
HAL Id: hal-00357262
https://hal.science/hal-00357262v2

Submitted on 18 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On finding multiplicities of characteristic polynomial
factors of black-box matrices

Jean-Guillaume Dumas, Clément Pernet, B. David Saunders

To cite this version:
Jean-Guillaume Dumas, Clément Pernet, B. David Saunders. On finding multiplicities of characteristic
polynomial factors of black-box matrices. ISSAC 2009 - International Symposium on Symbolic and
Algebraic Computation, Jul 2009, Séoul, South Korea. pp.135-142, �10.1145/1576702.1576723�. �hal-
00357262v2�

https://hal.science/hal-00357262v2
https://hal.archives-ouvertes.fr

On finding multiplicities of characteristic

polynomial factors of black-box matrices∗.

Jean-Guillaume Dumas† Clément Pernet‡

B. David Saunders§

May 18, 2009

Abstract

We present algorithms and heuristics to compute the characteristic
polynomial of a matrix given its minimal polynomial. The matrix is rep-
resented as a black-box, i.e., by a function to compute its matrix-vector
product. The methods apply to matrices either over the integers or over
a large enough finite field. Experiments show that these methods perform
efficiently in practice. Combined in an adaptive strategy, these algorithms
reach significant speedups in practice for some integer matrices arising in
an application from graph theory.

Keywords: Characteristic polynomial ; black-box matrix ; finite field.

1 Introduction

Computing the characteristic polynomial of an integer matrix is a classical math-
ematical problem. It is closely related to the computation of the Frobenius nor-
mal form which can be used to test two matrices for similarity, or computing
invariant subspaces under the action of the matrix. Although the Frobenius
normal form contains more information on the matrix than the characteristic
polynomial, most algorithms to compute it are based on computations of char-
acteristic polynomials (see for example [25, §9.7]).

Several matrix representations are used in computational linear algebra. In
the dense representation, a m×n matrix is considered as the array of all the m×n
coefficients. The sparse representation only considers non-zero coefficients using
different possible data structures. In the black-box representation, the matrix

∗Saunders supported by National Science Foundation Grants CCF-0515197, CCF-0830130.
†Laboratoire J. Kuntzmann, Université de Grenoble. 51, rue des Mathématiques, umr

CNRS 5224, bp 53X, F38041 Grenoble, France, Jean-Guillaume.Dumas@imag.fr
‡Laboratoire LIG, Université de Grenoble. umr CNRS, F38330 Montbonnot, France.

Clement.Pernet@imag.fr
§University of Delaware, Computer and Information Science Department. Newark / DE /

19716, USA. saunders@cis.udel.edu

1

is viewed as a linear operator, and no other operation than the application to a
vector is allowed. Though constraining, this limitation preserves the structure
or sparsity of the matrix and is therefore especially well suited for very large
sparse or structured matrices.

Computation of the characteristic polynomial of dense matrices has already
been well studied both in theory and practice: over a finite field, [23, 24] set
the best complexity (using respectively a deterministic and a probabilistic algo-
rithm), and [8, 24] propose efficient implementations. Over the integers, the best
complexity is achieved in [22], but currently the most efficient implementations
rely on the Chinese remainder algorithm [8].

In the latter article, a competitive approach is introduced that limits the
use of the Chinese remainder algorithm to the computation of the minimal
polynomial. The characteristic polynomial is then recovered by determining the
multiplicities of its irreducible factors. This task is done using the deterministic
algorithm for the characteristic polynomial over a randomly chosen prime field.

In the black-box model, the minimal polynomial is used as a building block
for many algorithms over a finite field. Adapted from the iterative numerical
methods (Lanczos, Krylov), the Wiedemann minimal polynomial algorithm [29,
21] has excellent asymptotic complexity and is used in efficient black-box linear
algebra software such as LinBox1.

However less is known concerning the characteristic polynomial of black-
box matrices. It is an open problem [20, Open Problem 3] to compute the
characteristic polynomial as efficiently as the minimal polynomial, using the
Wiedemann method. The latter uses O(n) products of a square n × n matrix
by a vector and O(n2(log n)O(1)) additional arithmetic operations with O(n)
extra memory storage. Eberly gives an algorithm using O(n) matrix vector
products, and O(φn2) additional operations, where φ is the number of invariant
factors of the matrix [12]. In the worst case, φ = O(n) and the algorithm does
not improve on the complexity of dense algorithms. Villard proposed in [28] a
black box algorithm to compute the Frobenius normal form and therefore the
characteristic polynomial in O(

√
n log(n)) computations of minimal polynomials

and O(n2.5(log n)2 log log n) additional field operations.
Instead, we propose here several algorithms and heuristics focusing on effi-

ciency in practice. The general strategy is to compute the minimal polynomial
using Wiedemann’s algorithm and decompose it into irreducible factors. There
only remains to determine to which multiplicity each of these factors appear in
the characteristic polynomial. In section 2 we propose several methods to deter-
mine these multiplicities. Adaptive combination of them is discussed in section
3. Under a conjectured hypothesis the latter is shown to require O (n

√
n) ma-

trix vector products which improves by a logarithmic factor on the complexity
of Villard’s algorithm.

Lastly, an algorithm for the computation over the ring of integers is derived
in section 4. It is based on the multifactor Hensel lifting of a gcd-free basis,
following Storjohann [26]. The benefit of this approach is verified by experiments

1www.linalg.org

2

presented in section 5. Several sparse matrices are considered, including a set
of adjacency matrices of strongly regular graphs, coming from an application in
graph theory.

