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Using a Green’s function method, we present a comprehensive theoretical analysis of the propagation of

sagittal acoustic waves in superlattices �SLs� made of alternating elastic solid and ideal fluid layers. This

structure may exhibit very narrow pass bands separated by large stop bands. In comparison with solid-solid

SLs, we show that the band gaps originate both from the periodicity of the system �Bragg-type gaps� and the

transmission zeros induced by the presence of the solid layers immersed in the fluid. The width of the band

gaps strongly depends on the thickness and the contrast between the elastic parameters of the two constituting

layers. In addition to the usual crossing of subsequent bands, solid-fluid SLs may present a closing of the

bands, giving rise to large gaps separated by flat bands for which the group velocity vanishes. Also, we give an

analytical expression that relates the density of states and the transmission and reflection group delay times in

finite-size systems embedded between two fluids. In particular, we show that the transmission zeros may give

rise to a phase drop of � in the transmission phase, and therefore, a negative delta peak in the delay time when

the absorption is taken into account in the system. A rule on the confined and surface modes in a finite SL made

of N cells with free surfaces is demonstrated, namely, there are always N-1 modes in the allowed bands,

whereas there is one and only one mode corresponding to each band gap. Finally, we present a theoretical

analysis of the occurrence of omnidirectional reflection in a layered media made of alternating solid and fluid

layers. We discuss the conditions for such a structure to exhibit total reflection of acoustic incident waves in a

given frequency range for all incident angles. Also, we show how this structure can be used as an acoustic filter

that may transmit selectively certain frequencies within the omnidirectional gaps. In particular, we show the

possibility of filtering assisted either by cavity modes �in particular sharp Fano resonances� or by interface

resonances.

DOI: 10.1103/PhysRevB.78.174306 PACS number�s�: 43.20.�g, 68.35.Iv, 62.30.�d

I. INTRODUCTION

It is known that the interaction of waves with periodic

structures creates interesting interference phenomena. The

study of acoustic and electromagnetic waves in periodic lay-

ered media has received increased attention during the last

two decades due to the unusual physical properties observed

in these heterostructures in comparison with bulk

materials.1,2 The essential property of these structures is the

existence of forbidden frequency bands induced by the dif-

ference in acoustic and dielectric properties of the constitu-

ents and the periodicity of these systems. As concerns acous-

tic waves, different phononic gaps with appropriate defects

have been demonstrated in solid-solid3–19 layered structures,

leading to several interesting phenomena like in their two-

dimensional �2D� and three-dimensional �3D� counterpart

phononic crystals.20,21 Among these phenomena, one can

mention �i� omnidirectional band gaps,22,23 �ii� the possibility

to engineer small-size sonic crystals with locally resonant

band gaps in the audible frequency range,24 �iii� hypersonic

crystals with high-frequency band gaps to enhance acousto-

optical interaction25 and to realize stimulated emission of

acoustic phonons,26 and �iv� the possibility to enhance selec-

tive transmission through guided modes of a cavity layer

inserted in the periodic structure27 or by interface resonance

modes induced by the superlattice �SL�/substrate interface.28

The advantage of one-dimensional �1D� systems lies in the
fact that their design is more feasible and they require only
relatively simple analytical and numerical calculations. The
analytical calculations enable us to understand deeply differ-
ent physical properties related to the band gaps in such sys-

tems.

In comparison with solid-solid layered media, the propa-

gation of acoustic waves in the solid-fluid counterpart struc-

tures has received less attention.1 The first works on these

systems have been carried out by Rytov29 and summarized

by Brekhovskikh.1 Rytov’s approach has been used by

Schoenberg,30 together with propagator matrix formalism, to

account for propagation through such a periodic medium in

any direction of propagation and at arbitrary frequency.

Similar results are also obtained by Rousseau.31 In the low-

frequency limit, it was shown30 that besides the existence of

small gaps, there is one wave speed for propagation perpen-

dicular to the layering and two wave speeds for propagation

parallel to the layering which are without analog in solid-

solid SLs. The two latter speeds both correspond to compres-

sional waves, and their existence is suggestive of Biot’s

theory32 of wave propagation in porous media. Alternating

solid and viscous fluid layers have been proposed recently33

as an idealized porous medium to evaluate dispersion and

attenuation of acoustic waves in porous solids saturated with

fluids. The experimental evidence34 of these waves is carried
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out using ultrasonic techniques in Al-water and Plexiglas-
water SLs. Also, it was shown theoretically and experimen-
tally that finite-size layered structures composed of a few
cells of solid-fluid layers with one35,36 or multiple37 period-
icity may exhibit large gaps, and the presence of defect lay-
ers in these structures may give rise to well-defined defect
modes in these gaps.36 Recently,38 solid layers separated by
graded fluid layers have shown the possibility of acoustic
Bloch oscillations analogous to the Wannier-Stark ladders of
electronic states in a biased SL.39 All the above works have
mainly dealt with pure longitudinal �compressional� and
shear horizontal absorbing waves propagating perpendicular
or parallel to the layers.33–38

In a recent paper,40 we have investigated the propagation
and localization of acoustic waves polarized in the sagittal
plane, defined by the normal to the surface and the wave
vector k� �parallel to the surface�, in SLs made of elastic solid
and ideal fluid layers. In particular, we have shown the pos-

sibility of existence of surface acoustic waves in semi-

infinite solid-fluid SL or its interface with a semi-infinite

fluid. We have also demonstrated a rule about the existence

of surface modes in such structures, namely, by considering

together the two complementary semi-infinite SLs obtained

by the cleavage of an infinite SL along a plane lying within

the fluid layer and parallel to the interfaces, one always has

as many localized surface modes as minigaps, for any value

of the wave vector k�. However, this rule is not fulfilled when

the cleavage is carried out inside the solid layer. Indeed, in

this case, the dispersion curves may present zero, one, or two

modes inside each gap of the two complementary SLs de-

pending on the position of the plane where the cleavage is

produced. Localized and resonant modes associated with the

presence of a fluid cap layer with finite or semi-infinite

extent—on top of the above-mentioned SLs—have been

studied, and different guided modes induced by the adsorbed

fluid layer are obtained and their properties are investigated.

In this paper, we are dealing with sagittal acoustic waves

in finite-size solid-fluid SLs in contact with one or two semi-

infinite fluids on both sides. Our goal is to give closed-form

expressions of dispersion relations, densities of states, as

well as the transmission and reflection coefficients associated

to such systems. These analytical expressions enable us to

show peculiar properties related to solid-fluid SLs as com-

pared to solid-solid SLs, namely: �i� The stop bands originate

both from the periodicity of the system �Bragg-type gaps�
and the transmission zeros induced by the presence of the

solid layers immersed in the fluid. The width of the band

gaps strongly depends on the thickness and the contrast be-

tween the elastic parameters of the two constituting layers.

�ii� In addition to the usual crossing of subsequent bands, we

show that solid-fluid SLs may present a closing of the bands,

giving rise to large gaps separated by flat bands for which the

group velocity vanishes. Also, we give an analytical expres-

sion that relates the density of states �DOS� and the trans-

mission and reflection group delay times �called also phase

times in the literature� in finite-size systems embedded be-

tween two fluids. In particular, we show that the transmission

zeros may give rise to a phase drop of � in the transmission

phase and, therefore, a negative delta peak in the delay time

when the absorption is taken into account in the system: �iii�

The possibility of the existence of internal resonance induced

by a fluid layer and lying at the vicinity of a transmission

zero, the so-called Fano resonance.

Finally, we show that similar to solid-solid phononic crys-

tals, layered media made of alternating solid and fluid layers

may exhibit total reflection of acoustic incident waves in a

given frequency range for all incident angles. In general, this

property cannot be fulfilled with a simple finite SL if the

incident wave is launched from an arbitrary fluid. Therefore,

we propose two solutions to obtain such an omnidirectional

band gap, namely, by cladding of the SL with a layer of high

acoustic velocities that acts like a barrier for the propagation

of phonons or by associating in tandem two different SLs in

such a way that the superposition of their band structures

exhibits an absolute acoustic band gap. We discuss the ap-

propriate choices of the material and geometrical parameters

to realize such structures. The behavior of the transmission

coefficients is discussed in relation with the dispersion

curves of the finite-size structure. Also, these structures may

be used as acoustic filters that may transmit selectively cer-

tain frequencies within the omnidirectional gaps. The trans-

mission filtering can be achieved either through the guided

modes of a defect layer inserted in the periodic structure or

through the interface modes between the SL and a homoge-

neous fluid medium when these two media are chosen appro-

priately. These investigations are done within the framework

of the Green’s function associated to such heterostructures.41

The organization of this paper is as follows. Section II

presents the model we use for these studies, as well as the

analytical results obtained for the Green’s function, disper-

sion relations, transmission and reflection coefficients, and

densities of states associated to different solid-fluid layered

media. All these quantities represent the ingredients neces-

sary to study analytically and numerically wave propagation

in some specific systems such as symmetric and asymmetric

finite SLs �Secs. III and IV� and omnidirectional reflection

and selective transmission in such systems �Secs. V and VI�.
The main conclusions are summarized in Sec. VII.

II. INTERFACE RESPONSE THEORY OF CONTINUOUS

MEDIA

A. Overview

In this paper, we are interested in the propagation of

acoustic waves in composite materials composed of elastic

solid and ideal fluid layers. The waves are polarized in the

sagittal plane defined by the normal to the interfaces �x3 di-

rection� and the wave vector k� �parallel to the interfaces�.
We choose k� along the x1 direction. It is worth noticing that

the assumption of ideal fluid behavior is valid over a very

broad frequency range for which the viscous skin depth �
= �2� /��� is much smaller than the fluid layer thickness d f

�� and � are the viscosity and the density of the fluid�. This

study is performed with the help of the interface response

theory41 of continuous media, which permits us to calculate

the Green’s function of any composite material. In what fol-

lows, we present the basic concept and the fundamental

equations of this theory.41
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Let us consider any composite material contained in its

space of definition D and formed out of N different homoge-

neous pieces located in their domains Di. Each piece is

bounded by an interface Mi, adjacent in general to j �1� j

�J� other pieces through subinterfaces domains Mij. The

ensemble of all these interface spaces Mi will be called the

interface space M of the composite material.

The elements of the Green’s function g�DD� of any com-

posite material can be obtained from41

g�DD� = G�DD� − G�DM�G−1�MM�G�MD�

+ G�DM�G−1�MM�g�MM�G−1�MM�G�MD� ,

�1�

where G�DD� is the Green’s function of a reference continu-

ous medium and g�MM� is the interface element of the

Green’s function of the composite system. Here all the

Green’s functions are those associated to the displacement

field. For instance, this means that the bulk Green’s function

G�DD� of elastic solid and viscous fluid media can be de-

rived from the equation of motion of displacement fields �the

details of the calculations for the derivation of these expres-

sions are given in Ref. 41�. The inverse �g�M ,M��−1 of

g�MM� is obtained for any point in the space of the interface

M = �Mi as a superposition of the different gi
−1�Mi ,Mi�,41

inverse of the gi�Mi ,Mi� for each constituent i of the com-

posite system. The latter quantities are given by the equation

gi
−1�Mi,Mi� = �i�Mi,Mi�Gi

−1�Mi,Mi� , �2�

where

�i�Mi,Mi� = I�Mi,Mi� + Ai�Mi,Mi� , �3�

�I is the unit matrix� and

Ai�X,X�� = Vc�X��Gi�X�,X���X�=X, �4�

where X , X��Di.

