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Abstract

In order to verify programs or hybrid systems, one often needs to prove

that certain formulas are unsatisfiable. In this paper, we consider con-

junctions of polynomial inequalities over the reals. Classical algorithms

for deciding these not only have high complexity, but also provide no

simple proof of unsatisfiability. Recently, a reduction of this problem to

semidefinite programming and numerical resolution has been proposed.

In this article, we show how this reduction generally produces degenerate

problems on which numerical methods stumble.

1 Introduction

In order to verify properties of computer programs, hybrid systems [Morari and Thiele,
2005], or even biological systems [Ghosh et al., 2003], one often needs to prove
that a formula is unsatisfiable. For instance, we may wish to prove that a set of
states I is a program invariant: this means that there is no pair of states (s, s′)
such that s →τ s′, s ∈ I and s′ /∈ I, where τ is the transition relation. A proof
of unsatisfiability leads to a proof of program safety. A satisfiability witness (a
pair of states s, s′) may be provided to the user as a counterexample to the I
“invariant candidate”; it may also be used for automated counterexample-based
refinement [Ball and Rajamani, 2002, Emerson and Sistla, 2000].

In general, formulas arising from program verification contain both conjunc-
tions and disjunctions. One can reduce satisfiability of such formulas to the
satisfiability of conjunctions by applying distributivity, but this usually leads
to blowup. A better approach is satisfiability modulo theory: the problem is
reduced to boolean satisfiability testing (SAT), a NP-complete problem for
which there exist practically efficient procedures, with the addition of theory
lemmas stating that certain conjunctions are not satisfiable [Ganzinger et al.,
2004]. This approach relies on the availability of a (fast) decision procedure
for conjunctions, which, ideally, given a contradictory conjunction, outputs a
contradictory subset.

In this article, we consider the following problem: given a conjunction of
polynomial equalities, and (wide and strict) polynomial inequalities, with integer
or rational coefficients, decide whether this conjunction is satisfiable ; that is,
whether one can assign real values to the variables so that the conjunction holds.
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The decision problem for real polynomial inequalities can be reduced to
quantifier elimination: given a formula F , whose atomic formulas are polyno-
mial (in)equalities, containing quantifiers, provide another, equivalent, formula
F ′, whose atomic formulas are still polynomial (in)equalities, containing no
quantifier. Quantifier elimination over a formula where all variables are ex-
istentially quantified yields an equivalent ground formula (a formula with no
variable), whose truth can be decided by mere syntactic evaluation. An algo-
rithm for quantifier elimination over the theory of real closed fields (roughly
speaking, (R, 0, 1+, ,≤) was first proposed by Tarski [1951], but this algorithm
had non-elementary complexity and thus was impractical. Later, the cylindrical
algebraic decomposition (CAD) algorithm was proposed by Collins [1975], with
a doubly exponential complexity, but despite improvements [Collins, 1998] CAD
is still slow in practice and there are few implementations available.

While quantifier elimination provides a procedure for deciding the satisfiabil-
ity of quantifier-free constraint systems, it is not the only method for doing so.
Basu et al. [1996, Theorem 3] proposed a satisfiability testing algorithm with
complexity sk+1dO(k), where s is the number of distinct polynomials appearing
in the formula, d is their maximal degree, and k is the number of variables.
We know of no implementation of that algorithm. Tiwari [2005] proposed an
algorithm based on rewriting systems that is supposed to answer in reasonable
time when a conjunction of polynomial inequalities has no solution.

Many of the algebraic algorithms are complex, which leads to complex im-
plementatyions. This poses a methodology problem for program verification:
can one trust them? Can one rely on a complex verification system in order to
prove that a complex program contains no bugs? We could either prove correct
the implementation of the algorithm using a proof assistant, or we could arrange
for the decision procedure to provide a witness of its result. The answer of the
procedure is correct if the witness is correct, and correctness of the witness can
be checked by a simple procedure. We know how to provide unsatisfiability
witnesses for systems of complex equalities or linear rational inequalities. It is
therefore tempting to seek unsatisfiability witnesses for systems of polynomial
inequalities.

Harrison [2007], Parrilo [2000] have suggested looking for proof witnesses
whose existence is guaranteed by the Positivstellensatz [Stengle, 1973]. These
witnesses involve sums of squares of polynomials, which are obtained as solutions
of a semidefinite programming (SDP) problem, solved by numerical methods.