2 Three methods for computing multiplicities

In this section we consider a matrix A over a finite field K = GF(q). Let

PA
min =

∏k
i=1 P ei

i be the decomposition of the minimal polynomial of A in
irreducible monic factors. The characteristic polynomial is then

PA
char =

k∏

i=1

Pmi

i (1)

for some mi ≥ ei. We also denote by di the degrees of the factors: di = deg(Pi).
To recover the multiplicities mi, we will present three techniques, based on

black-box computations with the matrix A: the nullity method (§2.1) uses the
rank of Pi(A) to reveal information on the multiplicity mi, the combinatorial
search (§2.2) is a branch and bound technique to solve the total degree equation
whose integral unknowns are the multiplicities and the index calculus technique
(§2.3) uses a linear system solving based on the discrete logarithm of equation
1 evaluated in random values.

2.1 The nullity method

Definiton 2.1. The nullity ν(A) of a matrix A is the dimension of its nullspace.

We also recall the following definitions:
The companion matrix of the monic polynomial P = Xd +

∑d−1
i=0 aiX

i is

the matrix CP =

2

6

6

4

0 −a0

1 0 −a1

. . .
. . .

.

.

.
1 −ad−1

3

7

7

5

. Its minimal polynomial and its characteristic

polynomial are equal to P .
The block Jordan matrix of an irreducible polynomial P of degree d to a

power k is the kd × kd matrix JP k of the form JP k =






CP B
. . .

. . .
CP B

CP






where the d × d matrix B is filled with zeros except for Bd,1 = 1. Its minimal
polynomial and its characteristic polynomial are equal to P k. This definition
extends the usual notion of Jordan blocks for d = 1.

The Frobenius normal form of a Matrix A is the unique block diagonal
matrix F = Diag(Cf0

, Cf1
, . . .) such that A = U−1FU for a nonsingular matrix

U . The polynomials fi are the invariant factors of A and satisfy f0 = PA
min and

fi+1 divides fi for all i ≥ 0.
The primary form of a Matrix A (also called the second Frobenius form

in [15]) is a further decomposition of the Frobenius normal form where each

3

companion block Cfi
is replaced by a block diagonal matrix Diag(J

g
k1

1

, J
g

k2

2

, . . .).

The gj are the irreducible factors of fi, with the respective multiplicities kj . The
primary form is unique up to the order of the blocks.

Example 2.2. Consider the matrix in Frobenius normal form

A = Diag(CX5−6X4+14X3−16X2+9X−2, CX2−2X+1)

over GF(5). The corresponding primary form is the matrix

B = Diag(J(X2−2X−1)2 , JX−2, JX2−2X−1).

A =

2

6

6

6

4

0 0 0 0 2
1 0 0 0 −9

1 0 0 16
1 0 −14

1 6
0 −1
1 2

3

7

7

7

5

, B =

2

6

6

6

4

0 0 0 −1
1 0 0 4

1 0 −6
1 4

2
0 −1
1 2

3

7

7

7

5

The method of the nullity is based on the following lemma:

Lemma 2.3. Let A be a square matrix and let P be an irreducible polynomial
of degree d, of multiplicity e in the minimal polynomial of A, and of multiplicity
m in the characteristic polynomial of A. Then ν(P e(A)) = md.

Proof. Let F be the primary form of A over K: F = U−1AU for a non sin-
gular matrix U . F is block diagonal of the form Diag(J

P
ej

j

). Then P e(A) =

U−1P e(F)U = U−1Diag(P e(JP k
j
))U . On one hand P e annihilates the blocks

JP k
j

where P = Pj and k ≤ e. On the other hand, the rank of P e(JP k
j
) is full for

P 6= Pj , since P and Pj are relatively prime. Thus the nullity of P e(A) exactly
corresponds to the total dimension of the blocks JP k

j
where P = Pj , which is

md.

From this lemma the following algorithm, computing the multiplicity mi of
an irreducible factor Pi is straight-forward:

Algorithm 1: Nullity

Data: A: an n × n matrix over a Field K,
Data: P : an irreducible factor of PA

min,
Data: e: the multiplicity of P in PA

min,
Result: m: the multiplicity of P in PA

char.
begin

r = rank(P e(A))
return m = (n − r)/degree(P)

end

Proposition 2.4. Algorithm 1 computes the multiplicity of P in the character-
istic polynomial of an n× n matrix A using O(ednΩ) field operations, where Ω
is the cost of a matrix-vector product with A, d is the degree of P and e is its
multiplicity in the minimal polynomial.

4

Proof. Using Horner’s rule, the matrix P (A) can be written as a0In +A(a1In +
A(a2In + . . .)). Hence, applying a vector to this blackbox only requires d ap-
plications of a vector to the blackbox A, ie. O(dΩ) field operations. Thus
applying a vector to P e(A) costs O(edΩ). Lastly, the rank of this matrix can be
computed in O(ednΩ) field operations, using Wiedemann’s algorithm combined
with preconditioners [11].

This algorithm is therefore suitable for irreducible factors P where the prod-
uct ed is small.

Now if e is large, the computation of rank(P e(A)) may be too expensive.
Still, some partial knowledge on the multiplicity can be recovered from the rank
of the first powers of P (A). This can help to shorten the computation of other
algorithms, as will be shown in section 3. We now describe how these partial
multiplicities can be recovered.

