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In the frame of long-wavelength Heisenberg model, a simple magnonic device is designed to obtain possibly

transmission stop bands �where the propagation of spin waves is forbidden�. This simple device is composed

of an infinite one-dimensional mono-mode waveguide �the backbone� along which N�N�� side resonators are

grafted at two sites. Contrary to all known systems of this kind, a spectral transmission gap of nonzero width

occurs here even with this simple structure. This is obtained by combining appropriately the zeros of trans-

mission of the side resonators. Sharp resonant states inside the gaps can be achieved without introducing any

defects in the structure. This results from an internal resonance of the structure when such a resonance is

situated in the vicinity of a zero of transmission or placed between two zeros of transmission, the so-called

Fano resonances. A general analytical expression for the transmission coefficient is given for various systems

of this kind within the framework of the Green’s function method. The amplitude, the phase, and the phase

time of the transmission are discussed as a function of frequency and it is shown that the width of the stop

bands is very sensitive to the number of the side resonators. These results should have important consequences

for designing integrated devices such as narrow-frequency optical or microwave filters and high-speed

switches.

DOI: 10.1103/PhysRevB.78.075401 PACS number�s�: 75.30.Ds, 75.70.Cn, 75.90.�w

I. INTRODUCTION

Spin systems which have a regular distribution of scatter-

ing centers have been seen to possess a distinct and interest-

ing array of magnonic properties, perhaps most strikingly

frequency band gaps within which magnons cannot propa-

gate through the structure—a so-called magnonic band

gap.1–9 The interest in these band gaps is related to the po-

tential applications of magnon-transport devices and is sup-

ported by the advanced progress in nanofabrication

technology.10 Two-dimensional �2D� and three-dimensional

�3D� composite systems constituted by periodic inclusions of

at least two magnetic materials in a host matrix can exhibit

an absolute magnonic band gap where the propagation of

spin waves is inhibited in any direction of the space.3,4,6,11–14

These magnonic band-gap materials can have many practical

applications such as spin injection into devices.15 Studies of

lower-dimensional systems such as one-dimensional �1D�
periodic layered media2,16–20 and periodic waveguide sys-

tems with different geometries21–27 are conducted as analogs

of 2D and 3D systems and for applications in their own right.

These structures are attractive since their production is more

feasible and they require only simple analytical and numeri-

cal calculations. On experimental grounds, arrays of very

long ferromagnetic nanowires made of Ni Permalloy and Co

with diameters in the range of 30–500 nm have been

created.28 These are very uniform in cross section with

lengths in the range of 20 �m. The realization of such nano-

wires can reasonably be considered, to an excellent approxi-

mation, as mono-mode waveguides.

In order to provide comprehensive information about

magnetotransport in magnonic band-gap crystals �which is

the analogous to photonic crystals and based on magnetic
materials�, in this paper, we propose a different structure and
focus our study on it. This structure consists of N�N�� side
resonators grafted at two sites on an infinite 1D mono-mode
waveguide. The transmission gaps and Fano-like resonances
have been established through an analysis of the transmis-
sion function �amplitude and phase� obtained within the
framework of the Green’s function method. In a previous
publication,21–23 we reported that the magnonic transmission
spectrum of 1D comb structures exhibits large gaps. These
structures, called star wave guides, are composed of M� dan-
gling side branches �DSBs� periodically grafted at each of
the M equidistant sites on an infinite 1D mono-mode wave-
guide �the backbone�. The gaps originate from the periodic-
ity of the system determined by the distance between two
neighboring sites and from the eigenfrequencies of the DSB
which play the role of resonators. The gap widths also de-
pend on the effect of the pinning field at the ends of the side
branches.23 It is interesting to underline the results of huge
gaps and discrete transmission spectrum due only to the dan-
gling side branches grafted at a single site on the backbone.
Unlike other 1D �e.g., Bragg lattices�, 2D, or 3D magnonic
crystals in which the contrast between the constituents is a

critical parameter for the stop band existence, this star wave-

guide exhibits relatively large forbidden bands even if the

backbone and the resonators are made of the same material.