In Eq. �4�, the cleavage operator Vc acts only in the sur-

face domain Mi of Di and cuts the finite-size or semi-infinite-

size block out of the infinite homogeneous medium.41 Ai is

called the surface response operator of block i.

The new interface states can be calculated from41

det�g−1�MM�� = 0 �5�

or equivalently

det���MM�� = 0, �6�

showing that if one is interested in calculating the interface

states of a composite, one only needs to know the inverse of

the Green’s function of each individual block in the space of

their respective surfaces and/or interfaces.

Moreover, if U�D� represents an eigenvector of the refer-

ence system, Eq. �1� enables one to calculate the eigenvec-

tors u�D� of the composite material42

u�D� = U�D� − U�M�G−1�MM�G�MD�

+ U�M�G−1�MM�g�MM�G−1�MM�G�MD� . �7�

In Eq. �7�, U�D�, U�M�, and u�D� are row vectors. Equa-

tion �7� enables one also to calculate all the waves reflected

and transmitted by the interfaces, as well as the reflection

and the transmission coefficients of the composite system. In

this case, U�D� must be replaced by a bulk wave launched in

one homogeneous piece of the composite material.42

B. Inverse surface Green’s functions of the elementary

constituents

Before addressing the problem of the fluid-solid SL, it is

helpful to know the surface elements of its elementary con-

stituents, namely, the Green’s function of an ideal fluid of

thickness d f, sound speed v f, and mass density � f; and an

elastic isotropic solid characterized by its thickness ds, lon-

gitudinal speed v�, transverse speed vt, and mass density �s.

Let us first notice that the Green’s functions associated with

sagittal waves in an elastic solid is a 4	4 matrix as these

waves exhibit two directions of vibrations40,43 in the sagittal

plane �x1 ,x3�. However, the ideal fluid layer is characterized

by only one degree of vibration, and its 4	4 Green’s func-

tion matrix has only x3x3 nonzero elements. Therefore, as far

as we are interested by solid-fluid interfaces, the 4	4

Green’s function of the solid layer can be reduced to a 2

	2 matrix by keeping only the x3x3 components �see Ref. 40

for more details�. In addition, the calculations of the disper-

sion relations, reflection, and transmission coefficients �see

below� can be deduced only from the knowledge of the x3x3

components of the Green’s functions. That is why in what

follows, we shall be interested only by the calculation of the

x3x3 components of the different Green’s functions.

The inverse Green’s function of an ideal fluid layer in the

space of the two surfaces of the layer is given by40

�g f�MM��−1 = �a b

b a
� , �8�

where

a = − F
C f

S f

, b =
F

S f

, �9a�

C f = cosh�
 fd f�, S f = sinh�
 fd f� , �9b�

F = − � f

�2


 f

and 
 f = j��2

v f
2

− k�
2�1/2

, �9c�

and the inverse Green’s function of the elastic solid layer in

the space of the two surfaces of the layer is40

�gs�MM��−1 = �A B

B A
� , �10�

where

A = − �
C�

S�

− �
Ct

St

, B =
�

S�

+
�

St

, �11�

� = − �
vt

4

�2
�

�k�
2 + 
t

2�2, � = 4�
vt

4

�2

tk�

2, �12�
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Ct = cosh�
tds�, C� = cosh�
�ds�, St = sinh�
tds�,

S� = sinh�
�ds� , �13�

and


t
2 = k�

2 −
�2

vt
2

, 

�

2 = k�
2 −

�2

v�

2
. �14�

The inverse Green’s function of a semi-infinite fluid and a

semi-infinite solid with free surfaces are given, respectively,

by

g f
−1�0,0� = − F �15�

and

gs
−1�0,0� = − � − � , �16�

where F is defined by Eq. �9c� and � and � are given by Eq.

�12�.

C. Surface Green’s function of an infinite solid-fluid

superlattice

Let us emphasize that in the geometry of the structures

studied, all the interfaces are taken to be parallel to �x1 ,x2�
plane. A space position along the x3 axis in medium i belong-

ing to the unit cell n is indicated by �n , i ,x3�, where −di /2


x3
di /2 �i= f for the fluid and i=s for the solid, see Fig.

1�a��. As we are interested by the propagation of sagittal

acoustic waves in such structures, the elements of the

Green’s functions take the form g��2 ,k� �n , i ,x3 ;n� , i� ,x3��,
where � is the frequency of the acoustic wave and k� is the

wave vector parallel to the interfaces. For the sake of sim-

plicity, we shall omit in the following the parameters �2 and

k�, and we note as g�n , i ,x3 ;n� , i� ,x3�� the x3x3 component of

the Green’s function.

The Green’s function of the infinite SL �Fig. 1�a�� in the

space of interfaces is obtained by a linear juxtaposition of the

2	2 matrices �Eqs. �8� and �10�� at the different interfaces,

leading to a tridiagonal matrix.

x 3  

F l u i d  S o l i d  

D  
+  ∞-  ∞  

F l u i d  S o l i d  F l u i d  S o l i d  

F l u i d  

C e l l .  N - 1  

d f  d s  

C e l l .  N  C e l l .  2  

S o l i d  

C e l l .  1  

( a )  

( b )  

F l u i d  S o l i d  F l u i d  S o l i d  F l u i d  S o l i d  

C e l l .  N  C e l l .  N + 1  C e l l .  2  

S o l i d  

C e l l .  1  

F l u i d  F l u i d  S o l i d  F l u i d  S o l i d  

C e l l .  N  C e l l .  N + 1  C e l l .  2  

S o l i d  

C e l l .  1  

F l u i d  F l u i d  S o l i d  F l u i d  S o l i d  

C e l l .  N  C e l l .  2  C e l l .  1  

S o l i d  

( c )  

( d )  

d  

I n c i d e n t  F l u i d  S o l i d  F l u i d  F l u i d  

C e l l .  N  

S o l i d  

C e l l .  1  

D e t e c t o r  F l u i d   C a v i t y  S o l i d  

C e l l .  P + 1  

S o l i d  

C e l l .  P  

( e )  

FIG. 1. �a� Schematic representation of an infinite solid-fluid superlattice �SL�. d f and ds are the thicknesses of the fluid and solid layers,

respectively. D=d f +ds is the period of the SL. �b� Schematic representation of a finite SL composed of N cells with �solid, solid�
terminations on both sides. �c�, �d� The same as �b� but for a SL with �solid, fluid� and �fluid, solid� terminations, respectively. The two

extremities are free of stress. �e� Schematic representation of a finite SL with a cavity fluid layer in the cell p+1. The whole system is

embedded between two semi-infinite fluids.
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Taking advantage of the periodicity D in the direction x3

of the solid-fluid SL, the Fourier transformed �g�k3 ;M ,M��−1

of the above infinite tridiagonal matrix within one unit cell

�1� i�N� has the following form:3

�g�k3;MM��−1 = � A + a B + be−jk3D

B + be jk3D A + a
� . �17�

The bulk bands �eigenmodes� of the infinite solid-fluid SL

are easily obtained from Eqs. �5� and �17� in the following

form:

cos�k3D� =
A2 − B2 + a2 − b2 + 2Aa

2Bb
= � , �18�

where k3 is the component perpendicular to the slabs of the

propagation vector k� 	�k� ,k3�.
It is also straightforward to Fourier analyze back into real

space all the elements of g�k3 ;MM� and obtain all the inter-

face elements of g in the following form:3

g�n, f ,−
d f

2
;n�, f ,−

d f

2
� = g�n, f ,

d f

2
;n�, f ,

d f

2
�

= −
�A + a�

Bb

t�n−n��+1

t2 − 1
, �19a�

g�n, f ,−
d f

2
;n�, f ,

d f

2
� = −

t�n−n��+1

B�t2 − 1�
+

t�n−n�−1�+1

b�t2 − 1�
, �19b�

g�n, f ,
d f

2
;n�, f ,−

d f

2
� = −

t�n−n��+1

B�t2 − 1�
+

t�n−n�+1�+1

b�t2 − 1�
. �19c�

In this expressions, t represents eik3D and is defined by3

t = � + 
�2 − 1 if � 
 − 1, �20a�

t = � + i
1 − �2 if ��� � 1, �20b�

t = � − 
�2 − 1 if � � − 1. �20c�

D. Inverse surface Green’s functions of finite solid-fluid

superlattices with free surfaces

We consider in this subsection different finite-size solid-

fluid SLs with free surfaces. The surface layers on both ends

of these systems could be �solid, solid� �Fig. 1�b��, �solid,

fluid� �Fig. 1�c��, or �fluid, solid� �Fig. 1�d��. The knowledge

of the inverse of the Green’s functions on both ends of these

systems constitutes the necessary ingredients to deduce eas-

ily the dispersion relations, as well as the transmission and

reflection coefficients through different finite-size solid-fluid

SLs with or without defect layers. In what follows, we shall

detail the results concerning the Green’s function calculation

of the structure depicted in Fig. 1�b� with �solid, solid� ter-

minations and give briefly the results concerning the other

structures in Figs. 1�c� and 1�d� with �solid, fluid� and �fluid,

solid� terminations, respectively.

The structure in Fig. 1�b� is constructed from the infinite

SL of Fig. 1�a�. In a first step, one suppresses the fluid layers

in the cells n=1 and n=N+1. For this new system composed

of a finite SL and two semi-infinite SLs on both sides �not

shown here�, the inverse surface Green’s function,

�gs�M ,M��−1, is an infinite tridiagonal matrix defined in the

interface domain of all the sites n, �−��n� +��. The ma-

trix is similar to the one associated with the infinite SL.

Only a few matrix elements differ, namely, those associated

with the interface space Ms= ��n=1, i= f ,−
d f

2
� , �n=1, i

= f ,
d f

2
� , �n=N+1, i= f ,−

d f

2
� , �n=N+1, i= f ,

d f

2
��. The cleav-

age operator

Vc�MM� = �gs�M,M��−1 − �g�M,M��−1 �21�

is the following 4	4 square matrix defined in the interface

domain Ms:

Vc�MsMs� =

− a − b 0 0

− b − a 0 0

0 0 − a − b

0 0 − b − a
� . �22�

In addition, using Eq. �19� one can write the elements of

the surface Green’s function of the infinite SL in the interface

space Ms in the form of a 4	4 square matrix

g�MsMs� =
t

t2 − 1

−

A + a

Bb

b + Bt

Bb
−

A + a

Bb
tN

b + Bt

Bb
tN

b + Bt

Bb
−

A + a

Bb

B + bt

Bb
tN−1 −

A + a

Bb
tN

−
A + a

Bb
tN

B + bt

Bb
tN−1 −

A + a

Bb

b + Bt

Bb

b + Bt

Bb
tN −

A + a

Bb
tN

b + Bt

Bb
−

A + a

Bb

� , �23�
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where a, b, A, and B are defined by Eqs. �9� and �11�.
Using Eqs. �22� and �23�, one obtains the matrix operator

��MsMs�= I�MsMs�+Vc�MsMs�g�MsMs� in space Ms. For

the calculation of the inverse Green’s function on both ends

of the structure in Fig. 1�b�, we only need the matrix

��M0M0�, where M0= ��n=1, i= f ,
d f

2
� , �n=N+1, i= f ,

−
d f

2
�� represents the interface space corresponding to both

extremities of the system in Fig. 1�b�,

��M0M0� =
1 −
t

t2 − 1

Y1

Bb
−

tN

t2 − 1

Y2

Bb

−
tN

t2 − 1

Y2

Bb
1 −

t

t2 − 1

Y1

Bb
� , �24�

where Y1=b2−a2−aA+Bbt and Y2=aB−Abt.