The multiplicity m of P is formed by the contribution of several blocks of
the type JP j for j ∈ [1 . . . e] in the primary form of A. Whereas the blocks with
small j can be numerous, there must be few blocks with large j, due to the
limitation of the total dimension (since e is large).

We denote by ni,j the number of occurrences of JP j

i
in the primary form of

A. From the determination of the ni,j , we can directly deduce the multiplicity
mi by the relation

mi =
e∑

j=1

jni,j . (2)

We now show how to compute the ni,j for small j, using algorithm 1.

Lemma 2.5. Let P be an irreducible polynomial of degree d over a finite field
K and k and e ≥ 1 be two integers. Then ν(P k(JP e)) = min(k, e)d

Proof. Let A = JP e and B = P k(A). If k ≥ e, then P k is a multiple of the
minimal polynomial of A. Thus B is the zero matrix, and its nullity equals its
dimension: ed.

Now suppose k < e. Let K be an extension of K such that P splits into
d degree one factors Pi over K. Since any finite field is a perfect field, these
factors are distinct.

The minimal polynomial of A over K is still P e. Consequently, the Frobenius
normal form of A over K is CP e and its primary form is F = Diag(JP e

i
). More

precisely, there exists U ∈ Mn(K) such that A = U−1FU . We have therefore
B = U−1P k(F)U = U−1Diag(P k(JP e

i
))U.

First consider the case k = 1: the minimal polynomial of each Pi(JP e
i
) is

Xe and so is the minimal polynomial of each P (JP e
i
) (since the Pi are relatively

prime). Hence the primary form of P (JP e
i
) is JXe . Therefore there exist V ∈

Mn(K) such that

B = U−1V −1Diag(JXe , . . . , JXe

︸ ︷︷ ︸

d times

)V U.

5

Lastly the rank of JXe being e− 1, we deduce that rank(B) = d(e− 1). The
nullity of B is therefore ν(B) = d.

For the general case, we have

B = U−1V −1Diag((JXe)k, . . . , (JXe)k

︸ ︷︷ ︸

d times

)V U.

Now JXe is e× e and nilpotent with ones on the super-diagonal so that its k-th
power has rank max(0, e − k). Thus, rank(B) = max(0, e − k)d and ν(B) =
min(e, k)d.

We now apply this result to the irreducible factors of the minimal polynomial
and denote the nullity of P j

i (A) by νi,j = ν(P j
i (A)).

First, the nullity of Pi(A), can be decomposed into the sum of the nullities
of each Pi(JP k

i
) for every k ≤ ei:

νi,1 =

ei∑

k=1

ni,kdi (3)

Now applying P j
i to A, every P j

i (JP k
i
) for k ≤ j will be a zero matrix and

therefore contribute with kdi to the nullity. Otherwise, if k > j, the contribution
to the nullity remains jdi. Therefore we have:

νi,j =

j
∑

k=1

ni,kkdi +

ei∑

k=j+1

ni,kjdi (4)

From these two equations, we deduce the ni,j : first we have

1

j − 1
νi,j−1 =

1

j − 1

j−1
∑

k=1

ni,kkdi + ni,jdi +

ei∑

k=j+1

ni,kdi.

Now, since:
∑ei

k=j+1 ni,kdi = νi,j+1 − νi,j , the number of occurrences directly
is:

ni,j =
1

di

(
1

j − 1
νi,j−1 + νi,j − νi,j+1

)

− 1

j − 1

j−1
∑

k=1

ni,kk.

Therefore we obtain corollary 2.6 giving the expression of the ni,j :

Corollary 2.6.

ni,1 = (2νi,1 − νi,2)/di

ni,j =
1

di

(
1

j − 1
νi,j−1 + νi,j − νi,j+1

)

− 1

j − 1

j−1
∑

k=1

ni,kk ∀j ∈ [1 . . . ei]

ni,ei
=

νi,ei

eidi
− 1

ei

ei−1∑

k=1

ni,kk

6

The last formula for ni,ei
is given for the sake of completeness: in practice,

one will never compute every ni,j , since one would rather directly compute the
nullity of P ei

i (A) instead, to deduce the multiplicity mi from algorithm 1.

2.2 The combinatorial search

In the following, we want to determine the values of the unknown ni,j . They
must satisfy the total degree equation:

n =
∑

i

di

ki∑

j=1

jni,j . (5)

We can also discriminate potential candidates using the trace: the degree
n − 1 coefficient of the characteristic polynomial is the negative of the trace of
the matrix. Denote by ti the degree n − 1 coefficient of an irreducible factor
Pi = Xdi +tiX

di−1+. . .. Then the degree n−1 coefficient of
∏

i Pmi

i is
∑

i timi.
We thus have the trace test:

Tr(A) = −
∑

i

timi = −
∑

i

ti

ki∑

j=1

jni,j . (6)

In a pure black-box model, the trace can be computed using n matrix-vector
products. For many sparse or structured matrix representations, a faster method
is available as well.

Then it suffices to use e.g. a Branch-and-Cut algorithm to compute all the
integer k-tuples satisfying both equations (5) and (6). Of course, if some of the
unknowns ni,j are already computed (e.g. by the nullity method) the set of
candidates is accordingly reduced.

The remaining candidates will then be discriminated by evaluations of the
characteristic polynomial at random values, i.e. computations of determinants
of λI − A matrices. Indeed, we have efficient methods of computing the deter-
minant of a black-box matrix (see e.g. [27, §3.1 Determinant Preserving Pre-
conditioners] and references therein). Algorithm 2 sums up this combinatorial
search strategy.

