re-
strain ourselves, however, to a very particular regime. We shall suppose
that both the collision operator and the diffusion term have a small effect
in the time evolution of the system. This assumption allows to deduce some
approximated equations of the model, then to obtain the stationary state
in a closed form and eventually to study the long-time asymptotics of the
problem in a simpler way.

We name the resulting equation the quasi-invariant limit of the kinetic-
diffusion model defined in [4]. We point out that this point of view is very
common, and has been adopted in many articles concerning the study of
models for granular gases (see, for example, [2, 3, 15, 18] and the references
therein).

This paper is organized as follows. In the next section, we briefly recall
the model and its main properties. Section 3 is devoted to the introduction
of some quasi-invariant limits, that reflect the relative strength of the opera-
tors. Finally, in Section 4, we consider the asymptotic state of the equations
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proposed in Section 3, and deduce the rate of decay to the stationary so-
lution for the quasi-invariant approximation. Some numerical experiments
concerning the models are also shown to enhance the theoretical study of
the equations.

2. Original model

In order to make the paper self-consistent, we briefly recall the model
proposed in [4] and its main properties. It describes the time evolution of
the opinion set of an isolated population about binary questions. Our model
is based on only two independent variables: the time t ∈ R+ and the opinion
variable x ∈ Ω̄, where Ω denotes the open interval (−1, 1).

The unknown of the model is the density (or distribution function) f =
f(t, x), defined on R+ × Ω̄, whose time evolution is described by an integro-
differential equation which takes into account two phenomena: self-thinking
and binary interactions.

The self-thinking is modelled by a non-homogeneous diffusive term with
structure (α(x)fx)x, where α is a term which forces the diffusive process to
respect the bounds of the opinion space Ω̄.

We suppose that the Fourier coefficient α satisfies the assumptions listed
below.

Definition 2.1. Let α : Ω̄ → R be a nonnegative function of class C1(Ω̄).
We say that α is admissible if α(x) = α(−x) for all x ∈ Ω̄ and α(−1) =
α(1) = 0.

The exchange of opinions inside the population is modelled by borrowing
the collisional mechanism of a typical interaction in the kinetic theory of
gases: whereas in rarefied gas dynamics the particles exchange momentum
and energy in such a way that the principles of classical mechanics are
satisfied, here the “collision” between individuals allows the exchange of
opinions. Let x, x∗ ∈ Ω̄ the opinions of two individuals before an interaction.
The opinions after the interaction change according to the following formula:

(1)















x′ =
x + x∗

2
+ η(x)

x − x∗

2
,

x′
∗ =

x + x∗

2
+ η(x∗)

x∗ − x

2
.

The function η : Ω̄ → R, is the attraction coefficient: in general, it is
a smooth function which describes the degree of attraction of the average
opinion with respect to the starting opinion of the agent. Since the interac-
tion must respect the bounds of the interval Ω, we need that 0 ≤ η < 1.

Once defined the collision rule (1), the interaction between individuals and
the corresponding exchange of opinions is described by a collisional integral
of Boltzmann type.

The collisional integral, which will be henceforth denoted as Q, has the
classical structure of the dissipative Boltzmann kernels.
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Let ϕ = ϕ(x) be a suitably regular test function. We define the weak
form of the collision kernel as

(2) 〈Q(f, f), ϕ〉 = β

∫∫

Ω2

f(t, x)f(t, x∗)
[

ϕ(x′) − ϕ(x)
]

dx∗dx.

Note that the particular form of the collision rule (1) only enters through the
test function ϕ(x′). The cross section β > 0 is a parameter which governs
the probability that an exchange of opinions can occur. In order to keep
the description as simple as possible, we suppose that β is purely a positive
constant.

The evolution law of the unknown f = f(t, x) is then given by a partial
integro-differential equation of second order with respect to x:

(3)

∫

Ω
ft(t, x)ϕ(x) dx =

∫

Ω

[

α(x)ϕ′(x)
]

x
f(t, x) dx + 〈Q(f, f), ϕ〉

posed in (t, x) ∈ [0, T ] × Ω, T > 0, for all ϕ ∈ C2(Ω̄), with initial condition

(4) f(0, x) = f in(x) for all x ∈ Ω̄.

For the sake of simplicity, in the whole paper, we shall suppose that
‖f in‖L1(Ω) = 1.