In this article, we show how the reduction of the problem of finding Pos-
itivstellensatz witnesses to semidefinite programming leads, in general, to de-
generate cases that cannot be solved numerically. It is possible to recast the
problem in lower dimension so as to remove degeneracy, but doing so involves
computing the Zariski closure of the solution set, by algebraic methods. Since
this is as complex as finding a solution point to the SDP problem by algebraic
method, we gain nothing by using numerical solver.

We therefore conclude that, though promising it may have seemed, finding
Positivstellensatz witnesses through semidefinite programming numerical tech-
niques is impractical.
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2 Unsatisfiability Witnesses

For some interesting theories, it is trivial to check that a given valuation of
the variables satisfies the formula (e.g., for linear inequalities over the rationals,
it suffices to replace the variables by their value and evaluate the form). A
satisfiability decision procedure will in this case tend to seek a satisfiability
witness and provide it to the user when giving a positive answer

In contrast, if the answer is that the problem is not satisfiable, the user has
to trust the output of the satisfiability testing algorithm, the informal meaning
of which is “I looked carefully everywhere and did not find a solution.”. In
some cases, it is possible to provide unsatisfiability witnesses : solutions to some
form of dual problem that show that the original problem had no solution. In
order to introduce the Positivstellensatz approach, we first briefly explain two
simpler, but similar, problems with unsatisfiability witnesses.

2.1 Linear Inequalities

Let C be a conjunction of (strict or wide) linear inequalities. A satisfiability
witness is just a valuation such that the inequalities hold, and can be obtained
by linear programming for instance.

Can we also have unsatisfiability witnesses? For the sake of simplicity,
let us consider the case where all the inequalities are wide and take C to be
L1(x1, . . . , xm) ≥ 0 ∧ · · · ∧ Ln(x1, . . . , xm) ≥ 0 where the Li are affine lin-
ear forms. Obviously, if α1, . . . , αn are nonnegative coefficients, then if C holds,
then

∑

αiLi(x1, . . . , xm) ≥ 0 also holds. Thus, if one can exhibit α1, . . . , αn ≥ 0
such that

∑

αiLi = −1 — otherwise said, a nonnegative linear combination of
the inequalities is a trivial contradiction —, then C does not hold. The vector
(α1, . . . , αn) is thus an unsatisfiability witness.

This refutation method is evidently sound, that is, if such a vector can be
exhibited, then the original problem had no solution. It is also complete: one
can always obtain such a vector if the original problem C is unsatisfiable, from
Farkas’ lemma [Dantzig, 1998, §6.4, theorem 6]. A constructive proof of the
same fact can be obtained by considering the result of the Fourier-Motzkin
algorithm [Dantzig, 1998, §4.4] applied to all variables: it outputs a conjunction
of variable-free formulas, equivalent to C and obtained by nonnegative linear
combinations of the Li. C is unsatisfiable if and only if at least one of these
variable-free positive linear combinations is absurd, and this one provides a
witness.

Interestingly, the witness is obtained as a solution of a dual problem of the
same nature as the original problem. That is, the unsatisfiability witness is
itself the solution of a system of linear equalities and inequalities... which can
be solved by linear programming.

2.2 Complex Polynomial Equalities

Let C be a conjunction of polynomial equalities P1(x1, . . . , xm) = 0 ∧ · · · ∧
Pn(x1, . . . , xm) = 0 whose coefficients lie in a subfield K (say, the rational
numbers Q) of an algebraically closed field K ′ (say, the complex numbers C).
C is said to be satisfiable if one can find a valuation in K ′ of the variables in C
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such that the equalities hold. Such a valuation thereby constitutes a satisfiability
witness.

Let us first remark that it is insufficient to look for the coefficients of the
satisfiability witness inside K: for instance, X2 = 2 has no rational solutions,
but has real solutions X = ±

√
2. Worse, it is a fact of Galois theory that the so-

lutions of polynomials of degree higher than four cannot be in general expressed
using arithmetic operators and n-th degree roots. Satisfiability witnesses may
thus have to be expressed using general algebraic roots, and checking them is
somewhat complex algorithmically.