2.3 Index calculus method

Evaluating equation (1) at a point λ leads to an equation over the finite field,
where the multiplicities mi are the unknowns. Inspired by index calculus tech-
niques [4], the idea here is to consider the discrete logarithm of such an equation
(with an arbitrary choice of generator), to produce a linear equation in the mi.
Taking several of these equations for different λi forms a linear system of equa-
tions, with dimension k, the number of unknown multiplicities.

In this discussion the base field is GF (q) and q is sufficiently large with
respect to n as discussed below. The characteristic polynomial evaluated at a

7

Algorithm 2: Combinatorial-search

Data: A, an n × n matrix
Data: D = (di)i, the degrees of the irreducible factors Pi of PA

char

Data: M , a set of precomputed ni,j

Result: N = (ni,j)
begin

/* using degree and trace constraints */

sol = Branch-and-Cut(A, D, M)
while #sol > 1 do

Pick λ ∈ K at random
δ = det(λI − A)
Discard any N ∈ sol s.t.

∏
(P j

i)ni,j (λ) 6= δ

return N = sol[1]
end

given value λ presents this equation in the unknown exponents mj :

k∏

j=1

P
mj

j (λ) = det(λI − A). (7)

Now, if λ is not a root of the characteristic polynomial, taking the discrete
logarithm of these terms for a generator g of the field leads to this equation
modulo q − 1:

k∑

j=1

mj logg(Pj(λ)) ≡ logg(det(λI − A)) mod q − 1, (8)

which is linear in the unknowns mj . We can therefore build a l × k linear
system by randomly choosing l values λi. This system is consistent since the
multiplicities mi are a solution vector of this system. If the solution is unique,
then it is the vector of multiplicities over Z.

The computation of this vector can either be done by a dense Gaussian
elimination over the ring Zq−1 or over a finite field Zp where p is a large prime
factor of q − 1 (larger than n). In this last case, the result will be correct as
long as the system remains nonsingular modulo p.

Algorithm 3 describes this techniques in more details.
Let k be the number of unknown multiplicities. The first step is to find k

values λi forming a non singular system. Therefore, we propose, in algorithm 3,
to evaluate the system at more than k points. The complexity of forming a row of
G costs only 3

∑k
i=1 di arithmetic operations using Horner’s method. Therefore

trying as many as n different values for λ is a negligible cost. Furthermore, one
could use fast multi-point evaluation to get blocks of rows simultaneously (up
to n rows at a cost essentially linear in n).

8

Algorithm 3: Index-calculus

Data: A, an n × n matrix over a finite field K = GF(q)
Data: Pi, the irreducible factors of PA

min,
Data: S, the set of indices of the unknown multiplicities,
Data: Q =

∏

j /∈S P
mj

j , the partial product of the irreducible factors with
known multiplicity mj .

Result: PA
char or “fail”

begin
k = #S; l = 0; H = [];
Choose a generator g of K
Let p be a prime factor of q
while rank(H) < k do

l = l + 1; if l > n then return “fail”
Choose randomly λl ∈ K
repeat

αl,j = Pj(λl) for all j
γl = Q(λl)

until γ 6= 0 and αj 6= 0, ∀j ∈ S
/* H is extended to the size l × k */

Stack the row [logg αl,j mod (q − 1)] mod p to H

K = { indices of the first k independent rows of H}
Set B = a k × k nonsingular matrix of these rows
Compute b = [logg(det(λiI − A)) − logg(γi)]i∈K

Solve Bx = b
return P =

∏

j∈S P
xj

j Q

end

9

The rank of H is computed all along the process, each new row being in-
crementally added to the triangular decomposition of the current matrix. This
Gaussian elimination (performed by the LQUP algorithm [19] for example) also
provides the indices of the first k linearly independent rows, and therefore the
indices of the convenient λi. Lastly the vector b is formed, using only k deter-
minant computations.

In practice, it appeared, as in index calculus [2, 18], that the number of rows
required to get a full rank matrix B is always quite close to k. However, we do
not have a proof of this property, and we therefore state it as the conjecture 2.7.

Conjecture 2.7. Let A be a n×n matrix over Z and P1 . . . Pk be the irreducible
factors of its minimal polynomial. Let p > n be a prime chosen randomly in
finite set. Let q = 1 + λp of the form rk where r is a prime number. Let g be a
generator of GF(q) and (λ1, . . . , λn) uniformly chosen at random in GF(q). Let
H = [hi,j] where hi,j = (logg(Pj(λi)) mod (q − 1)) mod p. Then rank(H) = k
with high probability.

Informally, in our system the evaluations at the λi are independent and can
be considered as seeds for the pseudo-random generator of taking the discrete
logarithm of the polynomial evaluation. Therefore the entries of the system
modulo q−1 are at least close to random entries as soon as the polynomials are
distinct. Would they be true random values, the singularity/nonsingularity of
the matrices would follow the analysis of e.g. [3, Corollary 2.4]: if L is a square
matrix of uniformly random entries modulo q − 1 and p is a prime diving q − 1,
then the probability that L mod p is singular is of order 1

p .

Theorem 2.8. Assuming conj. 2.7, algorithm 3 is correct and its asymptotic
complexity is O(knΩ) where Ω ≥ n is the cost of a multiplication of A by a
vector.