We point out that Equation (3) translates the presence of two opposite
phenomena. The collision term reflects the sociological hypothesis that the
individuals, after an exchange of opinion, adjust their own ideas with a ten-
dence to compromise: hence this term gives a concentration effect. On the
other hand, the self-thinking introduces a diffusive behavior in the equa-
tion, whose properties heavily depend on the functional form of the Fourier
coefficient α.

The following results hold [4].

Proposition 2.2. Let f = f(t, x) be a nonnegative weak solution of (3)–(4),
with a nonnegative initial datum f in ∈ L1(Ω). Then we have

‖f(t, ·)‖L1(Ω) = ‖f in‖L1(Ω) = 1 for a.e. t ≥ 0.

Moreover, since |x| ≤ 1, from the previous result, we immediately deduce
that all the moments of f are bounded:

Corollary 2.3. Let f = f(t, x) be a nonnegative weak solution of problem

(3)–(4), with nonnegative initial datum f in ∈ L1(Ω). Then, for a.e. t ≥ 0
we have that

∫

Ω
xnf(t, x) dx ≤ ‖f in‖L1(Ω) = 1

for all n ∈ N.

The following existence theorem guarantees that problem (3)–(4) makes
sense.

Theorem 2.4. Let f in a nonnegative function of class L1(Ω). Then there

exists a nonnegative weak solution f ∈ L∞(0, T ;L1(Ω)) of (3)–(4), where

(3) takes sense in D′(−T, T ).
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3. Quasi-invariant limit

The goal of the paper is the study of the quasi-invariant limit of problem
(3)–(4). We shall be interested in situations where only very small modifi-
cations of the opinion are allowed by the processes of diffusion and collision.

This means that η(x) is very close to 1 for any x ∈ Ω̄. Since the quasi-
invariant limit procedure must be valid in the whole interval Ω, the spatial
details of η are not relevant when passing to the limit. Therefore, we can
assume that η is a constant, i.e. we write, for a fixed small enough ε ∈
(0, 1/2), that

ηε(x) = 1 − 2 ε, ∀x ∈ Ω̄.

Hence we shall perform the asymptotics ε → 0+.
With this choice, the collision mechanism (1) can be rewritten as

(5)







x′ = (1 − ε)x + εx∗

x′
∗ = (1 − ε)x∗ + εx

and its Jacobian is J(x, x∗) = 1 − 2ε > 0.
In order to get the collision term, we write the Taylor expansion of the

test function ϕ up to the second order. For any (x, x′), there exists θ ∈ [0, 1]
such that

ϕ(x′) = ϕ(x) + (x′ − x)ϕ′(x) +
(x′ − x)2

2
ϕ′′(θx′ + (1 − θ)x).

Thanks to (5), it is clear that

(x′ − x)2

2
ϕ′′(θx′ + (1 − θ)x) = O(ε2).

If we denote fε the solution of problem (3)–(4) with the collision mechanism
(5), whose existence is guaranteed by Theorem 2.4, (2) becomes

〈Q(fε, fε), ϕ〉 = β

∫∫

Ω2

fε(t, x)fε(t, x∗)ϕ
′(x)(x′ − x) dx∗dx + O(ε2)

= εβ

∫∫

Ω2

fε(t, x)fε(t, x∗)ϕ
′(x)(x∗ − x) dx∗dx + O(ε2),

for any ϕ ∈ C2(Ω̄).
The quasi-invariant self-thinking process is modelled by a Fourier coeffi-

cient of type

(6) αε(x) = εkα(x), x ∈ Ω̄,

such that k > 0 and α does not depend on ε. Note that, from now on, α
will not depend on ε.

Three categories of choices for k are possible, leading to different kinds of
quasi-invariant opinion approximations. In the sequel, we discuss the three
situations, which have quite different behaviors.
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3.1. The collision-dominated regime. In this subsection, we assume
that k > 1. Therefore, the effects dues to the exchange of opinions between
individuals are predominant. If we rescale the time variable as τ = ε t, the
model is reduced to

d

dτ

∫

Ω
fε

(τ

ε
, x
)

ϕ(x) dx = β

(
∫

Ω
fε

(τ

ε
, x
)

ϕ′(x) dx

)(
∫

Ω
fε

(τ

ε
, x
)

x dx

)

− β

∫

Ω
fε

(τ

ε
, x
)

xϕ′(x) dx + O(εk−1).