The inverse of the surface Green’s function dss
−1�M0M0� in

the interface space M0 of the finite SL in Fig. 1�b� is given

by Eq. �2�,

dss
−1�M0M0� = ��M0M0�g−1�M0M0� , �25�

with

g�M0M0� =
t

t2 − 1
 −
A + a

Bb

B + bt

Bb
tN−1

B + bt

Bb
tN−1 −

A + a

Bb
� . �26�

From Eqs. �24�–�26�, one obtains finally

dss
−1�M0M0� = �A�N� B�N�

B�N� A�N�
� , �27�

with

A�N� = � Y1

A + a
��1 − Bb�t −

1

t
�Y1

�
� , �28�

B�N� = Bb�t −
1

t
� Y1Y2

�A + a��
tN−1, �29�

and

� = Y1
2 − Y2

2t2�N−1�. �30�

By following the same procedure and after some algebraic

calculations, one can obtain, respectively, the operator

��M0�M0��, and the inverse Green’s function dsf
−1�M0�M0�� in

the interface space M0�= ��n=1, i= f ,
d f

2
� , �n=N+1, i= f ,

−
d f

2
�� of the structure depicted in Fig. 1�c� ended at the left

side by a solid layer and at the right side by a fluid layer,

namely,

�J�M0�M0��

=
 1 −
t

t2 − 1

Y1

Bb
−

tN+1

t2 − 1

Y1

Bb

tN+1

t2 − 1
�t +

1

t
+

Y1

Bb
� 1 −

t

t2 − 1
�t +

1

t
+

Y1

Bb
��

�31�

and

dsf
−1�M0�M0�� = �X�N� Y�N�

Y�N� Z�N�
� , �32�

where

X�N� = �−
Bb

�A + a��1 − t2N�
��t −

1

t
−

Y1

Bb
�1 − t2N�� ,

Y�N� = �−
Bb

�A + a��1 − t2N�
��t −

1

t
�tN,

and

Z�N� = � Bb

�A + a��1 − t2N�
��2t +

Y1

Bb
�1 − t2N�� . �33�

Now, if the structure is ended by a fluid layer on the left

side and a solid layer on the right side �Fig. 1�d��, the inverse

Green’s function d fs
−1 has the same form as in Eq. �32�, where

we should just permute the terms X�N� and Z�N�.

E. Transmission and reflection coefficients of a finite layered

media embedded between two fluids

Consider a structure made of solid-fluid layered media

and embedded between two fluids characterized by their

mass densities �1 and �2 and sound velocities v1 and v2 �see

Fig. 2�. Consider now an incident longitudinal wave

launched in fluid 1 and polarized in the sagittal plane �x1 ,x3�
�Fig. 2�. This incident wave takes the following form:

 x 2  

x 1  

x 30  

 
 
F l u i d  ( 1 )  

 

 
 

L a y e r e d  m e d i a  
 

 
 

       F l u i d   ( 2 )  
 θ

→

k  / /
k  

FIG. 2. Schematic representation of a finite layered structure inserted between two different semi-infinite fluids labeled 1 and 2. k� is the

component of the wave vector k parallel to the layers. � is the incident angle in fluid 1.
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Ui�x3� = Ai

v1k�

� 

1

i
1

k�

�e−
1x3, �34�

where Ai is the amplitude of the incident field and 
1

= j
�2

v1
2 −k�

2. This yields reflected and transmitted waves—

which can be written, respectively, as

ur�x3� = Ar

v1k�

� 

1

− i
1

k�

�e
1x3 �35�

and

ut�x3� = At

v2k�

� 

1

i
2

k�

�e−
2�x3−L�, �36�

where Ar and At are the amplitudes of the reflected and trans-

mitted waves, respectively. 
2= j
�2

v2
2 −k�

2 and L is the total

length of the multilayered structure.

The transmission coefficient through the finite system can

be obtained from the third term in Eq. �7�, namely,

ut�x3� = G2�x3,L�G2
−1�L,L�g�L,0�G1

−1�0,0�Ui�0� . �37�

From Eqs. �34�, �36�, and �37�, one obtains

At = Ai

v1

v2

2�1�2


2

g�L,0� , �38�

where g�L ,0� is the x3x3 component of the Green’s function

that relates the interfaces L and 0 at both extremities of the

finite structure. Therefore, the amplitude of the transmission

coefficient can be derived from Eq. �41� as

t =
At

Ai

= −
v1
1

v2
2

2F1g�L,0� , �39�

where F1 is defined as in Eq. �9�: F1=−
�1�2


1
.

By the same way, the reflection coefficient is given by the

second and third terms in Eq. �7�, namely,

ur�x3� = − G1�x3,0�G1
−1�0,0�Ui�0�

+ G1�x3,0�G1
−1�0,0�g�0,0�G1

−1�0,0�Ui�0� . �40�

From Eqs. �34�, �35�, and �40�, one obtains

Ar = Ai�1 −
2�1�2


1

g�0,0�� , �41�

where g�0,0� is the x3x3 component of the Green’s function

at the interface between fluid 1 and the multilayers. There-

fore, the amplitude of the reflection coefficient can be de-

rived from Eq. �41� as

r =
Ar

Ai

= 1 + 2F1g�0,0� . �42�

Equations �39� and �42� show that the calculation of trans-

mission and reflection coefficients requires the knowledge of

only the x3x3 component of the Green’s function in the space

of interfaces at the extremities of the whole system.

The reflection and transmission rates are given as follows:

R = �r�2 �43�

and

T = �t�2
�2
1

�1
2

. �44�

The term
�2
1

�1
2
is a correction term that ensures the conser-

vation of sound power through such supposed lossless sys-

tems.

F. Relation between the density of states and the group delay

times

Consider a finite layered structure inserted between two

different semi-infinite fluids labeled 1 and 2 �Fig. 2�. The

inverse of the Green’s function in the interface space M is

formed here by the two planes separating these three media

�M= �0,L��.
For each sagittal mode, the x3x3 component of the above-

defined �g�MM��−1 can be obtained from the surface

�gi�MM��−1 of these three media, namely,

�gi�0,0��−1 = − Fi �45�

for the two semi-infinite fluids i=1 and 2 �Eq. �15�� and

�gL�MM��−1 = �A1 B�

B� A2

� �46�

for the layered media with free surfaces.

The detailed expressions for A1, A2, and B� are given in

Sec. II D for finite solid-fluid SLs with different termina-

tions. A1 and A2 are identical �different� for symmetrical

�asymmetrical� structures �see Eqs. �27� and �32��. The im-

portant point to notice is that these three quantities are purely

real functions in a finite system; however, F1 and F2 are pure

imaginary functions for the semi-infinite fluid media �Eq.

�9c��. Therefore, �g�MM��−1 of the whole composite system

can be obtained as follows:41

�g�MM��−1 = �A1 − F1 B�

B� A2 − F2

� . �47�

From Eqs. �39� and �47�, one obtains the transmission

coefficient as follows:

t =
v1
1

v2
2

2F1B��det�g�MM��� , �48�

where det�g�MM��= �A1A2−B�
2+F1F2−F1A2−F2A1�−1.

The reflection coefficient is given by Eqs. �42� and �47�,

r = �A1A2 − B�
2 − F1F2 + F1A2 − F2A1�det�g�MM�� .

�49�

From Eqs. �48� and �49�, one can obtain the phases �T and

�R of the transmission and reflection coefficients. Of more

interest are the derivatives of these phases with respect to the

frequency that are indicative of the times needed by a wave
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packet to complete the transmission or reflection processes.

These quantities, called group delay times �also referred to as

the phase times in the literature44,45�, are defined by

�T =
d�T

d�
�50a�

and

�R =
d�R

d�
. �50b�

From Eqs. �48� and �49�, one can deduce that the trans-

mission delay time can be written as

�T =
d

d�
arg�det�g�MM��� + ��

n

sgn�dB�

d�
��=�n

���� − �n� .

�51�

The reflection delay time �R can also be derived from Eqs.

�49� as

�R =
d

d�
arg�det�g�MM���

+
d

d�
arg�A1A2 − B�

2 − F1F2 + F1A2 − F2A1� . �52�

Let us now recall46 that the difference of the DOS be-

tween the present composite system and a reference system

formed out of the same volumes of the semi-infinite fluids 1

and 2 and the finite structure can be obtained from

�n��� =
1

�

d

d�
arg�det�g�MM��� . �53�

From Eqs. �51� and �53� one can deduce two cases:

�i� If the structure do not present transmission zeros �i.e.,

B��0�, then arg�B��=0 and

�T = ��n��� . �54�

�ii� If the transmission zeros occur at some frequencies,

then the transmission coefficient changes sign, its phase ex-

hibits a jump of �, and

�T � ��n��� . �55�

Equations �52� and �53� show that �R is in general differ-

ent from �n���. However, if medium 2 is evanescent �i.e.,

F2 is real and the incident wave is totally reflected�. Then

�R = 2��n��� . �56�

It is worth noticing that the calculation of the group delay

time enables to deduce the group velocity in such structures

using the relation47

vg = L/� , �57�

where L represents the size of the structure.

III. APPLICATION TO A FINITE SYMMETRIC SL

EMBEDDED IN A FLUID

A. Band-gap structure and conditions for band and gap

closing

In order to illustrate the general results given before, we

present here a simple application for sagittal acoustic waves

in the special case of periodic solid plates immersed in the

same fluid �for example, water�. In this case, the transmission

and reflection coefficients are given by Eqs. �48� and �49�,
namely,

tN = 2F
B�N�

A2�N� − B2�N� + F2 − 2FA�N�
�58�

and

rN =
A2�N� − B2�N� − F2

A2�N� − B2�N� + F2 − 2FA�N�
, �59�

where A�N�, B�N�, and F are given by Eqs. �28�, �29�, and

�9�, respectively.

In the particular case of one solid layer inserted in the

fluid �i.e., N=1�, one can show easily that A�N�=A and

B�N�=B �Eqs. �28� and �29��, and tN and rN become, respec-

tively,

t1 = 2F
B

A2 − B2 + F2 − 2FA
�60�

and

r1 =
A2 − B2 − F2

A2 − B2 + F2 − 2FA
. �61�

Also, it is worth noticing that the numerator of rN �Eq.

�59�� can be written after some algebraic calculation as

A2�N� − B2�N� − F2 = �A2 − B2 − F2�� t2N − 1

t2 ��Y1
2 − Y2

2

�
� .

�62�

Equations �59� and �62� clearly show that the reflection

zeros associated to a finite SL made of N plates inserted

periodically in a fluid are given either by

A2 − B2 − F2 = 0, �63�

which coincides also with the reflection zeros associated to

just one solid layer inserted in the fluid �Eq. �61��, or

sin�NkD� = 0,

i.e.,

kD =
m�

N
, m = 1,2, . . . . . . ,N − 1. �64�

The third term in the right-hand side of Eq. �62� cannot van-

ish as Y1� �Y2.