Proof. Let l be the number of rows required to get an invertible system, l ≥ k.
Each determinant computation requires O(n) application of A to a vector [27,
§3.1]. Building each row of the matrix requires a Horner like evaluation of a
polynomial with total degree less than n, it therefore costs O(n) operations.
Triangularization of G requires O(lkω−1) operations. Solving the system Bx =
b, knowing the triangular decomposition of B requires O(k2) operations. The
discrete logarithms can be tabulated [6] with O(q) memory (or to avoid this
extra memory, one can compute the whole sequence of powers of a generator of
K, sort the matrix and vector entries and find the correspondences with some
O (̃lk + q) extra field operations). The overall complexity is thus O(knΩ + ln +
lkω−1) which is O(knΩ) when l = O(nΩk2−ω).

The algorithm stops arbitrarily when l = n + 1. We see here that a larger
l is acceptable for the complexity result, but in our experiments a very small
l (e.g. l ≈ k) always suffices. In the following sections, this algorithm will be
used with k <

√
n, thus giving an expected O(n1.5Ω) complexity.

10

3 Adaptive black-box algorithm over a finite field

We show in the present section how to combine the ideas of the previous section
together with already existing techniques to form an adaptive algorithm com-
puting the characteristic polynomial of a black-box matrix over a finite field.
The algorithm is adaptive in the sense of [5], meaning that it chooses the best
variant depending on discovered properties of its input.

We first combine the nullity method with the combinatorial search. We
then show an algorithm improving on the asymptotic complexity. Finally we
give some improvements which are efficient in practice on typical matrices.

3.1 Nullity method and combinatorial search

These two algorithms are complementary: the nullity is efficient for the determi-
nation of the multiplicites of factors of small degree, whereas the combinatorial
search is adapted to the large degree factors.

More precisely, algorithm 4 sorts the list of the unknown occurences ni,j ac-
cording to the increasing jdi. The nullities are then computed until there remain
fewer than a fixed number T of unknowns to be determined by combinatorial
search.

Algorithm 4: Nullity-comb-search

Data: A: an n × n matrix over a finite field,
Data: Pi: the irreducible factors of PA

min,
Data: T : a static threshold
Result: mi: the multiplicities of each Pi in PA

char.
begin

E = {(i, j)/i = 1 . . . k, j = 1 . . . ei}
Sort E according to the increasing values of jdi

while (#E > T) do
Pop (i, j) from E
Compute νi,j = n − rank(P j

i (A))

for i = 1 . . . k do
Let ji be the largest index s.t. νi,ji

is computed
if ji < ei then

Compute νi,ji+1 = n − rank(P ji+1
i (A))

for k = 1 . . . ji do Compute ni,k using cor. 2.6

Combinatorial-search(A, (d1, . . . , dk), (j1, . . . , jk))
for i = 1 . . . k do mi =

∑ei

j=1 jni,j

return m = (m1, . . . , mk)
end

The combinatorial search has exponential complexity. The threshold T must
be small. In experiments, we found that T = 5 was the best choice for various
matrices. In the case of numerous factors with large degree, this approach is of

11

reduced effeciveness. We propose in the next section how to combine it with a
third algorithm.

3.2 Nullity method and system resolution

The index calculus method also enables the design of a hybrid algorithm. If the
multiplicities of some factors have already been computed by another method,
we can limit the system to the unknown multiplicities only, thus reducing its
dimension.

Suppose that the multiplicities mi of the factors Pi for i ∈ C are already
known, then equation (8) reduces to

X

j /∈C

mj log(Pj(λi)) ≡ log(det(λiI − A))

−

X

j∈C

mj log(Pj(λi)) mod q − 1.
(9)

A first simple hybrid approach is the following: the method of the nullity
(section 2.1) is applied to every degree one factor with multiplicity one in the
minimal polynomial, and the remaining factors are left to the index calculus
method.

This approach is always worthy since the computation of the rank of Pj(A),
for a degree one polynomial Pi is cheaper than the computation of det(λiI −A)
[11].

A second hybrid approach also introduces a combinatorial search to this
algorithm: the nullity method still handles the t degree one factors as previously.
The remaining factors Pi are sorted by decreasing degree. For a convenient
choice of s, a list of every possible assignment for the multiplicities of the first
s factors is determined, using a combinatorial search. Then for each partial
assignment, the multiplicities of the remaining factors are determined by the
resolution of an index calculus system of the form:

k−t
X

j=s+1

mj log(Pj(λi)) ≡ logg(det(λiI − A))

− logg

s
Y

j=1

P
mj

j (λi)

!

mod q − 1 ∀i.

(10)

For each partial assignment, the system resolutions share the same matrix
B. Therefore the expensive part of it, namely the Gaussian elimination, can be
performed only once at cost O(m3), where m = k−s− t. There only remains to
solve two triangular systems (in O(m2)) for each possible assignment. Lastly,
the assignments will be discriminated against each other by a test on the total
degree. To sum up, this techniques makes it possible to balance the cost of the
computations of determinants, and the cost of the system solving, by reducing
the dimension of the system, but increasing the dimension of its right hand side.
The most appropriate value for s has to be determined dynamically, according

12

to the number of possible assignments induced, and using an estimate of the
cost function of this algorithm: e.g.

2mnΩ +
2

3
m3 + 4m2τs

where τs denote the number of possible assignments for a chosen subset of s
factors.

3.3 Index calculus and kth invariant

The best known black-box algorithm to compute the Frobenius normal form over
a field is given by Villard in [28]. It is proved that computing the kth invariant
factor of a matrix reduces to the computation of a minimal polynomial of the
input matrix with a rank k additive perturbation. Using a binary search tech-
nique, the algorithm only performs µlog(n) such computations, where µ is the
number of distinct invariant factors of the matrix. Since µ is smaller than 3

√
n/2

and an invariant factor can be recovered using O(n) matrix vector products, this
corresponds to a total number of O(n3/2log(n)) matrix-vector products and an
additional cost of O(n5/2log2(n)loglog(n)) arithmetic operations.