On the other hand, in Refs. 24–27 we have presented a net-

works called a serial loop structure �SLS�. These SLS was

made of symmetric �asymmetric� loops pasted together with

segments of finite length; the loops play the role of resona-

tors. Such structure exhibits new features, in comparison

with the star waveguide. We emphasize the interesting result

of transmission zeros in the case of asymmetric loop
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structure.26 These transmission zeros may lead to a phase

drop of � and therefore negative phase time.29

Recently magnonic band-gap crystals, in which propaga-

tion of spin waves �magnons� is forbidden, have attracted

much attention. This is related to a number of advantages

that magnonic crystals have in comparison with photonic

crystals. The wavelength of a spin wave and, hence, the

properties of such crystals depend on the external magnetic

field and can be controlled by this field. The wavelength of

propagating spin waves for a wide class of ferromagnetic

materials in the microwave range is on the order of tens or

even hundreds of micrometers. The phase and group veloci-

ties of spin waves are also functions of the structure size and

the applied external field and may vary over a wide range.1

In addition to the band gaps, a great interest has been paid to

the so-called Fano resonances that may be introduced in such

gaps. Some analytical models, in phononic band-gap crys-

tals, have been proposed to explain the origin and the behav-

ior of such resonances.30–33 These resonances were first theo-

retically described by Fano34 when he studied the inelastic

auto ionizing resonances in atoms. The asymmetry �Fano

profile� was explained as the result of the interference be-

tween the discrete resonances with the smooth continuum

background in which the former is embedded. The symmet-

ric and asymmetric line shapes have been also reported in the

electronic transport in mesoscopic systems using the

Aharonov-Bohm systems.35–38 Mainly, the subject of these

studies was to use these interferometric systems to show the

conditions for the existence and the collapse of Fano reso-

nances as a function of the applied current-voltage and mag-

netic flux. These studies are also related to the investigation

of the electronic states of quantum dots35,36 as well as to the

understanding29,39 of the transmission phase jumps by � be-

tween two adjacent resonances in relation with the experi-

ments of Yacoby et al.40 The analogy between scattering

properties of electrons, phonons, and magnons suggests that

this type of feature can also appear in magnonic systems.41

The motivation behind the work presented in this paper is

to introduce a design of a simple magnonic filter consisting

of N�N�� dangling side branches, which play the role of reso-

nators, grafted at two sites on an infinite 1D mono-mode

waveguide �see the inset of Figs. 1�a�, 1�c�, and 1�e��. We

show analytically and numerically that this simple structure

can exhibit transmission gaps �their width depend on the

number of dangling resonators� and Fano-like resonances. In

particular, we show that the transmission amplitude through

such a system can be written following the Fano-like shape

around these resonances. In addition, we give an explicit

expression of the Fano parameter34 as well as the position

and the width of the Fano resonances34 as a function of the

geometrical parameters of the system.

This paper is organized as follows. In Sec. II, we give a

brief review of the theoretical model used in this work as

well as the analytical results of the structure depicted above.

These results are necessary for an analytical understanding of

the phenomenon obtained for the structure proposed in this

work. Section III is devoted to the transmission gaps and

Fano resonances. The conclusions are presented in Sec. IV.