The transmission zeros are given by B�N�=0 �Eq. �58�� or

equivalently B=0 �see Eq. �29��. This result shows that the

transmission zeros of the whole structure coincide exactly

with the transmission zeros of just one solid layer inserted in
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the fluid �Eq. �60��. In addition, the parameter B character-
izes only the solid layer �Eq. �11��; therefore, the transmis-
sion zeros are independent on the choice of the fluid sur-
rounding the solid layer, but depend only on the thickness

and the elastic parameters of the solid.

Figure 3 gives the dispersion curves �gray areas� for an

infinite SL made of Plexiglas and water layers. In this figure

we plotted the reduced frequency �=�D /vt�Plexiglas� as a

function of the reduced wave vector k�D. The thickness of

solid and fluid layers are assumed to be equal ds=d f =D /2 as

in Refs. 5 and 6. Table I gives the numerical values of ve-

locities of sound and mass densities of the materials used in

this work. The dashed straight lines represent the transverse

and longitudinal velocities of sound in Plexiglas, whereas the

dashed-dotted line gives the longitudinal velocity of sound in

water. The thin solid and dotted curves represent the disper-

sion curves obtained from the reflection zeros �total trans-

mission� for a finite SL composed of N=5 Plexiglas layers

inserted in water. The thin solid curves correspond to the N

−1 branches given by Eq. �64�, whereas the dotted curves are

given by Eq. �63�. The open circles curves show the posi-

tions of the transmission zeros �total reflection�. One can

notice a shrinking of the N−1 branches when they intercept

the transmission zero branch around �=4.07, k�D=2.3 and

�=7.64, k�D=3.8. This phenomenon reproduces for other

values of the couple �� ,k�D� not shown here. This property

of the shrinking of the modes is a characteristic of solid-fluid

SLs and is without analog in their counterpart solid-solid

SLs.7

Now, if we compare together the different branches asso-

ciated to reflection and transmission zeros and the band-gap

structure of the infinite Plexiglas-water SL, one can notice

�Fig. 3� the following:

�i� As predicted, the thin solid and dotted curves corre-

sponding to total transmission fall inside the allowed bands

�gray areas�, in particular, the positions of the closing of the

gaps are given by the intersection of the limits of the band

gaps and the dotted curves, i.e., we should have simulta-

neously

cos�k3D� =
A2 − B2 + F2 + 2Aa

Bb
= � 1 �65�

and

A2 − B2 − F2 = 0. �66�

�ii� The open circle curves with total reflection �zero

transmission� fall inside the forbidden bands, and the posi-

tion of the closing of the bands should satisfy the two fol-

lowing conditions:

cos�k3D� =
A2 − B2 + F2 + 2Aa

Bb
= � 1 �67�

and

B = 0. �68�

These particular crossings of the gaps give rise to a no dis-

persive curves �flat bands� for which the group velocity van-

ishes.

It is worth noticing that the transmission zeros �open

circles� fall above a straight line, i.e., below a critical angle

�cr. Indeed, a simple Taylor expansion of the function B���
in Eqs. �11� and �12� at the low-frequency limit �i.e., around

��0 and k� �0� gives

�

k�

= 2vt
1 − � vt

v�

�2

= vcr. �69�

TABLE I. Speed velocities of sound and mass densities of Plexi-

glas, aluminum, PVC, water, and mercury.

�

�g /cm3�
vt

�105 cm /s�
v�

�km/s�

Plexiglas 1200 1.38 2.7

Aluminum 2700 3.15 6.45

PVC 1200 1.03 2.3

Water 1000 1.49

Mercury 13500 1.45

❧
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♦

�

�
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4
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8
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12

14

FIG. 3. Dispersion curves for a SL made of Plexiglas and water

layers. The curves give �=�D /vt�Plexiglas� as a function of k�D,

where � is the frequency, k� is the propagation vector parallel to the

interface, vt�Plexiglas� is the transverse speed of sound in Plexiglas,

and D is the period of the SL. The widths of fluid and solid layers

are supposed equal: d f =ds=D /2. The gray areas represent the bulk

bands for an infinite SL. The thin solid lines and dotted curves show

the positions of the reflection zeros �total transmission�. Whereas,

the open circles give the positions of the transmission zeros �total

reflection�. The dashed straight lines represent the transverse and

longitudinal velocities of sound in Plexiglas. The dashed-dotted line

represents the longitudinal velocity of sound in water.
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However, k� is related to the incident angle � by the rela-

tion k� =
�

v f
sin��� �see Fig. 2�. Thus, one obtains transmission

zeros for wave velocities v�vcr, or equivalently

� 
 �cr = arcsin
 1

2

v f

vt


1 − � vt

v�

�2� = 39 ° . �70�

However, let us mention that at normal incidence �i.e., k�

=0 or �=0°�, B��� cannot vanish, and one obtains the well-

known dispersion relation35–37

cos�k3D� = C�C f +
1

2
�Z�

Z f

+
Z f

Z�

�S�S f , �71�

where Z�=�sv� and Z f =� fv f are the acoustic impedances of

longitudinal waves in solid and fluid layers, respectively. The

above results show that the transmission zeros occur only for

incidence angles � such that 0° 
�
�cr.

Figure 4 gives the variation in the transmission rates T

�Figs. 4�a�–4�c�, 4�e�–4�g�, and 4�i�–4�k�� as a function of

the reduced frequency � for a finite SL composed of N=1, 2,

and 5 Plexiglas layers immersed in water. The left, middle,

and right panels correspond to incident angles �=0°, 25°,

and 40°, respectively. At the bottom of these panels we plot-

ted the corresponding dispersion curves �i.e., � versus the

Bloch wave vector k3� �Figs. 4�d�, 4�h�, and 4�l��. As pre-

dicted above, for �=0° �left panel� and ���cr �right panel�,
the transmission exhibits dips at some frequency regions,

which transform into gaps as far as N increases. These gaps

are due to the periodicity of the system �Bragg gaps� and

coincide with the band-gap structure of the infinite SL shown

in Figs. 4�d� and 4�l�. For an incident angle 0° 
�
�cr

�middle panel�, one can notice the existence of a transmis-

sion zero around �=7.64 �Fig. 4�e��, which is due to the

insertion of one Plexiglas layer �N=1� in water. This trans-

mission zero transforms to a large gap when N increases.

Besides this gap there exists a dip around �=5 for N=2

�Fig. 4�f��, which also transforms to a gap when N increases;

this gap is due to the periodicity of the structure. The trans-

mission gaps map the band-gap structure of the infinite SL

�Fig. 4�h��, where one can notice that the imaginary part of

the Bloch wave vector �responsible of the attenuation of the

waves associated to defect modes� is finite in the Bragg gaps

and tends to infinity inside the gaps due to the transmission
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FIG. 4. Variation in the transmission coefficients as a function of the reduced frequency � for a finite SL composed of N=1 ��a�, �e�, and

�i��, 2 ��b�, �f�, and �j��, and 5 ��c�, �g�, and �k�� Plexiglas layers immersed in water. The left, middle, and right panels correspond to incident

angles: �=0°, 25°, and 40°, respectively. �d�, �h�, and �l� give the dispersion curves �i.e., � versus the Bloch wave vector k3� inside the

reduced Brillouin zone 0
k3
� /D. Outside this zone are represented the imaginary parts of k3.
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zeros. These latter gaps can be used to localize strongly de-

fect modes within the structure �see below�.
From all the above results, one can conclude that for an

incident angle 0° 
�
�cr �middle panel� there exists two

types of gaps: Bragg gaps, which are due to the periodicity

of the structure, and gaps that are induced by the transmis-

sion zeros. However, at normal incidence ��=0°� �left panel�
and for ���cr �right panel� all the gaps are due to the peri-

odicity of the system.

B. Brewster acoustic angle

Another interesting result that may be exhibited by solid-

fluid layered media is the possibility of existence of Brewster

acoustic angles as for electromagnetic waves in dielectric

media.2 The Brewster angle corresponds to an incident angle

between two homogenous media for which there is no reflec-

tion. By analogy with transverse magnetic waves in 1D pho-

tonic crystals, the existence of such angles for transverse

acoustic waves between two solids has been shown.48 This

angle leads to the shrinking of the SL gaps to zero along a

straight line whose slope is defined by the Brewster condi-

tion. The reflection zeros between solid and fluid media can

be obtained by matching the Green’s function of a semi-

infinite solid �Eq. �15�� with that of a semi-infinite fluid �Eq.

�16��, namely,

�
vt

4

�2
�

�k�
2 + 
t

2�2 − 4�
vt

4

�2

tk�

2 = � f

�2


 f

. �72�

In the velocity region vt
v
v�, 
� is real �evanescent

wave�, whereas 
t and 
 f are pure imaginary �propagative

waves�. Therefore, Eq. �72� is satisfied if

v f

vt

=
 2

1 +
� f

2

�2

�73�

and

� = 
2k�vt

or equivalently

�B = arcsin
v f


2vt

, �74�

where �B is the Brewster angle. Through such angle, the

incident longitudinal wave in the fluid enters completely the

solid but converts to transverse wave. By using Snell’s Law,

Eq. �74� shows that the wave enters the solid at 45° to the

interface. Let us mention that a study of the Brewster acous-

tic angles at the fluid-solid interface in all the velocity re-

gions has been performed some years ago by Sotiropoulos et

al.49,50

Now, if a layered structure is made from such solid-fluid

interfaces, then an incident wave will be totally transmitted,

giving rise to the closing of the gaps along a straight line

corresponding to Brewster angle. Such an angle is indepen-

dent of the thickness of the layers in the SL, as well as on the

longitudinal velocity of sound in the solid �see Eq. �74��. In

general, Eq. �73� is not easy to be satisfied by solid and fluid

materials. However, in the case of Plexiglas-water structure

considered here, Eq. �73� is almost satisfied and Eq. �74�
gives �B=49.77°. Now, if we take an incident angle near to

�B one obtains almost total transmission as it is shown in

Figs. 5�a� and 5�b� corresponding, respectively, to N=1 and

5 Plexiglas layers immersed in water. The dispersion curves

�Fig. 5�c�� show clearly the closing of the gaps at the center

and edges of the reduced Brillouin zone for this incidence

angle.

C. Comparative study of the DOS and group delay times

A comparative analysis of the transmission delay time and

the density of states �DOS� is given in Fig. 6. The group

delay times ���� �Figs. 6�a�–6�c�� and the variation in the

density of states �n��� �Figs. 6�d�–6�f�� are plotted as func-

tions of the reduced frequency � for a finite SL composed of

N=5 Plexiglas layers immersed in water and for three inci-

dent angles: �=0° �Figs. 6�a� and 6�d��, �=30° �Figs. 6�b�
and 6�e��, and �=60° �Figs. 6�c� and 6�f��. The group delay

time gives information on the time spent by the phonon in-

side the structure before its transmission, while the DOS

gives the weight of the modes. In Fig. 6, the DOS and the

delay time are strongly reduced in the band-gap regions. As

predicted by the analytical results in Sec. II F, the delay time

may give rise to delta functions around the transmission ze-

ros as it is shown in Fig. 6�b� around ��8 for 0° 
�
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FIG. 5. Same as in Fig. 4 but for the Brewster angle: �=�B

=49°.
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�cr. This delta function, which does not exist in the DOS

�Fig. 6�e��, has been enlarged by adding a small imaginary

part to the pulsation �, which plays the role of absorption in

the system. Such negative delta peaks have been shown ex-

perimentally in simple photonic51 and phononic52 loop

waveguides, giving rise to the so-called superluminal or

negative group velocity �Eq. �57��. Because of the nonexist-

ence of transmission zeros, solid-solid layered media do not

exhibit such negative delay times or negative group veloci-

ties. Figures 6�a�–6�f� clearly show, in accordance with Eqs.