In contrast, one can get unsatisfiability witnesses that are checkable using
simple methods, only involving adding and multiplying polynomials over K.
Obviously, if one can find Q1, . . . , Qn ∈ K[x1, . . . , xm] such that

∑

i PiQi = 1,
then C has no solution. Again, this method of finding a trivial contradiction
is both sound and complete for refutation. The completeness proof relies on a
theorem known as Nullstellensatz :

Theorem 1 (Hilbert). Let K ′ be an algebraically closed field, let I be an ideal
in K ′[x1, . . . , xn]. Let P be a polynomial in K ′[x1, . . . , xn]. P vanishes over the
common zeroes of the ideals in I if and only if some nonnegative power of P
lies in I.

Apply that theorem to P = 1 and I the ideal generated by P1, . . . , Pm. P = 1
vanishes over the common zeroes of I if and only if they have no common zeroes,
and, by the theorem, if and only if 1 lies in I, that is, there exists Q̄1, . . . , Q̄m ∈
K ′[x1, . . . , xn] such that

∑

i Q̄iPi = 1. K ′ is a vector space over K, thus K has
a supplemental space S in K ′. By projecting the coefficients of the Q̄i onto K,
one obtains polynomials Qi ∈ K[x1, . . . , xn] such that

∑

i QiPi = 1. Those Qi

constitute a unsatisfiability witness for C.
For the sake of brevity, the remainder of the explanations will be somewhat

sketchy; the reader can refer to e.g. Cox et al. [2007] if needed. By Buch-
berger’s algorithm, or some other algorithm, one can compute a Gröbner basis
P ′

1, . . . , P
′
m from the P1, . . . , Pm. The ideals generated from both sets are iden-

tical, but the Gröbner basis has the property that a polynomial lies in the
generated ideal if and only if the remainder of its division by the Gröbner basis,
through the multivariate division algorithm, is null if and only if that polynomial
belongs to the ideal. We therefore have a method for testing whether an un-
satisfiability witness exists. Furthermore, if it exists, the division algorithm will
provide Q′

1, . . . , Q
′
m′ such that

∑

j P ′
jQ

′
j = 0. If one has kept track of how the

P ′
j can be expressed in terms of the Pj , then one can compute the Q1, . . . , Qm

witness.
Note that this algorithm is sound but incomplete when K ′ is not algebraically

closed (e.g. the real field R). For instance, the polynomial x2 + 1 has no
real solution, yet the polynomial 1 is not a member of the ideal generated by
it. Thus, Gröbner basis computations can provide unsatisfiability witnesses for
some systems of polynomial equalities over the reals, but not for all. The real
case is much more complex than the complex case.
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3 Polynomial Inequalities

For the sake of simplicity, we shall restrict ourselves to wide inequalities (the
extension to mixed wide/strict inequalities is possible). Let us first remark that
the problem of testing whether a set of wide inequalities with coefficients in a
subfield K of the real numbers is satisfiable over the real numbers is equiva-
lent to the problem of testing whether a set of equalities with coefficients K
is satisfiable over the real numbers. The proof is simple: for each inequality
Pi(x1, . . . , xm) ≥ 0, replace it by Pi(x1, . . . , xm) − µ2

i = 0, where the µi are
new variables. One therefore does not gain theoretical simplicity by restricting
oneself to inequalities.

3.1 Real Nullstellensatz and Positivstellensatz

Stengle [1973] proved two theorems regarding the solution sets of systems of
polynomial equalities and inequalities over the reals (or, more generally, over
real closed fields): a Nullstellensatz and a Positivstellensatz. Without going into
overly complex notations, let us state consequences of these theorems. Let K
be an ordered field (such as Q) and K ′ be a real closed field containing K (such
as the real field R). The corollary of interest to us is:

Theorem 2. Let Z1, . . . , Znz
, P1, . . . , Pnp

be two (possibly empty) sets of poly-
nomials in K[x1, . . . , xm]. Then Z1(x1, . . . , xm) = 0 ∧ · · · ∧ Znz

(x1, . . . , xm) =
0∧P1(x1, . . . , xm) ≥ 0∧ · · ·∧Pnp

(x1, . . . , xm) ≥ 0 has no solution if and only if
there exist some polynomials A and B such that A+B = 1, A ∈ I(Z1, . . . , Znz

)
and B ∈ S(P1, . . . , Pnp

), where I(Z1, . . . , Znz
) is the ideal generated by the

Z1, . . . , Znz
and S(P1, . . . , Pnp

) is the semiring generated by the positive ele-
ments of K and P 2

1 , . . . , P 2
np

.

Note that this result resembles the one used for linear inequalities (Sec-
tion 2.1), replacing nonnegative numbers by sums of squares of polynomials.