We propose in algorithm 5 an alternative approach combining the index
calculus method with computations of individual invariant factors.

Algorithm 5: black-box-charpoly

Data: A: an n × n matrix over a finite field K
Result: PA

char or “fail”
begin

f1 = InvFact(1)

Factor f1 =
∏k

i=1 P ei

i using Cantor-Zassenhaus
Set S = {P1, . . . , Pk} and j = 2
while (#S >

√
n) do

fj = InvFact(j)
forall Pi ∈ S do

Compute α s.t. gcd(P ei

i , fj) = Pα
i

if α = 0 then S = S\{Pi}
mi += α

return Index-calculus(A, (Pi), S,
∏

j /∈S P
mj

j)

end

The idea is to reduce the dimension of the index calculus system to
√

n by
computing a few of the first invariant factors of the matrix.

After each computation of an invariant factor Φ, the multiplicity of each
irreducible polynomial Pi is updated, and those Pi that are no longer in Φ are
removed from the list of the factors with unknown multiplicity.

13

The while loop is executed at most
√

n times. Otherwise, there would be
more than

√
n invariant factors having more than

√
n irreducible factors, and

the total degree would be larger than n.
Now the condition of exit for this loop ensures that the order of the linear

system will be smaller than
√

n. Therefore only
√

n determinants will be com-
puted and the overall number of blackbox matrix-vector products is O(n

√
n)

The remaining multiplicities are then determined by the index calculus
method described previously, requiring at most O(n3/2Ω) applications of the
matrix to a vector.

Under the conditions of validity for the index calculus algorithm, this heuris-
tic improves on the computation time of Villard’s algorithm by a logarithmic
factor.

4 Lifting over the integers

Storjohann gives in [26] a method for the computation of the Frobenius normal
form of a black-box integer matrix. It is based on a computation of the minimal
polynomial over Z and on a computation of the Frobenius normal form over
a prime field. Then a gcd-free basis for the invariant factors over Zp[X] is
computed and lifted over Z[X].

We use the same idea but just for the characteristic polynomial, and not for
all the invariant factors. It is thus simpler since we don’t need to ensure that the
Frobenius form of A modulo p equals the integer Frobenius form reduced modulo
p. We just need ensure that the minimal and characteristic polynomials of A
modulo p equal the minimal and characteristic polynomials over the integers
reduced modulo p.

The goal of the following algorithm 6 is to compute the integer characteristic
polynomial from the integer minimal polynomial and the characteristic polyno-
mial modulo some prime p, obtained via the previous sections. Algorithm 6 is
just a simplification of that of [26]:

The integer minimal polynomial is computed via [9, Theorem 3.3] with an
O(sdΩ) probabilistic complexity, where s is the size of its integer coefficients and
d, its degree. The characteristic polynomial modulo p is computed via algorithm
5 with an O(n1.5Ω) complexity and O (̃n2.5) extra field operations. Then the
squarefree part [17] and the Hensel lifting of the gcd-free basis takes O (̃nk) word
operations with fast integer and polynomial arithmetic [16, Theorem 15.18].

The size of the coefficients of the integer minimal polynomial is bounded
in the worst case by s ≤ n

2 (log2(n) + log2(||A||2) + 0.212) where ||A|| is the
largest entry in absolute value of the matrix A, see [7, Lemma 2.1]. When
the matrix entries are of constant size, s = O (̃n) and as the degree of the
minimal polynomial is bounded by n, the dominant asymptotic cost is that of
the integer minimal polynomial computation. This result is already in [26]. In
practice, however, the coefficients of the minimal polynomial are often much
smaller than the bound and than those of the integer characteristic polynomial.
Furthermore, the degree of the minimal polynomial can be extremely small,

14

Algorithm 6: Gcd-free lifting of the characteristic

polynomial

Data: A: an n × n integer matrix, PA
min its minimal polynomial over Z,

Data: p: a prime number,

Data: PA
char the characteristic polynomial of A mod p,

Result: PA
char the characteristic polynomial of A over Z

begin

Compute S the squarefree part of PA
min

S = S mod p, PA
min = PA

min mod p

Compute a modular gcd-free basis (ḡ1, . . . , ḡχ) of (S, PA
min, P

A
char),

together with exponents (µ1, . . . , µχ) such that PA
char =

∏
ḡµi

i

Apply Hensel lifting on the basis (ḡ1, . . . , ḡχ) to produce (g1, . . . , gχ)
so that S ≡ g1 . . . gχ mod pk and (g1, . . . , gχ) ≡ (ḡ1, . . . , ḡχ) mod p
return PA

char
=

∏
gµi

i

end

especially for structured or sparse matrices (see e.g. homology matrices in [9]).
In those cases, the dominant cost will be the computation of the characteristic
polynomial modulo p. Then, our algorithm enables faster computations since a
factor of

√
n has been gained, as illustrated in table 1.

A supplemental constraint can be introduced by computing det(λI −A), at
random integer λ. Using e.g. [10, Theorem 4.2] with [13], O(

√
n) of these can be

done to speed-up the modular adaptive search, without increased complexity.