II. THEORETICAL DISCUSSION

We consider an infinite �one dimensional� ferromagnetic

medium i. The Fourier-transformed Green’s function be-

tween two points x and x� of this infinite waveguide can be

expressed as21,42

Gi�x,x�� = −
e−�i�x−x��

2Fi

, �1�

where �i= j���−�iH0� /Di�= j�i�, j=�−1, Fi=Di��i /�iM0i,

and Di�= �2Ja2M0i� / ��i�
2�. �, M0i, H0, J, and �i stand, re-

spectively, for the angular frequency of the spin wave, the

spontaneous magnetization, the static external field, the ex-

change interaction between neighboring magnetic sites in the

simple-cubic lattice of lattice parameter a constituting the

ferromagnetic medium, and the gyromagnetic ratio. Before

addressing the problem of the simple structure presented in

this work �see the inset of Figs. 1�a�, 1�c�, and 1�e��, it is

helpful to know the surface elements of its elementary con-

stituents, namely, the Green’s function of a finite segment of

length di , i=1,2 ,3 and of a semi-infinite medium �lead�. The

finite segment of length d2 is bounded by two free surfaces

located at x=0 and x=d2. These surface elements can be

written in the form of a �2�2� matrix g2�MM� within the

interface space M = �0, +d2�. The inverse of this matrix takes

the following form:43

g2
−1�MM� =	

− F2C2

S2�

F2

S2�

F2

S2�

− F2C2

S2�


 , �2�

where C2=cos��2�d2� and S2�= j sin��2�d2�= jS2. The inverse

of the surface Green’s functions of the dangling resonators

grafted at the sites �0� and �d2� is given by g1
−1�0,0�

=−NF1C1 /S1� and g3
−1�d2 ,d2�=−N�F3C3 /S3�, where Ci

=cos��i�di�, Si�= j sin��i�di�= jSi, i=1,3. N and N� are the

number of side branches on both sides of the finite segment

of length d2. The inverse of the surface Green’s functions

of the two semi-infinite ferromagnetic leads surrounding the

whole structure is given by gs
−1�0,0�=gs

−1�d2 ,d2�=−Fs. In

what follows, we assume that the semi-infinite leads and

mediums �segments� 1, 2, and 3 are constituted of the

same material �i.e., F1=F2=F3=Fs=F=D�� /�M0,

D�= �2Ja2M0� / ���2�, and �= j���−�H0� /D�= j���. We re-

port on results of calculated transmission coefficients and

phase or phase time as a function of frequency. Using the

Green’s function method,43 the expression giving the inverse

of the Green’s function of the whole system �depicted at the

inset of Fig. 1�e� for N=N�=2� can be obtained from a linear

superposition of the above inverse Green’s functions of the

constituent, namely,

g−1�MM� = F	
− C2

S2�
−

NS1�

C1

− 1
1

S2�

1

S2�

− C2

S2�
−

N�S3�

C3

− 1
 .

�3�
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The transmission function is given by43 t=−2Fg�0,d2� or

equivalently

t =
2C1C3

	1 + j	2

, �4�

where

	1 = 2C1C2C3 − S2�NS1C3 + N�C1S3� , �5�

and

	2 = 2C1S2C3 + N�C1C2S3 + NS1�C2C3 − N�S2S3� . �6�

From the expression of t �Eq. �4��, one can deduce the trans-

mission amplitude

T =
4C1

2C3
2

	1
2 + 	2

2
, �7�

as well as the phase

FIG. 1. �a� Transmission coefficient vs the reduced frequency 
1 for the structure depicted in the inset. For convenience H̃� is considered

to be 1. �c� Transmission coefficient vs the reduced frequency 
2 for the structure depicted in the inset with d1=d3=0.5d2 and N=N�=1. �e�
The same as in �c� but for the structure depicted in the inset of �e� �N=N�=2�. �b�, �d�, and �f� are, respectively, the same as �a�, �c�, and �e�
but for the variation of the phase.
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� = arctan�	2/	1� + ���C1C3� , �8�

where � means the Heaviside function. From Eqs. �4� and

�7� one can notice that the transmission zeros are induced by

the side branches �i.e., C1=0 or C3=0�. When the expression

C1C3 changes sign at some frequencies denoted by �n, then

the phase �Eq. �8�� exhibits a jump of �.

Another interesting quantity is the first derivative of �
with respect to the pulsation � which is related to the delay

time taken by the magnons to traverse the structure. This

quantity, called phase time, is defined by44,45


� =
d�

d�
�9�

and can be written as


� =
d

d�
arctan�	2/	1� + ��

n

sgn� d

d�
�C1C3��=�n


��� − �n� ,

�10�

where sgn means the sign function. Furthermore, the density

of states �DOS� of the present composite system from which

we have subtracted the DOS of the semi-infinite leads is

given by45

�n��� =
1

�

d

d�
arctan�	2/	1� . �11�

Because of the second term on the right-hand side of Eq.

�10�, one can deduce that 
����n��� as 
� �Eq. �10�� may

exhibit � functions at the transmission zeros that do not exist

in the variation of the DOS �Eq. �11��. However, if the sys-

tem does not exhibit transmission zeros, then ��C1C3�=0

and 
�=��n���. It should be pointed out that the validity of

our results is subject to the requirement that the cross section

of the waveguide being negligible compared to their length

and to the propagation wavelength. The assumption of

mono-mode propagation is then satisfied.