For a simple example, consider the following system, which obviously has no
solution:

{

−2 + y2 ≥ 0
1 − y4 ≥ 0

(1)

A Positivstellensatz witness is y2(−2 + y2) + 1(1 − y4) + 2y2 = −1. Another is
(

2
3 + y2

3

)

(−2 + y2) + 1
3 (1 − y4) = −1.

3.2 Sum-of-Squares Decomposition for the Wide Inequal-

ity Case

Consider the conjunction C: P1 ≥ 0 ∧ · · · ∧ Pn ≥ 0 where Pi ∈ Q[X, Y, Z, . . . ].
Consider the set S of products of the form

∏

w∈{0,1}{1,...,n} Pwi

i — that is, the
set of all products of the Pi where each Pi appears at most once. Obviously, if
one can exhibit nonnegative functions QR such that

∑

R∈S QRR = −1, then C
does not have solutions. Theorem 2 guarantees that if C has no solutions, then
such functions QR exist as sum of squares of polynomials. Lemma 4 ensures
that each QR can be expressed as MRQ̂RMT

R where Q̂R is a symmetric positive

semidefinite matrix (noted Q̂R � 0) and MR is a vector of monomials.

5



Assume that we know the MR, but we do not know the matrices Q̂R. The
equality

∑

R∈S MRQR(MR)tR = −1 directly translates into a system of affine

linear equalities over the coefficients of the Q̂R:
∑

R∈S MRQR(MR)tR + 1 is
the zero polynomial, so its coefficients, which are linear combinations of the
coefficients of the QR matrices, should be zero.

The additional requirement is that the Q̂R are positive semidefinite. One
can equivalently express the problem by grouping the (Q̂R)R∈S matrices into
a block diagonal matrix Q̂ and express

∑

R∈S QRR as a system of affine linear

equalities over the coefficients of Q̂. By Gaussian elimination in exact precision,
we can obtain a system of generators: Q̂ ∈ −F0 + vect(F1, . . . , Fm). The only
issue is then to find a positive semidefinite matrix in this space; that is, find
α1, . . . , αm such that −F0 +

∑

i αiFi � 0.
This is the problem of semidefinite programming: finding a positive semidef-

inite matrix within an affine linear variety of symmetric matrices, optionally op-
timizing a linear form. Powers and Wörmann [1998], Parrilo [2000, chapter 4]
and others have advocated such kind of decomposition for finding whether a
given polynomial is a sum of squares. Harrison [2007] generalized the approach
to finding unsatisfiability witnesses.

For instance, the second unsatisfiability witness we gave for constraint sys-
tem 1 is defined, using monomials {1, y}, 1 and {1, y}, by:













2
3 0
0 1

3
1
3

0 0
0 0













It looks like finding an unsatisfiability witness for C just amounts to a
semidefinite programming problem. There are, however, three problems to solve:

• |S| = 2n can be huge.

• We do not know the degree of the QR in advance, so we cannot choose
finite sets of monomials MR. The dimension of the space for QR grows
quadratically in |MR|.

• Semidefinite programming algorithms are implemented in floating-point.
They might therefore provide matrices Q̂ that are not truly positive semidef-
inite.

Conjunction C has no solution if and only if there exists a set of monomials
and associated positive semidefinite matrices verifying some linear relations.
Positive semidefiniteness is a semialgebraic property of the matrix coefficients,
defined by the nonnegativeness of some polynomials in the matrix coefficients
(Lemma 8). Thus, C has no solution if and only there is a set of monomials such
that some set of wide polynomial inequalities has a solution. We have therefore
exhibited a form of duality similar to the one described for the linear case in
section 2.1.

Let us first consider the first two problems. Lombardi [1990b,a] provides
a bound to the degrees of the polynomials necessary for the unsatisfiability
certificates, but this bound is nonelementary (asymptotically greater than any
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tower of exponentials), so it is not of a practical value. This bound, however, is
only needed for the completeness of the refutation method: we are guaranteed
to find the certificate if we look in a large enough space. It is not needed for
soundness : if we find a correct certificate by looking in a portion of the huge
search space, then that certificate is correct regardless. This means that we do
not need to consider the whole of S, and we can limit the choice of monomials
in MR to small degrees without losing soundness.