By letting ε → 0+ in the previous equation, we formally deduce the following
equation for the unknown

g(τ, x) = lim
ε→0+

fε

(τ

ε
, x
)

,

posed for τ ∈ [0,+∞):

d

dτ

∫

Ω
g(τ, x)ϕ(x) dx = β

(
∫

Ω
g(τ, x)ϕ′(x) dx

)(
∫

Ω
g(τ, x)x dx

)

−β

∫

Ω
g(τ, x)xϕ′(x) dx(7)

for all ϕ ∈ C2(Ω̄), supplemented with the initial condition

g(0, x) = f in(x) for all x ∈ Ω̄.

Equation (7) can be simplified. If we set ϕ(x) = 1 and ϕ(x) = x in (7), we
respectively deduce that

d

dτ

∫

Ω
g(τ, x) dx =

d

dτ

∫

Ω
x g(τ, x) dx = 0.

Hence the weak form of the quasi-invariant limit for (3)–(4) in the collision-
dominated regime has the following strucure:

d

dτ

∫

Ω
g(τ, x)ϕ(x) dx = β m1(0)

∫

Ω
g(τ, x)ϕ′(x) dx

− β

∫

Ω
g(τ, x)xϕ′(x) dx(8)

for all ϕ ∈ C2(Ω̄), where

m1(0) =

∫

Ω
f in(x)x dx,

with initial condition

(9) g(0, x) = f in(x) for all x ∈ Ω̄.

This is a linear partial differential equation of first order, with a coefficient
depending on the initial datum of the model, more precisely on the first
moment of f in.

It is interesting to note that, in this case, all the moments of the solution
can be explicitly computed. Indeed, if we consider the test function ϕ(x) =
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xn, n ≥ 2, we obtain from (8) the following evolution equation for the
moments:

dmn

dτ
= β n[m1(0)mn−1 − mn], n ≥ 2,

where

mn(τ) =

∫

Ω
xng(τ, x) dx, n ≥ 2.

By induction, since the first moment is conserved, we can deduce that all
the moments are uniformly bounded and that

lim
τ→+∞

mn(τ) = [m1(0)]
n

for all n ∈ N.

3.2. The diffusion-dominated regime. The predominance of the self-
thinking corresponds to the choice 0 < k < 1. If we rescale the time as
τ = εk t and disregard all the term of non-zero order with respect to ε, the
model is reduced to the non-homogeneous degenerate parabolic equation for
the unknown

g(τ, x) = lim
ε→0+

fε

(τ

ε
, x
)

,

posed for τ ∈ [0,+∞):

(10)
d

dτ

∫

Ω
g(τ, x)ϕ(x) dx =

∫

Ω

(

αϕ′
)′

(x) g(τ, x) dx

for all ϕ ∈ C2(Ω̄), with initial condition

(11) g(0, x) = f in(x) for all x ∈ Ω̄.

This problem is nothing but the weak form of the equation studied in [5].

3.3. The well-balanced regime. In this latter case, we suppose that k =
1. If we rescale time as τ = ε t, the model is reduced to the following form:

d

dτ

∫

Ω
fε

(τ

ε
, x
)

ϕ(x) dx =

∫

Ω

(

αϕ′
)′

(x) fε

(τ

ε
, x
)

dx

+ β

(
∫

Ω
fε

(τ

ε
, x
)

ϕ′(x) dx

)(
∫

Ω
fε

(τ

ε
, x
)

x dx

)

− β

∫

Ω
fε

(τ

ε
, x
)

xϕ′(x) dx + O(ε).

If ε → 0+, we formally deduce the following partial differential equation (in
a weak form) for the unknown

g(τ, x) = lim
ε→0+

fε

(τ

ε
, x
)

,
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that is

d

dτ

∫

Ω
g(τ, x)ϕ(x) dx =

∫

Ω

(

αϕ′
)′

(x) g(τ, x) dx

+ β

(
∫

Ω
g(τ, x)ϕ′(x) dx

)(
∫

Ω
g(τ, x)x dx

)

(12)

− β

∫

Ω
g(τ, x)xϕ′(x) dx,

for all ϕ ∈ C2(Ω̄), posed for τ ∈ [0,+∞), with initial condition

(13) g(0, x) = f in(x) for all x ∈ Ω̄.