III. TRANSMISSION GAPS AND FANO RESONANCES

Before addressing the problem of the whole structure de-

scribed above, let us first recall briefly the results of a par-

ticular case necessary for the understanding of the spin-wave

propagation in the structures shown at the inset of Figs. 1�c�
and 1�e�, namely, if d2=0, N=1 and N�=0, we obtain the

transmission function of a simple structure consisting of one

resonator grafted on an infinite guide �see the inset of Fig.

1�a��: t=C1 / �C1+ jS1 /2�. This expression enables us to de-

duce the transmission coefficient T= �t�2=4C1
2
/ �4C1

2+S1
2� and

the phase �=���C1�−arctan�S1 /2C1�. Let us mention that

the transmission amplitude of a quantum waveguide with

one resonator has been previously discussed in numerous

publications.46 We can see that the transmission coefficient

equals zero when C1=0, i.e., ��d1= �l�+0.5��, where l� is a

positive integer. The corresponding frequencies will be �g

=�H0+D���l�+0.5�� /d1�2 or symbolically 
g= H̃�+ ��l�
+0.5���2, where 
g=�gd1

2
/D� is a reduced frequency and

H̃�=�H0d1
2
/D�. From these results one can notice that for

this composite system there exist an infinite set of forbidden

frequencies 
g corresponding to the eigenmodes of the

grafted finite branch. This grafted branch behaves as a reso-

nator and this simple composite system filters out the modes


g. This phenomenon is related to the resonances associated

with the finite additional path offered to the spin-wave

propagation. The variation of T versus the reduced frequency


1=�d1
2
/D� is reported in Fig. 1�a�. T is equal to zero when

��d1 is an odd multiple of � /2 and reaches its maximum

value of 1 when ��d1 is a multiple of �. The variation in the

phase versus the reduced frequency �Fig. 1�b�� shows an

abrupt change in � at the transmission zeros and therefore

the corresponding phase time is different from the DOS as

mentioned above �Eqs. �10� and �11��.
For the structures shown at the insets of Figs. 1�c� and

1�e�, Eq. �4� clearly shows that the transmission zeros are

due only to the dangling resonators �i.e., when C1=0 or C3

=0�. Figure 1�c� gives the transmission coefficient in pres-

ence of two identical dangling resonators �i.e., N=N�=1 and

d1=d3=0.5d2�. One can notice that the transmission coeffi-

cient presents well-defined dips induced by the grafted

branches. This dip transform into large transmission gap

when the number of branches increase as it is illustrated

in Fig. 1�e� for N=N�=2. It is worth mentioning that

because of the existence of two resonators, one can expect

two phase drops of � �i.e., 2�� at the transmission zeros

given by C1=C3=0 �i.e., 
2=�d2
2
/D�= H̃+ ��l�+0.5���2 , H̃

=�H0d2
2
/D� , l�=0,1 ,2 , . . .�. However, one can see in Figs.

1�d� and 1�f� that the phase presents only a phase drop of �.

This is due to existence of a resonant state with zero width at

these values of 
2 which induce a phase jump of �; these

resonances collapse when d1=d3 is taken exactly equal to

0.5d2. To enlarge these resonances, we have to take d1 and d3

slightly different from 0.5d2. Indeed, at 
2= H̃+ �l��2 , l

=1,2 , . . . and for N=N�, the expression of the transmission

function �Eq. �4�� becomes

t = �
2C1C3

2C1C3 + jN sin����d1 + d3��
. �12�

In particular, if ���d1+d3�=m�, ��d1� �m1+0.5��, and

��d3� �m2+0.5�� �m, m1, and m2 are integers�, one obtains

a resonance that reaches unity �i.e., T=1�. An example cor-

responding to this situation is given in Fig. 2�a� where N

=N�=1, d1=0.46d2, and d3=0.54d2 �with d1+d3=d2�. One

can notice that the resonance at 
2= H̃+�2 is squeezed be-

tween two zeros �indicated by solid circles on the abscissa of

Fig. 2�a�� induced by the dangling resonators as it is also

illustrated in the plot describing the variation of the phase

�Fig. 2�c��. The width of this resonance increases as far as d1

and d3 deviate from 0.5d2 �see below�. In the particular case

where ��d1= �m1+0.5�� and ��d3= �m2+0.5��, the numera-

tor and denominator of t �Eq. �12�� vanishes altogether. In

this case, the resonance as well as the two zeros induced by

the resonators fall at the same position, then the resonance

collapses, the transmission coefficient vanishes and the phase

drops by � as it was shown in Figs. 1�d� and 1�f�.
The resonance in Fig. 2�a� shows the same characteristics