The third problem is more arduous. Here, problems occur when the Q̂
matrix provided by the semidefinite programming procedure has eigenvalues
that are null or at least very close to zero. Due to rounding errors, some of these
eigenvalues may be slightly negative; exact computations on such a matrix will
find it not to be positive semidefinite. We shall show in the next section that
this problem is essential and cannot be resolved by augmenting precision: in
many cases, the semidefinite programming problem is degenerate and solving
it involves hitting a hyperplane or some subspace thereof. Since these objects
have infinite thinness, this is impossible numerically except in some lucky cases.

4 Degeneracy

In this section, we shall characterize degeneracy in the semidefinite program-
ming problem. In a nutshell, direct numerical resolution is possible only if the
solution set has a nonempty interior: if one finds a solution, then there is a ball
of solutions around it, so small roundoff errors may not matter. In contrast, if
the solution set has empty interior, then it is included within a hyperplane or
some smaller subspace. Except in some rare cases, it is impossible to hit exactly
on that plane (for instance, with binary floating point, it is impossible to hit
on x = 2/3). This makes the results from numerical computations unsuitable
for being Positivstellensatz witnesses, even if they are close to an exact solu-
tion. Furthermore, most numerical methods are interior point methods and fail
altogether to provide a numerical solution when the problem is too degenerate.

4.1 Solution Set of the Semidefinite Programming Prob-

lem

Let F0, F1, . . . , Fm be symmetric n × n matrices over a subfield K of R. The
semidefinite programming problem is: find λ1, . . . , λm such that

F = −F0 +
∑

i

λiFi � 0 (2)

We may characterize the solution set for (α1, . . . , αm) in two ways:

• For all v, vtFv ≥ 0, thus
∑

i(v
tFiv)αi ≥ vtF0v, defining a closed half-

space. The solution set, being an intersection of closed half-spaces, is
therefore convex and closed.

• The set of positive semidefinite matrices is defined by the sign of the
coefficients of the characteristic polynomial (see Lemma 8), which are
polynomials in αi. Thus, the solution set is semialgebraic.
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The solution set may have nonempty or empty interior. Its interior corre-
sponds to positive definite solutions, while its boundary corresponds to degen-
erate positive matrices.

Most semidefinite programming methods are interior point methods [Vandenberghe and Boyd,
1996]. These methods consider both a primal and a dual problem and as-
sume that both are strictly feasible; the primal being strictly feasible corre-
sponds to a nonempty interior. The problem of finding α1, . . . , αm such that
−F0 +

∑

i αiFi ≥ 0 is equivalent to the problem of minimizing µ ≥ 0 such that
−F0 +

∑

i αiFi + µId � 0.
Assume the −F0+

∑

i αi ≻ 0 strict problem has solutions. The problem then
has nonempty interior, and, aside from numerical precision issues, numerical
methods should find a solution. The solution set for the strict problem is open;
if there is a real solution, then within a small ball around it all rational points
are also solutions. Assuming enough precision, the problem is then solved.

In general, though, the solution set may have empty interior. Equivalently,
the least enclosing linear affine variety (the Zariski closure of the solution set)
may not have full dimension. As an example, consider:

−F0 =





− 130555
143 − 150364

91 − 19213
7

− 150364
91 − 1883353

1001 − 41326
13

− 19213
7 − 41326

13 − 767287
143









F1 = 105 89 153
89 95 161
153 161 273





F2 =





129 110 187
110 49 88
187 88 157



 F3 =





49 86 143
86 97 164
143 164 277





(3)

The solution set is a segment (of positive length) of the line defined by
α2 = −3/11 and 91(α1 + α3) = 1811. If we recast the problem on this line, the
solution set has nonempty interior. Unfortunately, we know of no easy way to
obtain the equations of this enclosing linear variety in the general case. We can
however provide some partial solutions to this problem.

The solution set S has empty interior while being non empty if and only
if the linear affine variety −F0 + vect(F1, . . . , Fm) is tangent to the detF = 0
variety. This means that the differential of φ : (α1, . . . , αm) 7→ det(F0+

∑

i αiFi)
is null at the solution point, that is, we are at a singular point of the variety
defined by this polynomial.

In the case of example 3, φ = 0 and ∂φ/∂αi = 0 yield four equations. By
Gröbner basis techniques followed by polynomial factorization we can obtain
(3 + 11l2)2 = 0 and 91(α1 + α3) = 1811.