Equation (12) is a non-homogeneous nonlinear Fokker-Planck-type equa-
tion. The nonlinearity comes from the first moment of g, i.e.

m1(τ) =

∫

Ω
g(τ, x)x dx.

However, sometimes, this term can be exactly computed. This allows to
obtain a further simplification which makes the equation particularly simple.
Let us detail two cases.

3.3.1. Even initial datum. The first particular case we consider is obtained
when f in is even. With that type of initial datum, problem (12) is invariant
by parity. Hence its solution is even for all t > 0 and therefore m1(τ) = 0.
Equation (12) can then be simplified into

d

dτ

∫

Ω
g(τ, x)ϕ(x) dx =

∫

Ω

(

αϕ′
)′

(x) g(τ, x) dx − β

∫

Ω
g(τ, x)xϕ′(x) dx

for all ϕ ∈ C2(Ω̄), posed for τ ∈ [0,+∞]. The previous equation is the weak
form of a linear Fokker-Planck equation.

3.3.2. Specific form of the Fourier coefficient. When the Fourier coefficient
can be written as α(x) = κ(1 − x2) with κ > 0, we put ϕ(x) = x in
Equation (12), and deduce

d

dτ

∫

Ω
g(τ, x)x dx =

∫

Ω
α′(x)g(τ, x) dx,

and hence we get

m1(τ) = m1(0) exp(−2κτ),

where m1(0) is the first moment of the initial datum

m1(0) =

∫

Ω
f in(x)x dx.



QUASI-INVARIANT OPINION LIMIT 9

This leads us to

d

dτ

∫

Ω
g(τ, x)ϕ(x) dx = κ

∫

Ω

[

(1 − x2)ϕ′
]′

(x) g(τ, x) dx

− β

∫

Ω
g(τ, x)xϕ′(x) dx(14)

+ βm1(0) exp(−2κτ)

(
∫

Ω
g(τ, x)ϕ′(x) dx

)

,

for all ϕ ∈ C2(Ω̄), posed for τ ∈ [0,+∞), with initial condition (13).
Here the equation has a coefficient that depends on the initial datum f in

through m1(0).

3.3.3. General properties. In any case, since x ∈ Ω̄,

|m1(τ)| ≤ ‖f in‖L1(Ω), a.e. τ > 0.

Since the stationary solution of Equation (12) must be even by parity of the
equation, then

lim
τ→+∞

m1(τ) = 0.

4. Mathematical aspects of the quasi-invariant limit equations

4.1. The collision-dominated regime. Equation (8) with initial condi-
tion (9) is the weak form of a linear partial differential equation of first order.
The following result ensures that this problem admits an explicit solution.

Theorem 4.1. Let f in ∈ H1
0 (Ω) and consider, for any τ > 0, the nonempty

open intervals Ωτ defined by

Ωτ =

(

m1(0) − (1 + m1(0))e
−βτ ,m1(0) + (1 − m1(0))e

−βτ

)

 Ω,

and denote Ω0 = Ω. Let us set, for any τ ≥ 0,

(15) g(τ, x) =

{

eβτf in
(

(x − m1(0))e
βτ + m1(0)

)

if x ∈ Ωτ ,
0 if x ∈ Ω̄\Ωτ .

The function g given by (15) is C0(Ω̄) and is a weak solution to Equa-

tion (8) with initial condition (9). Moreover, we have

‖g(τ, · )‖L1(Ω) = ‖f in‖L1(Ω)

| supp g(τ, ·)| ≤ 2e−βτ .

Proof. Both estimates are immediate. Let us check that g solves (8). We
first compute, for ϕ ∈ C1(Ω̄),

∫

Ω
g(τ, x)ϕ(x) dx = eβτ

∫

Ωτ

f in
(

(x − m1(0))e
βτ + m1(0)

)

ϕ(x) dx

=

∫

Ω
f in(y)ϕ

(

(y − m1(0))e
−βτ + m1(0)

)

dy,
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Figure 1. Explicit asymptotic and approximate numerical solutions

and then obtain that

d

dτ

∫

Ω
g(τ, x)ϕ(x) dx = −βe−βτ

∫

Ω
f in(y)ϕ′

(

(y − m1(0))e
−βτ + m1(0)

)

dy.