as a Fano resonance but with two zeros of transmission
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around the resonance instead of one as it is usually the

case.34,35 Indeed, one can obtain an approximate analytical

expression for the transmission function �Eq. �4�� in the vi-

cinity of the resonance. A Taylor expansion around ��d2

=� �i.e., ��d2=�+� with � /��1 and N=N�� enables us to

obtain

t =
− ���

2N�2 + ��� − j��2�N + N2� + ����N2 − 2�/2�
. �13�

where �=2�+��1+2� /��, ��=−2�+��1−2� /��, and � is

the detuning of d1 and d3 from 0.5d2 �i.e., �=��0.5

−d1 /d2�=��−0.5+d3 /d2��. Using Eq. �13�, one can show

that the transmission coefficient T can be written �following

the Fano line shape34,35� in the form

T = A
�� + q1��2�� − q2��2

�2 + �2
, �14�

where A= �1−4�2
/�2�2

/4�N�N+1�+�2�2−N2��2.

� = 2�2
/�N�N + 1� + �2�2 − N2�� �15�

characterizes the width of the resonance falling at �=0.

q1 = �N�N + 1� + �2�2 − N2��/��1 + 2�/�� �16�

and

q2 = �N�N + 1� + �2�2 − N2��/��1 − 2�/�� �17�

are the coupling parameters; they give qualitatively the inter-

ference between the bound states and the propagating con-

tinuum states.34–36

One can notice that when increasing �, � increases and

q1�q2� decreases. The results of the approximate expression

�Eq. �14�� are shown in Fig. 2�b� by open circles. These

results are in accordance with the exact ones �solid lines� and

clearly show that the resonance is of Fano type with q1

�14.85 and q2�17.43 and width 2��0.03. The commonly

studied Fano resonances are asymmetric because of the pres-

ence of only one transmission zero near the resonance �see

below�. In addition, in the electronic counterparts studies, a

perturbation is often introduced to the system in order to

create the resonance state.34–37 However, the above calcula-

tion shows that, without introducing any perturbation in the

structure, one can find a well-defined symmetric Fano reso-

nance with width 2� and coupling parameters q1 and q2 that

FIG. 2. �a� The same as in Fig. 1�c� but the lengths of the resonators are taken such that d1=0.46d2 and d3=0.54d2 and N=N�=1. Solid

circles on the abscissa indicate the positions of the transmission zeros induced by the dangling resonators on both sides of the resonance. �c�
The same as in �a� but for the variation of the phase. �b� and �d� give the approximate results �open circles� around the resonance.
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can be adjusted by tailoring the lengths of the resonators
�i.e., ��. Equation �13� enables us also to deduce an approxi-
mate expression for the phase as

� = − arctan���2�N + N2� + ����N2 − 2�/2�
2N�2 + ���

�
+ ����� + ������ . �18�

This function is plotted by open circles in Fig. 2�d� and
clearly shows two abrupt phase changes in � at �=0 and
��=0 �i.e., �1=−q1� and �2=q2�� in accordance with the
exact results �solid line�.

One can also create an asymmetric Fano resonance by
adjusting the transmission zeros on only one side of the reso-
nance; this can be obtained by considering a structure where
the resonators are supposed to be identical with lengths

slightly different from 0.5d2. This is shown in Fig. 3�a� for

d1=d3=0.46d2 and N=N�=1. Indeed, an analytical Taylor

expansion around ��d2=� enables us to write the transmis-

sion function �Eq. �4�� as

t =
− 2�2

�� − jN��N� + 2� + j���
, �19�

where �=�+0.5��1+2� /�� and � is the detuning of the

lengths of the two resonators from 0.5d2 �i.e., �=��d1 /d2

−0.5��. From the expression of t �Eq. �19��, one can deduce

the following Fano line-shape transmission coefficient:

T =
B

N2 + �2

�� − �R + q��4

�� − �R�2 + �2
�

B

N2

�� − �R + q��4

�� − �R�2 + �2
, �20�

where B= �1+2� /��4
/4�N+1+2� /��2.

q = �N + 1 + 2�/��2
/��1 + 2�/�� �21�

is the Fano parameter.