5 Experimental comparisons and applications

We have implemented some of the algorithms presented in the previous sections
using the LinBox2 library for the black-box computation of minimal polynomi-
als, ranks and determinants. In a first approach, we replaced the computation
of the gcd-free basis of algorithm 6 by a factorization into irreducible factors,
using Hensel lifting. This algorithm is more expensive in the worst case, but
the efficient implementation by NTL3 makes it practicable in numerous cases.

This work was partly motivated by an application from graph theory. For
a graph X on n vertices with vertex set V (X) and edge set E(X) the k-th
symmetric power Xk is the graph with the

(
n
k

)
k-subsets of V (X) as vertices

and with two such k-subsets adjacent if their symmetric difference is in E(X).
Graph theorists are interested in the spectrum of such graphs (defined as

the spectrum of their adjacency matrix) since they are closely related to the
description of their isomorphism class. More precisely, if a certain power k is
found, such that the symmetric kth power of a graph describes its isomorphism

2www.linalg.org
3www.shoup.net/ntl

15

class, this would provide a polynomial algorithm to solve the graph isomorphism
problem.

This motivated the team of Audenaert, Godsil, Royle and Rudolph to study
in [1] the spectrum of symmetric powers of a class of graphs: the strongly regular
graphs. They prove that there exist infinitely many graphs having co-spectral
symmetric squares. But concerning the symmetric cubes, no pair of graph is
known to have co-spectral symmetric cubes until now.

We helped Royle to investigate further the computation of the characteristic
polynomial of the symmetric cubes of strongly regular graphs. He was able to
test the first 72 cases corresponding to the graphs with fewer than 29 vertices.
Using our implementations available in LinBox, we have been able to test the
36 582 graphs with fewer than 36 vertices and check that there is no pair of
graphs among them having cospectral symmetric cubes.

We used the matrices of this application to benchmark the implementations
of the previously presented algorithms. These matrices are sparse and sym-
metric, and therefore especially suited to black-box computations. Moreover,
several parameters such as the degrees of their minimal polynomials or the av-
erage number ω of nonzero elements per row vary among the matrices. The
matrices EX1, EX3, EX5 correspond respectively to the symmetric cubes of the
strongly regular graphs with parameters (16,6,2,2), (26,10,3,4) and (35,16,6,8).
Their dimensions are respectively 560 =

(
16
3

)
, 2600 =

(
26
3

)
and 6545 =

(
35
3

)
. The

matrices EX2 and EX4 correspond to different graphs but with similar parameters
as EX1 and EX3.

All the matrices used in the experiments, including adjacency matrices of the
symmetric powers, are avaible on-line in the Sparse Integer Matrices Collection4.
In particular we used, in the following tables, matrices from the SPG, Forest,
Trefethen and Homology sections of the collection. When the tested matrix
was not square, we considered the square matrix obtained by padding it with
zeroes.

We report in table 1 the computation time of the different modules described
in this paper. For each matrix, two computations are compared: they share the
computation of the minimal polynomial over Z. Then the determination of the
multiplicities is done either by the combination of the nullity algorithm and the
combinatorial search (with the threshold T set to 5), or by the index calculus
method.

We first note that the determination of the multiplicities may be the domi-
nant operation when the degree of the minimal polynomial is small, as for the
matrix EX1. This makes the motivation for this study obvious. For this task
either method, nullity or resolution of the logarithmic system, can be the most
competitive option, depending on the structure of the irreducible factors. This
advocates for the adaptive approach of algorithm 5 combining both methods,
and the computation of the kth invariant factor.

In order to emphasize the improvement of the black-box determination of the
multiplicities over dense methods, we now compare it to the alternative tech-

4ljk.imag.fr/membres/Jean-Guillaume.Dumas/SIMC

16

Matrix EX1 EX2 EX3 EX4 EX5

n: dimension 560 560 2600 2600 6545
d: deg (Pmin) 54 103 1036 1552 2874
ω: sparsity 15.6 15.6 27.6 27.6 45.2

Z-Minpoly 0.11s 0.26s 117s 260s 5002s

Z[X] factorize 0.02s 0.07s 9.4 18.15 74.09s

Nullity/comb. 3.37s 5.33s 33.2s 30.15s 289s

Total 3.51s 5.66s 159.4s 308.1s 5366s

Index calc. 3.46s 4.31s 64.0s 57.0s 647s
Total 3.59s 4.64s 190.4s 336.4s 5641s

Table 1: Computation time for tasks of the integer adaptive algorithm on a
Pentium4 (3.2 GHz; 1 Gb)

nique presented in [8, §4.2.2]. This also relies on the computation of the minimal
polynomial in Z[X] and its decomposition into irreducible factors. But the mul-
tiplicities are then obtained using one dense computation of the characteristic
polynomial in a randomly chosen finite field. It is therefore not anymore a black-
box algorithm. We will denote it by dchar. Comb is the nullity-combinatorial
search algorithm, and ind is the index calculus method. A denotes 08blocks,
B is ch5-5.b3, and T is Tref500 from the Sparse Integer Matrices Collection.

Matrix n ω dchar null-comb ind.

A 300 1.9 0.32s 0.08s 0.07s

AAT 300 2.95 0.81s 0.12s 0.12s

B 600 4 4.4s 1.52s 1.97s
BBT 600 13 2.15s 3.96 7.48s
TF12 552 7.6 6.8s 5.53s 5.75s
mk9b3 1260 3 31.25s 10.51s 177s

Tref500 500 16.9 65.14s 25.14s 25.17s

Table 2: Integer black-box approach for multiplicities on an Athlon (1.8 GHz;
2 Gb)

Table 2 shows the improvement of the black-box approach for several ma-
trices coming from different applications. Once again, the structure of the ir-
reducible factors of the minimal polynomials cause various behaviors for each
variant. For example the times of Index-calculus are similar to those of
Nullity-comb-search, sometimes better but also sometimes much slower, as
for the matrices BBT and mk9b3.