In the same way, one can compute
∫

Ω
g(τ, x)ϕ′(x) dx and

∫

Ω
g(τ, x)xϕ′(x) dx.

It is then easy to prove that g solves (8). �

Note that, asymptotically in time, Theorem 4.1 ensures that g(τ, ·) con-
verges to the Dirac mass centred at m1(0) with an exponential rate of decay.

We can numerically recover that behavior. Indeed, we can compare the
explicit form of g given by (15) with the numerical solution fε(·/ε) obtained
with the code developped in [4]. For the numerical computations, we fix

ε = 0.01, β = 50 as collision frequency, and k = 4, α(x) = (1−x2)1/3 in (6).
Moreover, we choose f in(x) = 3/8 (1 − x2)(2 − x), so that m1(0) = −0.1.
In Figure 1, one can check that both profiles are centred at −0.1, and have
the same concentration effect: indeed, both supports narrowed around −0.1
with respect to τ . It is not surprising that the graphs in Fig. 1 cannot be
superimposed, since the diffusive effect is still taken into account for the
numerical solution.

4.2. The diffusion-dominated regime. The existence and uniqueness
theorem for the approximated equation in the diffusion-dominated case has
been proved in [5]. We only add here some results on the convergence speed
towards equilibrium which can be explicitly deduced.
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If, for example, the even function α satisfies the assumption

(16) K := sup
x∈(−1,1)

[

(1 − x)

∫ x

−1

(1 + t)2

α(t)
dt

]1/2

< +∞

we can use the following theorem on weighted 1-dimensional Poincaré in-
equalities [6], here written in a simplified form:

Theorem 4.2. If Condition (16) holds and α is a nonnegative measurable

function which is finite a.e., then, for all Lipschitz continuous function f on

Ω, we have

∫

Ω
α
∣

∣f ′(x)
∣

∣

2
dx ≥

1

2K

∫

Ω

∣

∣

∣

∣

f(x) −
1

2

∫

Ω
f(v) dv

∣

∣

∣

∣

2

dx.

The strong form of Equation (10) with initial condition (9) reads

gτ = (α gx)x(17)

g(0, x) = f in(x),(18)

lim
x→±1

α(x)gx(τ, x) = 0.(19)

for x ∈ Ω and τ > 0.
A standard a-priori estimate for the Neumann problem (17)–(19) can be

obtained by differentiating the equation with respect to x, then multiplying
each term of the equation by α gx, and integrating with respect to x in Ω,
i.e.

(20)
d

dτ

∫

Ω
α gx

2 dx = −

∫

Ω
(α gx)x

2 dx ≤ 0.

Consequently, if ‖α (∂xf in)
2
‖L1(Ω) < +∞, then the quantity α(gx)2 is uni-

formly bounded in L1(Ω).
We now multiply Equation (17) by (g − 1/2) and integrate with respect

to x ∈ Ω. We immediately obtain

1

2

d

dτ

∫

Ω

(

g −
1

2

)2

dx = −

∫

Ω
α (gx)2 dx.

The right-hand-side of the above equation is uniformly bounded with respect
to t because of (20). Thanks to Theorem 4.2, if α satisfies (16), it comes

d

dτ

∫

Ω

(

g −
1

2

)2

dx = −
1

K

∫

Ω

(

g −
1

2

)2

dx,

and we get the exponential convergence towards the constant equilibrium
solution 1/2:

(21)

∥

∥

∥

∥

g(τ, ·) −
1

2

∥

∥

∥

∥

L2(Ω)

≤

∥

∥

∥

∥

f in −
1

2

∥

∥

∥

∥

L2(Ω)

e−τ/2K .
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Figure 2. Comparison between log L2 norms

We can also perform a numerical comparison between

τ 7→ Fε(τ) = 2 log

(

∥

∥

∥

∥

fε

(τ

ε
, ·
)

−
1

2

∥

∥

∥

∥

L2(Ω)

)

and

τ 7→ F0(τ) = 2 log

(

∥

∥

∥

∥

f in −
1

2

∥

∥

∥

∥

L2(Ω)

)

−
τ

K
≃ −2.303 − 1.307 τ.