Yet, in the general case, things are not so simple. Consider the following
example:1

F0 = 0 F1 =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









F2 =









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









(4)

detF = (α2
1 + α2

2)
2. Gröbner basis and factorization techniques will yield

α2
1 + α2

2 = 0. Even if we replaced F1 and F2 by another basis, we would still

1Courtesy of Kevin Buzzard.
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obtain a second degree homogeneous polynomial, which can be transformed into
a sum of squares (Lemma 5). Now consider:

F ′
0 =









9 −5 0 0
−5 −7 0 0
0 0 7 −5
0 0 −5 −7









(5)

F = −F ′
0 +α1F1 +α2F2 � 0 has a unique solution (α1 = 5, α2 = −7), where

F =









2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









(6)

This may be found algebraically, by constraining the signs of the coefficients
of the characteristic polynomial of F . Yet, in this very degenerate case where
the solution is a single point within a plane, with a corresponding rank-1 ma-
trix, neither DSDP5 [Benson and Ye, 2005] nor SDPA [Fujisawa et al., 2004],
two semidefinite programming packages, can compute an approximation to the
solution.

4.2 Degenerate Positivstellensatz Problem

To make constraint system 1 more interesting, we replace y by 3a+ b+1, which
yields











0 ≤ P1 =9a2 + 6ba + 6a + b2 + 2b − 1

0 ≤ P2 = − 81a4 − 108ba3 − 108a3 − 54b2a2 − 108ba2 − 54a2 − 12b3a

− 36b2a − 36ba− 12a− b4 − 4b3 − 6b2 − 4b ≥ 0

(7)

We look for a witness of the form Q1(1, a, b)P1+Q2(1)P2+Q3(1, a, b, ab)P3 =
−1. We group Q1, Q2 and Q3 into a single block diagonal matrix:





























...
. . . Q1 . . .

...
Q2

...
. . . Q3 . . . . . .

...





























Q belongs to a linear affine variety defined as −F0 + vect(F1, F2, F3).

−F0 =

























−2 − 11
2 − 11

6
− 11

2 − 33
2 − 11

2
− 11

6 − 11
2 − 11

6

− 11
6

−3 − 21
2 − 7

2 −10
− 21

2 − 63
2 − 1

2 0
− 7

2 − 1
2 − 7

2 0
−10 0 0 0
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F1 =

























0 3 1
3 9 3
1 3 1

1
0 9 3 9
9 27 0 0
3 0 3 0
9 0 0 0

























F2 =

























0 0 0
0 0 0
0 0 0

0

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

























F3 =

























3 3 1
3 9 3
1 3 1

1

3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

























All (α1, α2, α3) solutions (Q � 0) verify −9α1+α2 = −10 (this was obtained
through algebraic methods). As explained in section 4.1, this plane is the Zariski
closure of the solution set. An example of a solution is α1 = 2, α2 = 8, α3 =
79. Unfortunately, neither SDPA nor DSDP can compute such a result. Both
terminate“due to small steps”.

We have therefore exhibited a simple system with two parameters where,
due to the emptiness of the solution set, numerical interior point methods fail,
while algebraic methods can compute a solution point.

Assuming we have a method for obtaining the Zariski closure (−9α1 + α2 =
−10), then we can use it to reduce the system. By rewriting α2 = −10 + 9α1,
we obtain a system F ′

0, F
′
1, F

′
2, with a solution set with nonempty interior, and

numerical solving works.
Algorithms for computing the Zariski closure of a semialgebraic set should be

at least as complex as those for finding a single solution point, if only because, in
the case of a solution set consisting of a single point, the Zariski closure is equal
to that point. Yet, the Zariski closure is only useful so as to help numerical
methods find solution points, so computing this closure by computing solution
points or equally complex computations defeats the purpose.

With more complex examples (more polynomials, larger monomial bases),
the number of αi coefficients grows dramatically (in the hundreds). Computing
the determinant of a symbolic matrix Qi may become untractable. Algebraic
methods for computing solution points are then infeasible, since they rely on
the sign of the determinant.
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Assuming the numerical method does not fail and produces a good approx-
imation α̃1, . . . , α̃m to a rational solution, one can use several methods to help
compute the rational solution. The most obvious one is to find rational approxi-
mations to the floating-point by e.g. continued fractions; yet this fails to obtain
a solution in most cases. If the Zariski closure has dimension z < m, assuming
this closure is not parallel to the αi = K plane and the approximation is good
enough, then by choosing αi = α̃i one “slices” the problem down to finding a
point within a z − 1-dimensional solution set within a m − 1-dimension space.
If one does that with many variables, one obtains a 0-dimension solution set (a
single point) within a z − m space. Then, the problem has empty interior, and
cannot be solved numerically in general: only algebraic methods are feasible.