�51� and �53�, that except the frequencies lying around the

transmission zeros, the DOS and the group delay time ex-

hibit exactly the same behavior.

IV. GENERAL RULE ABOUT CONFINED AND SURFACE

MODES IN A FINITE ASYMMETRIC SUPERLATTICE

Recently,40 we have demonstrated that the creation of two

semi-infinite SLs from the cleavage of an infinite solid-fluid

SL gives rise to one surface mode by gap for any value of the

wave vector k�. This mode belongs to one or the other of the

two complementary SLs. In this paper, we give a generaliza-

tion of these results to a finite-size SL made of N solid-fluid

cells �Figs. 1�c� and 1�d�� with both extremities in contact

with vacuum. The expression giving the eigenmodes of such

a structure is given by Eqs. �6�, �32�, and �33� and can be

written in the following form:

�t −
a2 − b2 + Aa

Bb
��1

t
−

a2 − b2 + Aa

Bb
��1 − t2N� = 0.

�75�

This expression shows that there are two types of eigen-

modes in this kind of finite structure:

�i� If the wave vector k3 is real, which corresponds to an

allowed band, then the eigenmodes of the finite SL are given

by the third term in Eq. �75�, namely,
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sin�NkD� = 0, �76�

which gives

kD =
m�

N
, m = 1,2, . . . . . . ,N − 1, �77�

whereas the first and second terms in Eq. �75� cannot vanish

in the bulk bands as t=e jk3D is complex and a , b , A, and B

are real.

�ii� If the wave vector k3 is imaginary �modulo ��, which

corresponds to a forbidden band, then the eigenmodes are

given by the two first terms of Eq. �75�, namely,

t =
a2 − b2 + Aa

Bb
�78�

and

1

t
=

a2 − b2 + Aa

Bb
. �79�

These two expressions give the localized modes associ-

ated to the two surfaces surrounding the structure. The third

term in Eq. �75� cannot vanish inside the gap since t should

satisfy the condition

�t� 
 1 �80�

to ensure the decaying of surface modes from the surface.

In addition, we remark that if N→� the term t2N vanishes

and, therefore, the two expressions �Eqs. �78� and �79�� give

the surface modes for two semi-infinite SLs obtained from

the cleavage of the infinite SL between the solid and fluid

layers.40 Equation �75� clearly shows that the surface modes

are independent of the number N of cells in the finite system.

Equations �78� and �79� can be written in a unique explicit

form by replacing them in Eq. �18� and factorizing by the

factor
1

Bb
, one obtains

a�B2 − A2� − A�a2 − b2� = 0. �81�

Therefore, the surface modes associated to one surface are

given by Eq. �81�, together with the condition � aB

Ab
��1 �Eqs.

�78� and �80��, whereas the surface modes of the other sur-

face are given by Eq. �81� but with the condition � aB

Ab
�
1

�Eqs. �79� and �80��. This result shows that if a surface mode

appears on one surface of the finite SL, it does not appear on

the other surface. Equation �81� with the supplementary con-

dition are similar to those given in Ref. 40 for semi-infinite

SLs. The above results clearly show that a finite SL made of

N solid-fluid layers exhibits N−1 modes in each allowed

band and one additional mode by gap induced by one of the

two surfaces surrounding the structure. These results gener-

alize our previous findings40 on semi-infinite solid-fluid SLs.

An example of the dispersion curves is given in Fig. 7 for

a SL composed of N=4 Plexiglas-water cells. The other pa-

rameters are the same as in Fig. 3. One can notice the exis-

tence of N−1=3 modes in each band; these modes corre-

spond to confined modes �stationary waves� and one surface

branch in each gap induced by one or the other of the two

surfaces ending the structure. The open circles and triangles

correspond to surface modes induced by fluid and solid layer

terminations, respectively. As mentioned above, these modes
coincide exactly with the surface modes of two complemen-
tary SLs obtained from the cleavage of an infinite SL be-

tween the solid and fluid layers.40 When N increases, the

number of branches in each band increases, whereas the sur-

face branches fall at the same frequencies.

The detection of such surface acoustic modes in a solid-

fluid SL with a fluid or a solid at the surface can be achieved

by means of the reflection coefficient. Indeed, an incident

wave launched from a semi-infinite fluid in contact with a

finite SL terminated by a free surface will be totally reflected

back. Therefore, the amplitude of the reflected wave is unity,

and only its phase or equivalently the delay time may give

information on the surface modes induced by the surface

layer.6,7 Indeed, the surface modes appear as well-defined

peaks in the delay time, which is equivalent to the density of

states, as it was demonstrated in Eq. �56�. Figure 8 gives the

bulk and surface modes of a finite SL terminated by water.

These modes are obtained from the maxima of the delay

time, as it is illustrated in the inset for k�D=1. One can

notice that the bulk modes �dots�, as well as the surface

modes �open circles�, appear as well-defined peaks in the

delay time, which represents the time needed for a phonon to

accomplish the reflection process. The modes in Fig. 8 are

resonant �or leaky� modes; the corresponding frequencies un-

derwent a small shift in comparison with those in Fig. 7

because of their coupling with water radiation modes. In par-
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FIG. 7. Dispersion curves for a finite SL made of N=4

Plexiglas-water bilayers with free surfaces. The dotted curves rep-

resent N−1=3 confined modes in the finite SL. These modes fall

inside the allowed bands of the SL. The open circles �open tri-

angles� correspond to localized modes induced by the surface of the

SL terminated by the fluid layer �solid layer�. These modes fall

inside the band gaps. The gray areas represent the bulk bands for

the infinite SL.
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ticular, the surface modes in Fig. 8 �open circles� are almost

the same as those in Fig. 7. Figure 9 gives the same infor-

mation as in Fig. 8 but when the SL is terminated by the

Plexiglas layer. Here also the bulk modes �dots� underwent a

small shift in comparison with those in Fig. 7, but the surface

modes �open triangles� are very close to those in Fig. 7.

It is worth to mention that the above-mentioned rule on

confined and surface modes has been obtained recently by

Ren et al.53 for pure transverse elastic waves in solid-solid

SLs. The same rule has been confirmed theoretically and

experimentally54 by the authors for electromagnetic waves in

quasi-1D structures made of coaxial cables.

V. OMNIDIRECTIONAL ACOUSTIC BAND GAP IN

SOLID-FLUID LAYERED MEDIA

Some years ago,22 we have shown that 1D solid-solid lay-

ered structures can exhibit the property of omnidirectional

reflection for acoustic waves. In the frequency range of the

omnidirectional reflection, the structure will behave analo-

gously to the case of 2D and 3D phononic crystals, i.e., it

reflects any acoustic wave independent of its polarization

and incidence angle. These results have been confirmed ex-

perimentally some years later23 by means of ultrasonic tech-

niques. The object of this section is to examine the condition

for the existence and behavior of omnidirectional band gaps

in finite solid-fluid layered media. More precisely, the trans-

mission spectra are calculated and analyzed in relation with

the dispersion curves of the modes associated with the finite

structure embedded between two semi-infinite fluids. When a

maximum threshold for transmittance is imposed, we inves-

tigate the contributions of the different modes induced by the

finite structure to the transmission spectra, thus, revealing the

limitations on the existence of an absolute band gap.

Let us first come back to the band-gap structure given in

Fig. 3. One can notice that the band-gap structure of the

infinite Plexiglas-water SL does not display any absolute

gap, this means a gap existing for every value of the wave

vector k�. Figure 10�a� reproduces the results given in Fig. 3

for a finite Plexiglas-water SL made of N=8 cells. The dis-

crete modes are obtained from the maxima of the transmis-

sion rate that exceeds a threshold fixed to 10−3. One can

notice that any wave launched from water will display a

partial gap for an incident angle 0° 
�
35° in the fre-

quency region 4.015
�
5.105 indicated by horizontal

lines. However, waves with incident angles 35° 
�
90°

will be totally transmitted through the discrete modes of the

SL as it was discussed in Sec. III A. These results remain

valid for any incident liquid medium as, in general, the ve-

locities of sound in most liquids are of the same order or less

than water. In order to overcome this limitation or at least

facilitate the existence of an omnidirectional gap, we pro-

posed, like in our previous works in solid-solid SLs,22 two

solutions. The first one consists to clad the SL on one side by
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Plexiglas-water bilayers. The Plexiglas layer at one end is in contact

with a semi-infinite fluid made of water, whereas the other surface

is kept free of stress. The open circles represent the surface modes

induced by the fluid layer at the free surface. These modes fall
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a buffer layer of high acoustic velocities, which can act as a

barrier for the propagation of phonons. The second solution

consists to associate in tandem two SLs in such a way that

their band structures do not overlap. The calculation proce-

dure used to deduce the expressions of transmission coeffi-

cients for a SL with a defect layer, as well as for the asso-

ciation of two SLs, will be developed later in Sec. VI.

A. Cladded-superlattice structure

Figure 10�b� gives the discrete modes associated to the

cladded-SL structure, i.e., the frequency domains in which

the transmission rate exceeds a threshold of 10−3. In this

example the clad layer is made of Al with transverse and

longitudinal velocities of sound �dashed and straight lines�
higher than the SL bulk modes lying in the frequency region

4.015
�
5.105 �Fig. 10�b��. The thickness of the Al layer

is d0=7D and the SL contains N=8 cells of Plexiglas-water.

By combining these two systems, the allowed modes of the

SL and the guided modes induced by the Al clad layer above

its velocities of sound do not overlap over the frequency

range of the omnidirectional gap. This means that each sys-

tem acts as a barrier for phonons of the other system. In such

a way, one obtains an omnidirectional band gap indicated by

the two horizontal lines in Fig. 10�b� in the frequency region

4.015
�
5.105. By comparing Figs. 10�a� and 10�b�, one

can notice clearly that the presence of the clad layer has two

opposite effects. It decreases the transmittance in some fre-

quency domains �essentially below the sound line defined by

the transverse velocity of sound in the clad�, but also intro-

duces new modes that can contribute themselves to transmis-

sion. The transmission by the latter modes is prevented by

the SL when the corresponding branches fall inside the mini-

gaps. In the allowed frequency regions belonging to both the

SL and the clad layer, one can notice an interaction and an

anticrossing of the modes associated to these two systems.

To give a better insight into the behavior of the transmis-

sion coefficient, we present in Fig. 11 the transmission rates

through the cladded-SL system for three reduced wave vec-

tors: k�D=0 �Fig. 11�a��, 1 �Fig. 11�b��, and 3 �Fig. 11�c��.
One can see clearly the common forbidden region in the

transmission spectra indicated by the two vertical lines,

showing the mirror effect played by the layered structure in

the frequency region 4.015
�
5.105. For the sake of

comparison, we have also given in Figs. 11�d�–11�f� the

DOS �or equivalently the delay time�. One can notice that the

Al clad layer induces guided modes which appear as peaks in

the DOS. These modes do not contribute to transmission

when they fall inside the minigap of the SL as it is clearly

shown for the modes lying in the frequency region 4.015


�
5.105 in Figs. 9�d�–9�f� in comparison to Figs.