� = 2�2
/N2�1 +

1

N
�1 + 2�/��
3

�22�

and

�R = − 2�/�N + 1 + 2�/�� �23�

characterize the width and the shift of the resonance, respec-

tively.

One can notice that the resonance shifts slightly from

��d2=� and its width is small as compared to the preceding

case; this is in accordance with the numerical results of Figs.

2�a� and 3�a�. Also q increases when � decreases and tends

to infinity when � vanishes. In this case the resonance falls

at �R=0 and, as expected, its width 2� reduces to zero �see

FIG. 3. �a� The same as in Fig. 2�a� but the resonators are taken to be of identical lengths d1=d3=0.46d2, �c� The same as in �a� but for

the variation of the phase. �b� and �d� give the approximate results �open circles� around the resonance.
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Fig. 1�c��. The results of the approximate expression �Eq.

�20�� are sketched �open circles� in Fig. 3�b� for �
=��d1 /d2−0.5�=−0.04� �i.e., d1 /d2=0.46� and N=N�=1.

These results are in accordance with the exact ones �solid

lines� and clearly show that the resonance is of Fano type

with �q��32 and width 2��0.0089. Concerning the evolu-

tion of the phase of the spin waves in this structure, one can

notice from Eq. �4� that the numerator of the transmission

function t vanishes when C1=C3=0 �or equivalently �=0 in

the approximate result �Eq. �19�� at ��d2= �� /2�d2 /d1 �i.e.,


2=12.66� indicated by a filled circle on the abscissa of Fig.

3�a��. The transmission zeros induced by the two identical

resonators fall at the same frequency; therefore the phase

�Figs. 3�c� and 3�d�� shows a phase drop of 2� at these

frequencies. Indeed, as the phase is defined mod 2�, the 2�
phase change can be observed if we take into account the

absorption in the system.47,48

In order to show the profile of the Fano resonances as a

function of the parameter � �or equivalently d1 /d2�, Fig. 4�a�
gives the characteristic features of the resonances as a func-

tion of the reduced frequency 
2 for d1 /d2 around 0.5 and

for an asymmetric resonance. On can notice that the position

of the resonance decreases as a function of d1 /d2; its asym-

metric Fano profile becomes symmetric and changes sign for

d1 /d2�0.5. In other words, the parameter q responsible for

the asymmetric Fano profile of the resonance diverges and

changes sign around d1 /d2=0.5. The width of the resonance

decreases when d1 /d2 tends to 0.5 and vanishes when d1 /d2

FIG. 4. �a� The same as in Fig.

3�a� but for different values of

d1 /d2. ��b�–�d�� Variations of the

quantities �
R= H̃+ ��+�R�2, H̃

=1� �Eq. �23��, q �Eq. �21��, and �

�Eq. �22�� as a function of d1 /d2

around d1 /d2=0.5.
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is exactly equal 0.5 giving rise to the collapse of the reso-
nance �see Fig. 4�a��. These results are well illustrated by the

plots of the approximate expressions of 
R= H̃+ ��+�R�2

�Fig. 4�b��, q �Fig. 4�c��, and � �Fig. 4�d�� around d1 /d2

=0.5.
Until now we have concentrated our analysis on the

waveguide structure with only one dangling resonator �i.e.,
N=N�=1�. The advantage of such a structure lies in the fa-
cility to be designed experimentally. However, the analytical
approximate expressions �Eqs. �14�–�17� and �20�–�23��
clearly show that the resonances remain of Fano type even
for N=N� different from one. Indeed, Fig. 5 gives the depen-

dence of the transmission rate of both symmetric �Fig. 5�a��
and asymmetric �Fig. 5�b�� Fano resonances for different val-

ues of N=N�. Figure 5�a� displays the transmission ampli-

tude T �Eq. �7�� as a function of 
2 for N=N�=1, 2, and 5;

the other parameters are d1=0.46d2, d3=0.54d2, and H̃=1.

The results of the approximate expression �Eq. �14�� are

sketched by open circles. Even though the resonances fall at

the same frequency 
g�10.88 �i.e., �2�d2=��, their widths

decrease as a function of N and their q parameter increases

giving rise to a symmetric resonance of Breight-Wigner type.

These results are in accordance with the approximate results

of Eqs. �14�–�17�.