5 Conclusion

The approach of finding unsatisfiability witnesses for real polynomial inequalities
through Positivstellensatz and reduction to semidefinite programming looked
promising. Unfortunately, it suffers from several drawbacks:

1. If one has n polynomial inequalities, then one has to consider at most 2n

terms in the sum expressing the unsatisfiability witness.

2. There is no reasonable known bound on the size of the monomial bases to
consider.

3. In general, one gets a degenerate semidefinite programming problem —
that is, a problem whose solution set has no interior point. Numerical
interior point methods in general fail to converge on such problems. Even
if they do provide an approximate solution, this solution cannot be easily
mapped to an exact rational solution. It is possible to get rid of this
problem by going into lower dimensions, however this involves computing
the Zariski closure of the solution set, which may be as difficult as finding
a solution point. This defeats the purpose of using numerical methods,
which was to avoid costly algebraic algorithms.

Acknowledgements

We wish to thank Alexis Bernadet and Mohab Safey El Din for their helpful
comments and ideas.

References

Thomas Ball and Sriram K. Rajamani. The SLAM project: de-
bugging system software via static analysis. In Principles of
programming languages (POPL), pages 1–3. ACM, 2002. URL
http://doi.acm.org/10.1145/503272.503274.

Saugata Basu, Richard Pollack, and Marie-Franoise Roy. On the combinato-
rial and algebraic complexity of quantifier elimination. Journal of the ACM
(JACM), 43(6):1002–1045, 1996. ISSN 0004-5411. doi: http://doi.acm.org/
10.1145/235809.235813.

11

http://doi.acm.org/10.1145/503272.503274


Steven J. Benson and Yinyu Ye. DSDP5 user guide — software for semidefinite
programming. technical memorandum 277, Argonne National Laboratory,
2005.

G.E. Collins. Quantifier elimination by cylindrical algebraic decomposition —
twenty years of progress. In B. F. Caviness and J. R. Johnson, editors, Quan-
tifier Elimination and Cylindrical Algebraic Decomposition, pages 8–23, 1998.

George E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Automata theory and formal languages, volume 33
of LNCS, pages 134–183. Springer, 1975.

David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative Al-
gebra. Springer, 3 edition, 2007.

George B. Dantzig. Linear Programming and Extensions. Princeton, 1998.

E. Allen Emerson and A. Prasad Sistla, editors. Computer Aided Verification
(CAV), volume 1855 of LNCS, 2000. Springer. ISBN 3-540-67770-4.

Katsuki Fujisawa, Masakazu Kojima, Kazuhide Nakata, and Makoto Yamashita.
SDPA (semidefinite programming algorithm) user’s manual — version 6.2.0.
research report B-308, Dept. Math. & Comp. Sciences, Tokyo Institute of
Technology, 2004.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
Fast Decision Procedures. In R. Alur and D. Peled, editors, 16th International
Conference on Computer Aided Verification, CAV’04, volume 3114 of Lecture
Notes in Computer Science, pages 175–188. Springer, 2004.

Ronojoy Ghosh, Ashish Tiwari, and Claire Tomlin. Automated symbolic reach-
ability analysis; with application to delta-notch signaling automata. In Oded
Maler and Amir Pnueli, editors, HSCC, volume 2623 of Lecture Notes in
Computer Science, pages 233–248. Springer, 2003. ISBN 3-540-00913-2.

John Harrison. Verifying nonlinear real formulas via sums of squares. In Klaus
Schneider and Jens Brandt, editors, Proceedings of the 20th International
Conference on Theorem Proving in Higher Order Logics, TPHOLs 2007, vol-
ume 4732 of LNCS, pages 102–118. Springer, 2007.

Henri Lombardi. Mathématiques constructives et complexité en temps polyno-
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A Lemmas

A.1 Sums of Squares and Symmetric Matrices

Lemma 3. Let v ∈ Kn. Then, vT v is a n × n symmetric positive semidefinite
matrix.