9�a�–9�c�, respectively.

The existence and behavior of the omnidirectional reflec-

tion depends on the geometrical parameters involved in the

structure, namely, the thickness d0 of the Al layer and the

number N of unit cells in the SL. In Fig. 12�a�, we present

the variation in the gap width as a function of d0 for a finite

SL made of N=8 cells. The omnidirectional gap widens with

increasing the thickness of Al and reaches a constant width

for d0�3D. Similarly, if the thickness of the Al layer is fixed

to d0=4D, then a finite SL made of at least N=7 cells is

required to reach a large omnidirectional gap �see Fig.

12�b��.
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B. Coupled multilayer structure

The second solution that enables us to perform omnidirec-

tional transmission gaps consists of considering a combina-

tion of two SLs chosen in such a way that the superposition

of their band structures displays an absolute band gap. This

means that the minibands of one SL overlap with the mini-

gaps of the other SL, and vice versa in some frequency

range. An example showing this property is given in Fig.

13�a� for a combination of the band structures of two SLs

made of Plexiglas-Hg and PVC-Hg. The periods of the two

SLs as well as the thickness of the corresponding layers are

supposed to be equal: d�Plexiglas�=d�PVC�=d�Hg�=D /2.

The band structures of Plexiglas-Hg and PVC-Hg SLs are

indicted by black and gray areas, respectively. The superpo-

sition of these two types of bands clearly displays two broad

acoustic gaps in the frequency ranges 2.72
�
4.94 and

5.14
�
5.96. One can expect that in these frequency do-

mains, an incident wave launched from any semi-infinite

fluid will be totally reflected. In practice the two coupled SL

structure is of finite width, and one can only impose a maxi-

mum threshold on the transmission coefficient �T�10−3�.
An example is sketched in Fig. 13�b�, where we have

considered two finite SLs made of N1=4 layers of Plexiglas

and N2=4 layers of PVC immersed in Hg. The two omnidi-

rectional band gaps fall in the frequency ranges 2.72
�

4.94 and 5.14
�
5.96 and practically coincide with

acoustic band gap of Fig. 13�a�. Similarly to the cladded-SL

structure discussed above, the bulk modes of each of the two

SLs may give rise to well-defined peaks in the DOS within

the omnidirectional gaps �not shown here�. However, these

modes do not contribute to the transmission spectra. Obvi-

ously, the width and the position of the omnidirectional gaps

depend upon the relative widths of the layers in each SL but

also upon the numbers N1 and N2 of cells in each SL. Let us

mention that a partial gap obtained from the association of

two solid-fluid SLs has been shown theoretically and

experimentally37 for normal incidence.

VI. SELECTIVE TRANSMISSION

In this section we shall discuss the possibility of acoustic

waves filtering through the band gap of solid-fluid layered

media. This selective transmission can be realized either by

inserting a defect layer within the finite SL or through the

modes induced by the interface between the SL and an ho-

mogeneous fluid medium.
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A. Transmission through resonant cavity modes

The cavity modes can be created in the solid-fluid SL by

replacing for example a fluid layer of width d f in the cell

�n= p� by a different fluid of width d0 and characterized by

the density �0 and the sound velocity v0. Consider a solid-

fluid SL with a finite number N of cells and containing a

defect fluid in the cell p �1
 p�N�, the whole structure is

inserted between two fluids characterized by their density �s

and sound velocity vs �Fig. 1�e��. The transmission coeffi-

cient through the system described above can be obtained in

the same way as for the structure without defect �Sec. III A�.
It consists in coupling two finite SLs made of p and N− p

cells by a fluid layer and inserting the whole system between

two fluid media �Fig. 1�e��. The inverse of the Green’s func-

tion in the space of interfaces M = ��1, f ,
d f

2
� , �P+1, f ,

−
d f

2
� , �P+1, f ,

d f

2
� , �N+1, f ,−

d f

2
�� of the whole system is given

by a superposition of the Green’s functions matrices associ-

ated to the different media constituting the system, namely,

g−1�MM� =

A�P� − Fs B�P� 0 0

B�P� A�P� + a0 b0 0

0 b0 A�N − P� + a0 B�N − P�

0 0 B�N − P� A�N − P� − Fs

� , �82�

where A�P�, B�P�, A�N− P�, and B�N− P� are defined by

Eqs. �28�–�30� for N= P and N=N− P, a0 and b0 are given by

Eq. �9c� for the fluid labeled “0,” and Fs is the same as in Eq.

�9c� for the fluid labeled “s.”

From Eqs. �82� and �39�, one can deduce the transmission

coefficient as follows:

t =
2Fsb0B�P�B�N − P�

��P���N − P� − b0
2�A�P� − Fs��A�N − P� − Fs�

,

�83�

where

��l� = B2�l� − �A�l� − Fs��A�l� + a0� �84�

for l= P , N− P.

It is well known that the introduction of a defect layer

�cavity� in a periodic structure can give rise to defect modes

inside the band gaps.14–18,36 These modes appear as well-

defined peaks in the DOS; however, their contribution to the

transmission rate depends strongly on the position of these

defects inside the structure. Indeed, as it was shown above, a

defect layer placed at the contact between the SL and the

substrate �clad layer� induces guided modes in the band gap

of the SL but without contributing to the transmission. How-

ever, the transmission through these modes can be signifi-

cantly enhanced if the cavity layer is placed at the middle of

the structure.17,27 In general, a periodic structure made of N

cells �N�2� is needed to create a transmission gap in which

a defect mode is then introduced for filtering. In this subsec-

tion, we are interested to show that contrary to solid-solid

SLs, it is possible to achieve large gaps, as well as sharp

resonances inside these gaps with a solid-fluid structure as

small as solid-fluid-solid sandwich triple layers. This prop-

erty is associated with the existence of zeros of transmission.

Figure 14�a� gives the transmission rate as a function of

the reduced frequency � for a finite Plexiglas-water SL com-

posed of N=2 �solid curves� and N=4 �dotted curves� cells

and for an incidence angle �=35°. The fluid and solid layers
have the same width d f =ds=D /2. One can notice that the
transmission rate exhibits a large dip in the frequency region
4
�
8 around the transmission zero indicated by an open
circle on the abscissa. This transmission gap maps the band
gap of the infinite system indicated by solid circles on the
abscissa. As it was discussed above, the transmission gap
becomes well defined as far as N increases. Now, if a fluid
cavity layer of thickness d0=D is inserted in the middle of
the structure, then a resonance with total transmission can be
introduced in the gap �Fig. 14�b��. This resonance falls at
almost the same frequency and its width decreases when N
increases. Let us mention that the structure depicted in Figs.
14�a� and 14�b� with N=2 consists on a sandwich system
made of two Plexiglas layers separated by a water layer.
Therefore, such a small-size structure clearly show the pos-
sibility of obtaining a large gap and a sharp resonance inside
the gap by just tailoring the width of these three layered

media. This property is specific to solid-fluid structures and

is without analog for their counterpart solid-solid systems,

where at least a number N�2 of layers is needed to achieve

well-defined gaps and cavity modes. In what follows, we

shall focus on the simple case of sandwich system �i.e., N

=2�.
An important point to notice in Fig. 14�b� is the shape of

the resonance lying in the vicinity of the transmission zero.

Such a resonance is called Fano resonance.55 The origin and

the asymmetry Fano profile of this resonance were explained

as a result of the interference between the discrete resonance

and the smooth continuum background in which the former

is embedded. The existence of such resonances in 2D and 3D

phononic crystals, the so-called locally resonant band-gap

materials,56 has been shown recently.57 Some analytical mod-

els have been proposed to explain the origin and the behavior

of these resonances.57 In the case of 1D model proposed

here, the Fano resonance in Fig. 14�b� is just an internal

resonance induced by the discreet modes of the fluid layer

when these modes fall at the vicinity of the transmission
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zeros induced by the surrounding solid layers. By decreasing

the width of the fluid layer from d0=1D to d0=0.6D �Fig.

14�c��, one can notice that the position of the Fano resonance

moves to higher frequencies; its width decreases and van-

ishes for a particular value of d0=0.71D before increasing

again. At exactly d0=0.71D, the transmission vanishes and

the resonance collapses, giving rise to the so-called ghost

Fano resonance.58 Around d0=0.71D, the asymmetric Fano

profile of the resonance becomes symmetric and changes the

shape.

In Fig. 14�c�, the two solids surrounding the fluid layer

have the same widths ds; therefore, the transmission zeros

induced by the solid layers fall at the same frequency. Now,

if the two solids have different widths �labeled for example

ds1 and ds2�, then one can obtain two transmission zeros and

a resonance that can be squeezed between these two dips if

ds1 and ds2 are chosen appropriately. In this case a symmetric

Fano resonance can be obtained whose width can be tuned

by adjusting the frequencies of the zeros of transmission.

Such resonances have been found also for acoustic and mag-

netic circuits formed by a guide inserted between two dan-

gling resonators.59,60

B. Transmission enhancement assisted by surface resonance

The possibility of the enhanced transmission from a semi-

infinite solid to a semi-infinite fluid, in spite of a large mis-

match of their acoustic impedances, has been shown theoreti-

cally and experimentally.28 The transmission occurs through

the surface resonances induced by a 1D solid-solid layered

structure inserted between these two media. These reso-
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nances are attributed to the SL/fluid interface28 and coincide

with the surface modes of the semi-infinite SL terminated

with the layer having the lower acoustic impedance.4

Recently,61 the possibility of the so-called extraordinary

acoustic transmission assisted by surface resonances between

two fluids has been shown. The structure consists in separat-

ing the two fluids by a rigid film flanked on both sides by

finite arrays of grooves. The transmission followed by a

strong collimation of sound arises through a single hole per-

forated in the film.

By analogy with the previous works on this subject,28 we

show the possibility of enhanced transmission between two

fluids by inserting a solid-fluid layered material between

these two fluids. Besides the possibility of selective transmis-

sion, this structure enables us, from a practical point of view,

to separate the two fluids which are, in general, miscible. We

give a simple analytical expression of the effective acoustic

impedance of the finite SL that enables us to deduce easily

the optimal value N of layers in the SL to reach total trans-

mission. In addition to the amplitude analysis, we study also

the behavior of the group delay time around the surface reso-

nances as function of N. This study has not been performed

before.28

As in the previous works,28 we consider a structure

formed by a finite solid-fluid SL composed of N solid layers

of impedance Zs separated by N−1 fluid layers of impedance

Z f and inserted between two fluids of impedances Z f1 and

Z f2. In the particular case of normal incidence �k� =0� and

assuming quarter wavelength layers, i.e.,
�

v�

ds=
�

v f
d f =

�

2
, the

inverse of the Green’s function of the finite SL with free

surfaces �Eq. �23�� becomes

g�MM�−1 =
 0 Z f�Zs

Z f

�N

Z f�Zs

Z f

�N

0 � , �85�

which is equivalent to the inverse Green’s function of a quar-

ter wavelength layer with an effective acoustic impedance

Ze=Z f�
Zs

Z f
�N. Then we can use the well-known relation2 that

enables us to use an intermediate layer to form an antireflec-

tion coating between two different semi-infinite media,

namely, Z f1Z f2=Ze
2. Then we easily get

N =
1

2

ln�Z f1Z f2

Z f
2 �

ln�Zs

Z f

� . �86�

This relation requires a suitable choice of the materials in

order to get a positive value of N greater than unity. In par-

ticular, the solid and fluid media constituting the SL should

have close impedances.