As a matter of fact, the computation of fε can be made in the case when
ε = 0.05, β = 50, and α(x) = (1 − x2)1/3, k = 0.9 in (6), and f in(x) =
3/4 (1 − x2). Note that we can then numerically compute an approximate
value of K ≃ 0.765 in (16). Figure 2 shows the relative positions of the plots
of F0 and Fε.

The plot of Fε is almost a draw line, at least when time is not too large,
which suggests for fε

(

τ
ε , ·
)

an exponential rate of convergence to a stationary
solution which is close to the stationary solution of g (i.e. 1/2). Of course,
the two asymptotic states of fε

(

τ
ε , ·
)

and g(τ, ·) do not coincide, but they

differ with an error which is at most of order O(ε1−k), as shown in the
derivation of the quasi-static approximation in Section 3. Since ε1−k is
really significant, we cannot be surprised by the fact that estimate (21)
is not satisfied by fε. Nevertheless, asymptotically, the plot of Fε should
numerically converge to a constant value which gives the error committed,
in the L2 norm, when the asymptotic limit of fε

(

τ
ε , ·
)

is identified with the
asymptotic limit of g(τ, x).
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4.3. The well-balanced regime. This subsection is devoted to prove some
important properties of Equation (12). We first characterize their stationary
states, as proved in the following proposition:

Proposition 4.3. There exists a probability density q ∈ C2(Ω̄), which is

a stationary solution of Equation (12). The stationary solution q has the

following explicit form:

q(x) = ξ exp

(

−β

∫ x

0

s

α(s)
ds

)

, x ∈ Ω̄,

where ξ ∈ R is an arbitrary constant.

Proof. A stationary solution q(x) of the Fokker-Planck equation (12) satisfies
the following weak form:

(22)

∫

Ω

(

αϕ′
)′

q dx − β

∫

Ω
x q ϕ′ dx = 0

for all ϕ ∈ C2(Ω̄), by parity (see subsectn. 3.3.3).

If we assume that q is smooth enough, say, for example, q ∈ W 1,1
loc

(Ω),
then we can integrate by parts the first term in Equation (22), and deduce
that

∫

Ω
[αq′ + βxq]ϕ′ dx = 0

for all ϕ ∈ C2(Ω̄). Hence,

αq′ + βxq = 0,

and therefore q can be written under the following form:

q(x) = ξ exp

(

−β

∫ x

0

s

α(s)
ds

)

,

where ξ ∈ R. �

As a next step, we consider the existence theory and the asymptotic decay
towards the stationary state for Equation (12). The simultaneous presence
of a nonlinearity and of the degeneracy of the second order term makes the
study of the general case quite difficult. In this paper, we obtain some re-
sults for the case α(x) = κ(1 − x2), with κ > 0 (see subsectn. 3.3.2). This
assumption allows to linearize Equation (12) and to find, for an appropri-
ate choice of the parameter β, an exponential rate of convergence towards
equilibrium.

In this framework, the stationary solution is simply of the form q(x) =

(1 − x2)β/2.
The strategy of the proof is the following. We first consider a lifted

version of Equation (14), and then prove by compactness the existence of a
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solution of the non-lifted problem. We hence consider the following family
of initial-boundary value problems

(23)
∂τuδ = ∂x

(

(α + δ)∂xuδ

)

+ β∂x(xuδ) − βe−2κτ

(
∫

Ω
xf in(x) dx

)

∂xuδ,

with initial and boundary conditions

(24) uδ(0, x) = f in(x), lim
x→±1

∂xuδ(t, x) = 0,

where δ > 0 is the lifting parameter and the other quantities are the same
as in Equation (12).

Standard theory of linear parabolic equations [14] gives the following re-
sult:

Proposition 4.4. Let f in ∈ Hp(Ω), p ∈ N, and T > 0. Then there exists a

unique solution uδ ∈ C([0, T ];Hp(Ω)) for the initial-boundary value problem

(23)–(24). Moreover, the solution is nonnegative if f in ≥ 0 a.e. Finally,

there exists a nonnegattive constant J only depending on T , β, f in and κ,

such that

‖uδ(τ, · )‖Hp(Ω) ≤ J, ∀δ > 0.

Proof. The existence part of the proposition is classical, as well as the non-
negativity of the solution [14].