17

6 Conclusion

We developed several ways to recover the multiplicities of the factors of the char-
acteristic polynomial from a factorization of the minimal polynomial. Over a
finite field hybrid heuristics are proposed, that compete with the best theoretical
complexity. Over the ring of integers, our approach enables fast computations
particularly when the coefficients or degree of the minimal polynomial are small.
This is illustrated on a family of strongly regular graphs, in order to verify that
there are no symmetric co-spectral cubes.

Further studies on the theoretical complexity remain to be done, and could
lead to better implementations in practice. In particular, a recent algorithm for
dense matrices [24] might be adapted for black-box matrices. In this regard,
extending the block projections of [14] to the case of similarity transformations
would play a crucial role.

References

[1] K. Audenart, C. Godsil, G. Royle, and T. Rudolph. Symmetric squares of graphs.
Journal of Combinatorial Theory, 97(1):74–90, Jan. 2007.

[2] R. L. Bender, and C. Pomerance. Rigorous Discrete Logarithm Computations in
Finite Fields via Smooth Polynomials. Studies in Advanced Mathematics, Amer-
ican Mathematical Society and International Press, 7, 1998.

[3] J. Blömer, R. Karp, and E. Welzl. The rank of sparse random matrices over finite
fields. RSA: Random Structures & Algorithms, 10, 1997.

[4] D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in
GF(p). Algorithmica, 1(1):1–15, 1986.

[5] V.-D. Cung, V. Danjean, J.-G. Dumas, T. Gautier, G. Huard, B. Raffin, C. Rap-
ine, J.-L. Roch, and D. Trystram. Adaptive and hybrid algorithms: classification
and illustration on triangular system solving. In Transgressive Computing 2006,
pages 131–148, Apr. 2006.

[6] J.-G. Dumas. Efficient dot product over finite fields. In CASC’2004, pages 139–
154, July 2004.

[7] J.-G. Dumas. Bounds on the coefficients of the characteristic and minimal poly-
nomials. Journal of Inequalities in Pure and Applied Mathematics, 8(2):art. 31,
6 pp, Apr. 2007.

[8] J.-G. Dumas, C. Pernet, and Z. Wan. Efficient computation of the characteristic
polynomial. In ISSAC’2005, pages 140–147, July 2005.

[9] J.-G. Dumas, B. D. Saunders, and G. Villard. On efficient sparse integer matrix
Smith normal form computations. Journal of Symbolic Computation, 32(1/2):71–
99, July–Aug. 2001.

[10] J.-G. Dumas and A. Urbańska. An introspective algorithm for the determinant.
In Transgressive Computing 2006, pages 185–202, Apr. 2006.

[11] J.-G. Dumas and G. Villard. Computing the rank of sparse matrices over finite
fields. In CASC’2002, pages 47–62, Sept. 2002.

18

[12] W. Eberly. Black box frobenius decomposition over small fields. In ISSAC’2000,
Aug. 2000.

[13] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Solving
sparse rational linear systems. In ISSAC’2006, pages 63–70, July 2006.

[14] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Faster inver-
sion and other black box matrix computations using efficient block projections.
In ISSAC’2007, pages 143–150, Jul. 29 – Aug. 1 2007.

[15] F. R. Gantmacher. The Theory of Matrices. Chelsea, New York, 1959.

[16] J. v. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 1999.

[17] J. Gerhard. Fast modular algorithms for squarefree factorization and hermite
integration. Applicable Algebra in Engineering Communication and Computing,
11(3):203–226, 2001.

[18] F. Heß. Computing relations in divisor class groups of algebraic curves over finite
fields. Technical report, 2007. www.math.tu-berlin.de/∼hess/personal/dlog.

ps.gz

[19] O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix
decomposition algorithm and applications. Journal of Algorithms, 3(1):45–56,
Mar. 1982.

[20] E. Kaltofen. Challenges of symbolic computation: My favorite open problems.
Journal of Symbolic Computation, 29(6):891–919, June 2000.

[21] E. Kaltofen and B. D. Saunders. On Wiedemann’s method of solving sparse linear
systems. In AAAAECC’91, volume 539 of Lecture Notes in Computer Science,
pages 29–38, Oct. 1991.

[22] E. Kaltofen and G. Villard. On the complexity of computing determinants. Com-

putational Complexity, 13(3-4):91–130, 2005.

[23] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoretical

computer science, 36:309–317, 1985.

[24] C. Pernet and A. Storjohann. Faster algorithms for the characteristic polynomial.
In ISSAC’2007, pages 307–314, Jul. 29 – Aug. 1 2007.

[25] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, ETH, Zürich,
Switzerland, Nov. 2000.

[26] A. Storjohann. Computing the frobenius form of a sparse integer matrix. to be
submitted, Apr. 2000.

[27] W. J. Turner. Blackbox linear algebra with the LinBox library. PhD thesis, North
Carolina State University, May 2002.

[28] G. Villard. Computing the Frobenius normal form of a sparse matrix. In CASC’00,
pages 395–407, Oct. 2000.

[29] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans-

actions on Information Theory, 32(1):54–62, Jan. 1986.

19