An example is illustrated in Fig. 15 for a SL composed of

Al and Hg and sandwiched between water �incident medium�
and Hg �detector medium�. The thicknesses of the layers in
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=2 and different values of the thickness d0 of the cavity fluid layer

as indicated in the inset.

ωd s / v l ( A l )

T
ra
ns
m
is
si
o
n

0.0

0.2

0.4

0.6

0.8

1.0

N

0 2 4 6 8 10 12 14 16 18 20 22

T
an
sm
is
si
on

0.0

0.2

0.4

0.6

0.8

1.0

N=11

Ω = π/2

0 π/2 π 3π/2

FIG. 15. �Color online� Transmission rate for a finite SL com-

posed of N=11 layers of Al separated by N−1=10 layers of Hg.

The structure is inserted between water �incident medium� and Hg

�detector medium�. The inset shows the variation in the maxima of

the transmission as a function of the number of unit cells N for the

mode situated at
�ds

v��Al� =
�

2
. The straight horizontal line correspond to

the transmission rate between water and Hg �i.e., without the finite

SL�.

SAGITTAL ACOUSTIC WAVES IN FINITE SOLID-FLUID… PHYSICAL REVIEW B 78, 174306 �2008�

174306-19



the SL are chosen such that
ds

v�

=
d f

v f
. One can see clearly that

selective transmission occurs around the reduced frequency

�0=
�ds

v�

=
�d f

v f
= �2n+1� �

2
for a number of cells such that N

=11 according to Eq. �86�. Far from N=11, the transmission

vanishes as it is illustrated in the inset of Fig. 15. As a matter

of comparison, we have also sketched by horizontal line the

transmission rate between water and Hg in the absence of the

finite SL. The resonances in Fig. 15 are of Breit-Wigner

type28 with a Lorentzian shape because of the absence of

transmission zeros at normal incidence. Zhao et al.28 attrib-

uted the resonances lying in the middle of the gaps of the SL

to the interference effect of acoustic waves reflected from all

periodically aligned interfaces. This explanation is of course

correct but a physical interpretation is still needed. We show

that the resonances are actually surface resonances induced

by the interface between the SL and water. Indeed, after

some algebraic calculations, the dispersion relation giving

the surface modes �Eq. �81�� of a SL ended with a solid layer

in contact with vacuum becomes simply C f =C�=0, where C f

and C� are given by Eqs. �9� and �13�, respectively. There-

fore, one obtains surface modes for

�0 =
�ds

v�

=
�d f

v f

= �2n + 1�
�

2
. �87�

In addition to Eq. �87�, the supplementary condition Eq.

�80� that ensures the decaying of surface modes from the

surface becomes

Zs 
 Z f . �88�

This condition is fulfilled in the case of a SL made of

Al-Hg. Now, when the Al layer of the SL is in contact with

water �instead of vacuum�, this latter medium does not affect

considerably the position of the surface resonances as the

impedance of water is much smaller than Al. In order to

confirm the above analysis, we have also sketched the local

density of states �LDOS� as a function of the space position

x3 �Fig. 16� for the mode lying at �0=� /2. This figure

clearly shows that this resonance is localized at the surface of

the SL and decreases inside its bulk. Let us notice that the

LDOS reflects the square modulus of the displacement field.

Therefore, these results show without ambiguity that the

transmission is enhanced by surface resonances.

Besides the amplitude of the transmission, we have also

analyzed the behavior of the group delay time �Fig. 17�. One

can notice a strong delay time at the frequencies correspond-

ing to surface resonances, reflecting the time spent by the

phonon at the SL/water interface before its transmission.

Contrary to the amplitude �see the inset of Fig. 15�, the delay

time at the surface resonance goes asymptotically to a limit-

ing value ��110� �in units of ds /v��Al�� when N increases.

This result known as the Hartman effect62 arises for classical

waves tunneling through a barrier where the delay time satu-

rates to a constant value for a sufficiently barrier’s thickness.

This phenomenon has been observed experimentally63 and

explained theoretically64 in 1D photonic crystals. For a fre-

quency lying in the allowed bands, the delay time �not shown

here� increases linearly as a function of N.

The above results can be explained in terms of the DOS.

Indeed, due to the similarity between the DOS and the group

delay time �Sec. II F�, Fig. 17 reflects also the DOS where

the different resonant modes are enlarged because of their

interaction with the bulk waves of the surrounding media.

When N increases, the number of oscillations in the bulk

bands �which is related to the number of cells in the system�
and the corresponding DOS increase. However, the behavior

is different for the peak associated to the surface resonance.

Indeed, for low values of N, the localization of this mode

increases as a function of N because the mode interacts less

with the second substrate. So, its width decreases and its

maximum increases to ensure an area equal to unity under

the resonance peak. However, the peak width cannot de-

crease indefinitely and reaches a threshold because of its in-

teraction with the first substrate. Therefore, the DOS �or the

delay time� saturates to a constant value. By using Eq. �57�,
we have also examined the group velocity vg in such struc-

tures and found that vg oscillates around the mean velocity

vm=D�d f /v f +ds /v��−1 inside the bands, whereas this quan-

tity is strongly reduced around the surface resonance. There-

fore, such structures can be used as a tool to reduce the speed

of wave propagation.

As a matter of completeness we have also checked two

other cases: �i� The case where there is no surface resonance
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in the gap of the SL. This can be obtained by using Hg on

both sides of the structure. In this case, even if Eqs. �87� and

�88� are satisfied, Eq. �86� gives inacceptable value of N

�N
0�. In spite of the absence of surface resonances, the

delay time saturates to a constant value ��17� �in units of

ds /v��Al�� at the midgap frequencies because of the Hartman

effect.62,64 This value is much smaller than in the presence of

a surface resonance: �ii� The case where there is two surface

resonances in the gap of the SL. This can be obtained by

using water on both sides of the structure. In this case, Eqs.

�87� and �88� are satisfied and Eq. �86� gives N�22. Be-

cause of the existence of two symmetrical surfaces that can

support surface modes, one obtains a large surface resonance

at �0=� /2,3� /2, . . . for N=22. For smaller values of N,

this resonance splits into two distinguished resonances

around �0 because of the interaction between the two sur-

faces. A total transmission is still obtained at each resonance.

On the contrary, for higher values of N �N�22�, there is a

single peak in the transmission because the two surface reso-

nances become decoupled, although being enlarged due to

their interaction with the substrates. In this case, the trans-

mission peak decreases as far as N increases.

VII. SUMMARY AND CONCLUSION

In this paper we have presented a comprehensive theoret-

ical analysis of the propagation of sagittal acoustic waves in

finite SLs made of alternating elastic solid and ideal fluid

layers. We have developed theoretically the expressions giv-

ing the Green’s functions of different solid-fluid layered me-

dia, which enables us to deduce analytically in a closed form

the expressions of the dispersion relations, the transmission

and reflection coefficients, and the density of states. We have

shown analytically and numerically particular features of

wave propagation in solid-fluid layered media in comparison

with their counterparts composed only of solid media. The

main features of solid-fluid SLs is the existence of transmis-

sion zeros that are without analog in solid-solid SLs. These

transmission zeros exist only for a range of incident angles �
such that 0
�
�cr. The consequences of the transmission

zeros are: �i� The existence of new gaps besides the gaps

induced by the periodicity of the system �Bragg gaps�. The

imaginary part of the Bloch wave vector inside the former

gaps is much higher than those in the latter ones, which

enables a strong localization of the waves when a defect is

inserted in the system; �ii� Besides the closing of the gaps,

the solid-fluid SLs present a closing of the gaps, leading to

flat bands for which the group velocity vanishes; �iii� The

phase of the transmission exhibits a phase drop of � and,

therefore, a negative delay time or equivalently a negative

group velocity, the so-called superluminal phenomena; �iv�
The evidence of Fano-type resonances induced by a fluid

layer at the vicinity of the transmission zeros induced by the

solid layers; and �v� the possibility of the existence of Brew-

ster acoustic angle in the velocity region between transverse

and longitudinal velocities of sound in the solid. Total trans-

mission occurs through such angles with mode conversion

from longitudinal waves in the fluid to transverse waves in

the solid and vice versa. These angles can have practical

applications in the area of ultrasonic nondestructive evalua-

tion.

Besides these new properties specific to solid-fluid sys-

tems, we have derived exact relations between the density of

states and the group delay times in finite systems embedded

between two fluids. Also, we have presented a theoretical

evidence of the existence of two types of modes in a finite

solid-fluid SL made of N cells with free surfaces. In particu-

lar, we have shown the existence of N−1 modes that fall

inside the bulk bands and one additional mode by gap that is

associated to one of the two surfaces surrounding the struc-

ture. These surface modes are independent of N and coincide

with the surface modes of two complementary semi-infinite

SLs obtained from the cleavage of an infinite SL between the

solid and fluid layers. We have also developed the idea that

the solid-fluid layered media exhibit an omnidirectional re-

flection band gap analogous to the case of 2D and 3D

phononic crystals. This property is not fulfilled for incident

waves launched from most fluids in contact with the SL. In

order to overcome this limitation, we proposed two solutions

to realize the omnidirectional mirror, namely, by cladding of

the SL with a homogeneous layer, characterized by high ve-

locities of sound, that acts like a barrier for the propagation

of phonons or a combination in tandem of two different SLs

in such a way that their band structures do not overlap over

a given frequency range.

Finally, we have shown two possibilities of enhanced

transmission between two fluids. �i� The first solution con-

sists to insert a cavity fluid layer inside the perfect SL. We

have evidenced that a simple structure as small as a solid-

fluid-solid sandwich can exhibit a large gap with sharp reso-

nances of Fano type. This is due to an internal resonance

induced by the fluid layer when it falls at the vicinity of the

transmission zeros induced by the solid layers. �ii� The sec-

ond solution consists to insert a finite solid-fluid SL between

the two fluids. An effective acoustic impedance of the SL has

been derived, which enables to deduce the optimal value of

the number N of cells needed to reach the antireflection coat-

ing. This occurs around some specific frequencies close to

the free surface modes lying in the midgap of the SL, the

so-called surface resonances. Contrary to the amplitude, the

delay time around these resonances increases monotonically

as function of N before saturating at a constant value for a

large value of N. This phenomenon known as the Hartman

effect arises in evanescent regions where waves are traveling

by tunneling effect.

We think that most of the analytical expressions given in

this manuscript can be used by any reader interested in the

subject without going into details of the calculations, and the

experimental verification of most of the phenomena pre-

dicted in this work can be possible with ultrasonic

experiments.34–37

ACKNOWLEDGMENTS

Y.E.H. and E.H.E.B. gratefully acknowledge the hospital-

ity of the Institut d’Electronique, de Microélectronique et de

Nanotechnologie �IEMN�, UMR CNRS 8520, and UFR de

Physique, Université des Sciences et Technologies de Lille.

SAGITTAL ACOUSTIC WAVES IN FINITE SOLID-FLUID… PHYSICAL REVIEW B 78, 174306 �2008�

174306-21



*Corresponding author. elboudouti@yahoo.fr
1 L. M. Brekhovskikh, Waves in Layered Media �Academic, New

York, 1981�.
2 P. Yeh, Optical Waves in Layered Media �Wiley, New York,

1988�.
3 E. H. El Boudouti, B. Djafari-Rouhani, E. M. Khourdifi, and L.