The boundedness of the H1 norm can be obtained by means of an a priori
estimate. We differentiate Equation (23) with respect to x and then multiply
it by ∂xuδ. After integrating with respect to x in Ω, we deduce

1

2

d

dτ

∫

Ω
(∂xuδ)

2 dx = −

∫

Ω
(α + δ) (∂xxuδ)

2 dx

+ 2κ

∫

Ω
x ∂xuδ ∂xxuδ dx +

3

2
β

∫

Ω
(∂xuδ)

2 dx

≤

(

3

2
β − κ

)
∫

Ω
(∂xuδ)

2 dx.

We can eventually write

(25) ‖∂xuδ‖L2(Ω) ≤ ‖∂xf in‖L2(Ω)e
(3β/2−κ)τ .

The uniform boundedness (with respect to δ) of higher order derivatives is
obtained in the same way (note that the equation is linear). Hence, the last
part of the proposition follows. �

Proposition 4.4 allows to prove the following theorem, which guarantees
the existence of a weak solution for the well-balanced quasi-invariant limit
of (3)–(4), when α(x) = κ(1 − x2).

Theorem 4.5. Problem (14) posed for τ ∈ [0,+∞), for all ϕ ∈ C2(Ω̄),
with the nonnegative initial condition f in ∈ Hp(Ω), has a nonnegative weak



QUASI-INVARIANT OPINION LIMIT 15

solution in C([0, T ];Hp(Ω)), for any T > 0. When p ≥ 2, the solution is

unique in the class of the functions belonging to Hp.

Proof. We consider a family of solution (uδ) for the initial-boundary value
problem (23)–(24), written in the following weak form:

d

dτ

∫

Ω
uδ(τ, x)ϕ(x) dx = κ

∫

Ω

[

(1 − x2)ϕ′(x)
]

x
uδ(τ, x) dx

− β

∫

Ω
uδ(τ, x)xϕ′(x) dx

+ βm1(0) exp(−2κτ)

(
∫

Ω
uδ(τ, x)ϕ′(x) dx

)

,

for all ϕ ∈ C2(Ω̄), posed for τ ∈ [0,+∞), with nonnegative initial datum
f in ∈ Hp(Ω).

Since uδ ∈ C([0, T ];Hp(Ω)) for any δ > 0 and since, moreover, the family
is uniformly bounded in Hp(Ω), up to a subsequence, (uδ) weakly converges
in Hp(Ω), for a.e. τ , let g be its limit. This function g solves the weak form
of the initial-boundary value problem described in the theorem. As a matter
of fact, the equation itself is linear with respect to the unknown function.

Eventually, we have to check that g satisfies the correct initial condition.
Let us integrate the lifted equation with respect to τ in [0, θ], we obtain that

∣

∣

∣

∣

∫

Ω
(uδ(θ, x) − f in(x))ϕ(x) dx

∣

∣

∣

∣

≤ κ

∫ θ

0

∫

Ω

∣

∣

[

(1 − x2)ϕ′(x)
]

∂xuδ(τ, x)
∣

∣ dx dτ

+ β

∫ θ

0

∫

Ω
|∂x(uδ(τ, x)x)ϕ(x)| dx dτ

+ β |m1(0)|

∫ θ

0

∫

Ω
|∂xuδ(τ, x)ϕ(x)| dx dτ.

Thanks to the upper bound of ‖uδ(τ, · )‖H1(Ω) given by Proposition 4.3, the
right-hand side of the previous inequality vanishes when θ goes to 0. That
proves that g(0, ·) = f in in w-H1(Ω).

In order to prove that the solution g is nonnegative, we simply note that
weak convergence in H1 implies strong convergence in L2 and a.e. Hence, the
constructed solution g is nonnegative since the sequence (uδ) is nonnegative
too.

Uniqueness is easily obtained by standard energy estimates for the non-
lifted equation in strong form. �

We note that the previous theorem guarantees uniqueness of the solution
(in the class of regular enough functions, say g(τ, ·) ∈ H2(Ω), which is a nec-
essary condition to use the strong formulation) without imposing boundary
conditions.



16 L. BOUDIN AND F. SALVARANI

The next step consists in proving that, in fact, the previous result of
existence, which is local in time, although with an upper bound time which
can be arbitrarily large, is indeed global for a wise choice of parameters κ
and β. Moreover, in this case, we deduce exponentially fast convergence
towards the stationary solution characterized in Proposition 4.3. The proof
is based on a suitable a priori estimate. In order to make the result more
readable, we choose κ = 1.