In the same way, Fig. 5�b� depicts the effect of variation
in the number N of DSBs on the transmission rate T for a

structure constituted of two identical DSBs with d1=d3

=0.46d2. One can notice that, contrary to the results of Fig.

5�a�, the position of the resonance decreases as a function of

N and tends to 
2�10.88 �i.e., �2�d2=�� when N goes to

infinity �see Eq. �23��. However, the width � of the reso-

nance and its q parameter exhibit similar behavior as in Fig.

5�a� when N increases �see Eqs. �21� and �22��.
In Fig. 6�a�, the transmission rate through the structures

shown at the insets of Fig. 1�c� �N=N�=1, solid line� and

Fig. 1�e� �N=N�=2, dashed line� is redrawn for the sake of

comparison with Fig. 6�b� giving the variation of the DOS.

The lengths of the resonators are chosen such that d1=d3

=0.5d2. A well-defined gap is obtained when the number of

resonators is increased. Such a stop band could be useful in

constructing a rejecting signal device. In Fig. 6�b�, one can

notice that the DOS is strongly reduced in the transmission

gap regions, in particular, when the number of dangling reso-

nators increases. An analysis of the phase time is given in

Fig. 6�c�. This quantity gives information on the time spent

by the magnon inside the structure before its transmission.

Because of the existence of the transmission zeros, the phase

time gives rise to delta functions around the transmission

FIG. 5. �a� The Fano profile of

the symmetric resonance depicted

in Fig. 2�a� for different values of

N=N�. �b� The same as in �a� but

for the asymmetric Fano reso-

nance depicted in Fig. 3�a�.
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zeros at 
2=10.87, 89.3, and 247.74, according to Eq. �10�.
These delta functions have been enlarged by adding a small

imaginary part to the pulsation �, which plays the role of

absorption in the system. Such negative delta peaks have

been shown experimentally in a simple photonic47 and

phononic48 loop waveguide, giving rise to the so-called su-

perluminal or negative group velocity. Figures 6�b� and 6�c�
clearly show, in accordance with Eqs. �10� and �11�, that

except the frequencies lying around the transmission

zeros, the DOS and the phase time exhibit exactly the same

behavior.

IV. SUMMARY AND CONCLUSION

In summary, we have clearly demonstrated that a simple
geometry of a 1D mono-mode waveguide with dangling side
resonators on both sides can pave the way to the derivation

of gaps in the spin-wave propagation. The existence of the

stop bands in the spectrum is attributed to the zeros of trans-

mission associated with the dangling resonators. The width

of the transmission gaps depends on the number of the side

resonators grafted on both sides of the backbone. Besides the

transmission gaps, we have shown the existence of asymmet-

ric and symmetric Fano resonances that may lie near the

FIG. 6. �a� Transmission coef-

ficient vs the reduced frequency


2 for the structures depicted in

Fig. 1�c� �solid line� and Fig. 1�e�
�dashed line�. �b� The same as in

�a� but for the variation of the

density of states �in units of

d2
2
/2D��. �c� The same as in �b�

but for the variation of the phase

time �in units of d2
2
/2D��. The pa-

rameters are d1=d3=0.5d2 and H̃

=1.
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vicinity of a transmission zero or be squeezed between two
transmission zeros. These resonances are obtained by tailor-
ing the lengths of the different branches constituting the
structure and for different values N=N� of the DSBs. A study
of the phase of the transmission function enables us to de-
duce several properties on the spin-wave propagation,
through such structures, such as the phase times and there-
fore the density of states. The phase time calculation are, in
general, the same as the density of states, except for the
frequencies lying around the transmission zeros where the
phase time may exhibit additional negative delta peaks.

The advantage of the simple magnonic waveguide model

presented in this work consists in finding simple analytical

expressions. These expressions enables us to discuss the ex-

istence of Fano resonances as well as the effect of the differ-

ent segment lengths and the number of DSBs on tailoring

these resonances without incorporating a defect in the struc-

ture as it is usually the case in the electronic counterparts

studies.34–37 We believe that this paper brings a new piece of

work in the field of spin-wave transport in 1D waveguide

structures and we hope that it will stimulate an experimental

observation of the transmission gaps and Fano resonances

exhibited by the simple magnonic waveguide described in

this work.
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