Proof. vT v is obviously symmetric. Let λ be a eigenvalue for it, and x a corre-
sponding eigenvector: xvT v = λx. Thus, ‖vxT ‖2

2 = (vxT )T (vxT ) = xvT vxT =
λxxT = ‖x‖2

2. Since x 6= 0, λ must be nonnegative.

Lemma 4. Let P ∈ K[X, Y, . . . ] be a sum of squares of polynomials
∑

i P 2
i . Let

M = {m1, . . . , m|M|} be a set such that each Pi can be written as a linear combi-
nation of elements of M (M can be for instance the set of monomials in the Pi).
Then there exists a |M | × |M | symmetric positive semidefinite matrix Q with
coefficients in K such that P (X, Y, . . . ) = [m1, . . . , m|M|]Q[m1, . . . , m|M|]

T , not-
ing vT the transpose of v.

Proof. Let us decompose Pi(X, Y, . . . ) into a linear combination of monomials
∑

1≤j≤|M| pi,jmj . Let vi be the vector [pi,1, . . . , pi,m]; then Pi(X, Y, . . . ) =

vi[m1, . . . , m|M|]
T . P 2

i (X, Y, . . . ) is thus [m1, . . . , m|M|]v
T
i vi[m1, . . . , m|M|]

T .
Qi = vT

i vi, by lemma 3 is symmetric positive semidefinite. Q =
∑

i Qi thus
fulfills the conditions.

Let us remark that the converse is correct for matrices over R, by diagonal-
ization: any symmetric positive semidefinite matrix is a sum of squares of linear
forms. We may also obtain such a decomposition over Q:

Lemma 5. Let Q be a n×n symmetric matrix over a subfield K of R. Then Q
can be written as U tDU where U and D are also over K, D is diagonal and U is
upper triangular. Otherwise said, (x1, . . . , xn) 7→ (x1, . . . , xn)tQ(x1, . . . , xn) can
be written as

∑n

i=1 dili(x1, . . . , xn)2 where li is a linear form and only depends
on x1, . . . , xi. Furthermore, D and U have the same signature; in particular if
Q is positive semidefinite, then D only has nonnegative coefficients
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Proof. By induction over n. The case n = 1 is obvious; consider n > 1. Let

l =
(

1,
q1,2

q1,1
, . . . ,

q1,n

q1,1

)

. Q1 = Q − q1,1l
tl contains only zeroes on its first line

and column. By the induction hypothesis, Q1 = U t
1D1U1. Let D = (q1,1, D1)

(concatenation along the diagonal) and U = (l, U1) (concatenation of lines),
then Q = U tDU . The result on signatures ensues from Sylvester’s inertia
theorem.

A.2 Semialgebraic Characterization of Positive Semidefi-

nite Matrices

Lemma 6. Let σi(X1, . . . , Xn), where 1 ≤ i ≤ n, denote the i-th elementary
symmetric polynomial in the variables X1, . . . , Xn. x1, . . . , xn are all nonnega-
tive if and only if σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn) are so

Proof. One direction is evident: if x1, . . . , xn are nonnegative, then σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)
also are nonnegative, for these polynomials have nonnegative coefficients.

Let us suppose that σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn) are nonnegative, and
that at least one of them is positive. x1, . . . , xn are the roots of the polynomial
P (X) = Xn+

∑n

i=1(−1)iσi(xi, . . . , xn)Xn−i. For ρ < 0, P (ρ) > 0 by the rule of
signs, so this polynomial has no negative roots thus x1, . . . , xn are nonnegative.

The last case is where σ1(x1, . . . , xn) = · · · = σn(x1, . . . , xn) = 0. Since
σn(x1, . . . , xn) = x1 . . . xn = 0, this means at least one of the xi is null. The
problem reduces to the same with a lower n.

Lemma 7. Let x1, . . . , xn be nonnegative reals. Then, the sequence (σi(x1, . . . , xn))0≤i<n

consists in k zeroes followed by n − k positive reals where k is the number of
zeroes among x1, . . . , xn.

Proof. Obvious.

Lemma 8. Let M be a n × n real symmetric matrix. Let χM (X) = det(M −
X.Id) =

∑n

i=0 piX
n be its characteristic polynomial. Then M is positive semidef-

inite if and only if for all 0 ≤ i < n, (−1)ipi ≥ 0. Furthermore, the sequence
(−1)ipi consists in dimkerM zeroes followed by n − k positive numbers.

Proof. For all 0 ≤ i < n, pi = (−1)iσn−i(λ1, . . . , λn) where the (λi)1≤i≤n are
the eigenvalues of M (multiple eigenvalues are counted as several λi). The result
then ensues from lemmas 6 and 7.
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