We start by proving the following property:

Lemma 4.6. Let g be the solution of Equation (14) posed for τ ∈ [0,+∞),
with nonnegative and compactly supported initial condition f in ∈ Hp

0 (Ω),
with p ≥ 2. Then g(t,±1) = 0 for any t ∈ [0, τ ].

Proof. Since β > 0, the stationary solution q vanishes in x = ±1. The initial
condition f in is compactly supported in Ω. Thanks to a standard Sobolev
imbedding, it is also in L∞(Ω). Hence, there exists a suitable stationary
solution q∗ of Equation (14), such that q∗ ≥ f in almost everywhere. Note
that the masses of q∗ and f in can be different.

We now consider the unique solution of Equation (14) with initial datum
(q∗−f in), given by Theorem 4.5. This result ensures that the time evolution
of the difference between the solution with initial datum f in and q∗ also
preserves nonnegativity. Consequently, the trace of the solution g on the
boundary is nil. �

We are almost ready to prove the main result on the initial-value problem
for Equation (14) with κ = 1. We first note that the constant K given by
Theorem 4.2 is finite and satisfies 0.76 ≤ K ≤ 0.77.

Theorem 4.7. Let f in be a nonnegative and compactly supported function

in H2
0 (Ω) such that ‖f in‖L1(Ω) = 1, and 0 < β < 1/K, where the constant K

is given by Theorem 4.2. Then the solution g to the well-balanced problem

(14) with κ = 1, posed for τ ∈ [0,+∞), for all ϕ ∈ H1(Ω), with initial

datum f in ∈ Hp(Ω), converges exponentially fast to the stationary solution

q given by Proposition 4.3, where ξ is chosen such that ‖q‖L1(Ω) = 1.

Proof. We consider the strong form of Equation (14)

gτ =
(

αgx

)

x
+ β(x g)x − βm1(0)e

−2τ gx,

with initial condition g(0, x) = f in(x), where α(x) = 1−x2. Since the initial
datum is normalized, it is easy to see that the stationary solution, in this
case, is given by

q(x) = ξ(1 − x2)β/2, where ξ−1 =

∫

Ω
(1 − x2)β/2 dx.

It is clear that q satisfies

(αq′)′ + β(xq)′ = 0.
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Let us substract the equations respectively satisfied by gτ and q, multiply
the obtained equation by (g − q) and integrate with respect to x in Ω. We
easily deduce, after an integration by parts, that

1

2

d

dτ

∫

Ω
(g − q)2 dx = −

∫

Ω
α(x)(g − q)x

2 dx

+
β

2

∫

Ω
(g − q)2 dx − βm1(0)e

−2τ

∫

Ω
gx(g − q) dx,

where we have used that both g and q have zero traces on the boundary of
the interval Ω. Since g also satisfies (25), using Thm. 4.2, we can write

d

dτ
‖g − q‖2

L2 ≤

(

β −
1

K

)

‖g − q‖2
L2

+βm1(0)‖∂xf in‖L2 exp

[(

3β

2
− 3

)

τ

]

‖g − q‖L2 .

With our assumption on β and the approximate value of K, it is clear that

−γ1 :=
3β

2
− 3 < 0 and − γ2 :=

1

2

(

β −
1

K

)

< 0.

Hence we get

d

dτ
‖g − q‖L2 ≤ −γ2‖g − q‖L2 + Me−γ1τ ,

where M is a constant. We can safely assume that γ1 6= γ2. Therefore, we
can deduce that

‖g − q‖L2 ≤

(

‖f in − q‖L2 +
M

γ2 − γ1

)

e−γ2τ −
M

γ2 − γ1
e−γ1τ

≤ ‖f in − q‖L2 e−min(γ1,γ2)τ ,

which means exponential convergence towards equilibrium. �

Remark 4.8. Apparently, the exponentially fast convergence of fε in τ also

holds for at least some values of β ≥ 1/K. As a matter of fact, if we pick

ε = 10−4 and β = 30, it is quite clear, on Fig. 3, that (fε), which is an

approximation of g of order O(ε), still converges to the stationary solution

when the time increases. Nevertheless, the convergence rate is not merely

exponential: a piecewise exponential behaviour is indeed shown.
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