Dobrzynski, Phys. Rev. B 48, 10987 �1993�; E. H. El Boudouti,

B. Djafari-Rouhani, A. Akjouj, and L. Dobrzynski, ibid. 54,

14728 �1996�.
4 B. Djafari-Rouhani, L. Dobrzynski, O. Hardouin Duparc, R. E.

Camley, and A. A. Maradudin, Phys. Rev. B 28, 1711 �1983�.
5 T. Aono and S. I. Tamura, Phys. Rev. B 58, 4838 �1998�.
6 S. Mizuno and S. I. Tamura, Phys. Rev. B 53, 4549 �1996�.
7 M. Hammouchi, E. H. El Boudouti, A. Nougaoui, B. Djafari-

Rouhani, M. L. H. Lahlaouti, A. Akjouj, and L. Dobrzynski,

Phys. Rev. B 59, 1999 �1999�; E. H. El Boudouti and B. Djafari-

Rouhani, ibid. 49, 4586 �1994�.
8 H. J. Trodahl, P. V. Santos, G. V. M. Williams, and A. Bittar,

Phys. Rev. B 40, 8577 �1989�.
9 W. Chen, Y. Lu, H. J. Maris, and G. Xiao, Phys. Rev. B 50,

14506 �1994�.
10 B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, Physica B

219-220, 681 �1996�; B. Bonello, B. Perrin, E. Romatet, and J.

C. Jeannet, Ultrasonics 35, 223 �1997�.
11 N.-W. Pu and J. Bokor, Phys. Rev. Lett. 91, 076101 �2003�;

N.-W. Pu, Phys. Rev. B 72, 115428 �2005�.
12 E. M. Khourdifi and B. Djafari-Rouhani, Surf. Sci. 211-212, 361

�1989�.
13 D. Bria, E. H. El Boudouti, A. Nougaoui, B. Djafari-Rouhani,

and V. R. Velasco, Phys. Rev. B 60, 2505 �1999�.
14 E. M. Khourdifi and B. Djafari-Rouhani, J. Phys.: Condens. Mat-

ter 1, 7543 �1989�.
15 D. Bria, E. H. El Boudouti, A. Nougaoui, B. Djafari-Rouhani,

and V. R. Velasco, Phys. Rev. B 61, 15858 �2000�.
16 K.-Q. Chen, X.-H. Wang, and B.-Y. Gu, Phys. Rev. B 61, 12075

�2000�.
17 S. Mizuno, Phys. Rev. B 65, 193302 �2002�.
18 M. Giehler, T. Ruf, M. Cardona, and K. Ploog, Phys. Rev. B 55,

7124 �1997�; M. F. Pascual Winter, A. Fainstein, M. Trigo, T.

Eckhause, R. Merlin, A. Cho, and J. Chen, ibid. 71, 085305

�2005�.
19 S. I. Tamura, H. Watanabe, and T. Kawasaki, Phys. Rev. B 72,

165306 �2005�.
20 See for example: M. S. Kushwaha, P. Halevi, L. Dobrzynski, and

B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 �1993�; M. Siga-

las and E. N. Economou, Solid State Commun. 86, 141 �1993�;
F. R. Montero de Espinosa, E. Jimenez, and M. Torres, Phys.

Rev. Lett. 80, 1208 �1998�; J. O. Vasseur, P. A. Dymier, G.

Frantziskonis, G. Hong, B. Djafari-Rouhani, and L. Dobrzynski,

J. Phys.: Condens. Matter 10, 6051 �1998�; I. E. Psarobas, N.

Stefanou, and A. Modinos, Phys. Rev. B 62, 278 �2000�; 62,

5536 �2000�; S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T.

Chan, and P. Sheng, Phys. Rev. Lett. 88, 104301 �2002�.
21 M. Maldovan and E. L. Thomas, Appl. Phys. Lett. 88, 251907

�2006�; P. Dainese, P. S. J. Russel, N. Joly, J. C. Knight, G. S.

Wiederheker, H. L. Fragnito, V. Laude, and A. Khelif, Nat.

Phys. 2, 388 �2006�.
22 A. Bousfia, E. H. El Boudouti, B. Djafari-Rouhani, D. Bria, A.

Nougaoui, and V. R. Velasco, Surf. Sci. 482-485, 1175 �2001�;
D. Bria, B. Djafari-Rouhani, A. Bousfia, E. H. El Boudouti, and

A. Nougaoui, Europhys. Lett. 55, 841 �2001�; D. Bria and B.

Djafari-Rouhani, Phys. Rev. E 66, 056609 �2002�.
23 B. Manzanares-Martinez, J. Sanchez-Dehesa, A. Hakansson, F.

Cervera, and F. Ramos-Mendieta, Appl. Phys. Lett. 85, 154

�2004�.
24 G. Wang, D. Yu, J. Wen, Y. Liu, and X. Wen, Phys. Lett. A 327,

512 �2004�.
25 M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V.

Thierry-Mieg, Phys. Rev. Lett. 89, 227402 �2002�; P. Lachar-

moise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, Appl.

Phys. Lett. 84, 3274 �2004�; N. D. Lanzillotti Kimura, A. Fain-

stein, and B. Jusserand, Phys. Rev. B 71, 041305�R� �2005�.
26 A. J. Kent, R. N. Kini, N. M. Stanton, M. Henini, B. A. Glavin,

V. A. Kochelap, and T. L. Linnik, Phys. Rev. Lett. 96, 215504

�2006�.
27 A. Bousfia, Ph.D. thesis, University Mohamed I, 2004.
28 H. Kato, Phys. Rev. B 59, 11136 �1999�; S. Mizuno, ibid. 63,

035301 �2000�; D. Zhao, W. Wang, Z. Liu, J. Shi, and W. Wen,

Physica B 390, 159 �2007�.
29 S. M. Rytov, Sov. Phys. Acoust. 2, 68 �1956�.
30 M. Schoenberg, Wave Motion 6, 303 �1984�.
31 M. Rousseau, J. Acoust. Soc. Am. 86, 2369 �1989�.
32 M. A. Biot, J. Acoust. Soc. Am. 28, 168 �1956�.
33 B. Gurevich, J. Acoust. Soc. Am. 106, 57 �1999�; Geophysics

67, 264 �2002�; R. Ciz, E. H. Saenger, and B. Gurevich, J.

Acoust. Soc. Am. 120, 642 �2006�.
34 T. J. Plona, K. W. Winkler, and M. Schoenberg, J. Acoust. Soc.

Am. 81, 1227 �1987�.
35 C. Gazanhes and J. Sageloli, Acustica 81, 221 �1995�.
36 R. James, S. M. Woodley, C. M. Dyer, and F. Humphrey, J.

Acoust. Soc. Am. 97, 2041 �1995�.
37 M. Shen and W. Cao, Appl. Phys. Lett. 75, 3713 �1999�.
38 H. Sanchis-Alepuz, Y. A. Kosevich, and J. Sánchez-Dehesa,

Phys. Rev. Lett. 98, 134301 �2007�.
39 E. E. Mendez, F. Agullo-Rueda, and J. M. Hong, Phys. Rev. Lett.

60, 2426 �1988�.
40 Y. El Hassouani, E. H. El Boudouti, B. Djafari-Rouhani, H.

Aynaou, and L. Dobrzynski, Phys. Rev. B 74, 144306 �2006�.
41 L. Dobrzynski, Surf. Sci. Rep. 11, 139 �1990�.
42 L. Dobrzynski and H. Puszkarski, J. Phys.: Condens. Matter 1,

1239 �1989�.
43 L. Dobrzynski, J. Mendialdua, A. Rodriguez, S. Bolibo, and M.

More, J. Phys. �France� 50, 2563 �1989�.
44 M. Büttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 �1982�;

M. Büttiker, Phys. Rev. B 27, 6178 �1983�; E. H. Hauge and J.

A. Stovneng, Rev. Mod. Phys. 61, 917 �1989�.
45 M. L. H. Lahlaouti, A. Akjouj, B. Djafari-Rouhani, L. Dobrzyn-

ski, M. Hammouchi, E. H. El Boudouti, A. Nougaoui, and B.

Kharbouch, Phys. Rev. B 63, 035312 �2001�.
46 B. Djafari-Rouhani and L. Dobrzynski, J. Phys.: Condens. Mat-

ter 5, 8177 �1993�.
47 S. Zhu, N. Liu, H. Zheng, and H. Chen, Opt. Commun. 174, 139

�2000�.
48 B. Manzanares-Martinez and F. Ramos-Mendieta, Phys. Rev. B

61, 12877 �2000�.
49 D. A. Sotiropoulos, J. Sound Vib. 185, 501 �1995�.
50 D. A. Sotiropoulos and R. W. Ogden, Ultrasonics 34, 487

�1996�.
51 E. H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani,

A. Mir, J. Vasseur, L. Dobrzynski, and J. Zammouri, J. Appl.

EL HASSOUANI et al. PHYSICAL REVIEW B 78, 174306 �2008�

174306-22



Phys. 95, 1102 �2004�.
52 W. M. Robertson, J. Pappafotis, and P. Flannigan, Appl. Phys.

Lett. 90, 014102 �2007�.
53 S.-Y. Ren and Y.-C. Chang, Phys. Rev. B 75, 212301 �2007�.
54 E. H. El Boudouti, Y. El Hassouani, B. Djafari-Rouhani, and H.

Aynaou, Phys. Rev. E 76, 026607 �2007�.
55 U. Fano, Phys. Rev. 124, 1866 �1961�.
56 Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P.

Sheng, Science 289, 1734 �2000�.
57 C. Goffaux, J. Sánchez-Dehesa, A. L. Yeyati, P. Lambin, A. Khe-

lif, J. O. Vasseur, and B. Djafari-Rouhani, Phys. Rev. Lett. 88,

225502 �2002�; Z. Liu, C. T. Chan, and P. Sheng, Phys. Rev. B

71, 014103 �2005�; Y. A. Kosevich, C. Goffaux, and J. Sánchez-

Dehesa, ibid. 74, 012301 �2006�.
58 M. L. Ladrón de Guevara, F. Claro, and P. A. Orellana, Phys.

Rev. B 67, 195335 �2003�.
59 E. H. El Boudouti, T. Mrabti, H. Al-Wahsh, B. Djafari-Rouhani,

A. Akjouj, and L. Dobrzynski, J. Phys.: Condens. Matter 20,

255212 �2008�.
60 H. Al-Wahsh, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj,

T. Mrabti, and L. Dobrzynski, Phys. Rev. B 78, 075401 �2008�.
61 J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L.

Martin-Moreno, and F. J. Garcia-Vidal, Nat. Phys. 3, 851

�2007�.
62 T. E. Hartman, J. Appl. Phys. 33, 3427 �1962�.
63 Ch. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, Phys. Rev.

Lett. 73, 2308 �1994�.
64 P. Pereyra, Phys. Rev. Lett. 84, 1772 �2000�; S. Esposito, Phys.

Rev. E 64, 026609 �2001�; G. Nimtz and A. A. Stahlhofen, Ann.

Phys. 17, 374 �2008�.

SAGITTAL ACOUSTIC WAVES IN FINITE SOLID-FLUID… PHYSICAL REVIEW B 78, 174306 �2008�

174306-23


