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Permanent regimes for the Vlasov-Maxwell equations

with specular boundary conditions

Mihai Bostan *

(January 26, 2009)

Abstract

The subject matter of this paper concerns the existence of permanent regimes
(i.e., stationary or time periodic solutions) for the Vlasov-Maxwell system in
a bounded domain. We are looking for equilibrium configurations by impos-
ing specular boundary conditions. The main difficulty is the treatment of such
boundary conditions. Our analysis relies on perturbative techniques, based on

uniform a priori estimates.

Keywords: Vlasov-Maxwell equations, Specular boundary conditions, Permanent

regimes.

AMS classification: 35F30, 35L40.

1 Introduction

In this paper we construct weak solutions for the Vlasov-Maxwell equations in a
bounded domain. Our main interest focus on permanent regimes: stationary or time

periodic solutions satisfying specular boundary conditions.

*Laboratoire de Mathématiques de Besancon, UMR CNRS 6623, Université de Franche-Comté, 16

route de Gray, 25030 Besangon Cedex France. E-mail: mbostan@univ-fcomte.fr



The Vlasov equation describes the dynamics of a population of charged particles,
in terms of a particle density f = f(¢t,z,p) > 0 depending on time ¢ € R, position
x € Q and momentum p € R3. Here € is a bounded open subset of R? with regular

boundary 0. We introduce the standard notations
Y =00 xR ¥*={(x,p) €% : £(v(p)-n(z)) >0}

where n(x) is the unit outward normal to 92 at x and v(p) is the velocity function
associated to the kinetic energy function £(p) by v(p) = V,E(p), p € R These

functions are given in the classical case by

e = =2 )

om’ m

and in the relativistic case by

E(p) = mc? ((1 + g;)m - 1) , v(p) = % (1 + ﬂ'fz';)_l/z (2)

where m is the particle mass, ¢ is the light speed in the vacuum. The motion of

the particle population, with charge ¢ and number density f, under the action of the

electro-magnetic field (E(t, z), B(t,z)) is given by the Vlasov equation
Of +v(p) - Vaof +q(Et,x) +v(p) AB(t,x)) - V,f =0, (t,z,p) ER x QxR (3)
We are looking for densities f satisfying specular boundary conditions

ft, 2, p) = f(t,z, R(x)p), (t,z,p) € R x X" (4)

where R(x) = I — 2n(z) ® n(x) is the symmetry with respect to the plane orthogonal
to n(x)

R(x)p =p—2(p-n(z)) n(z), (z,p) €.
The evolution of the self-consistent electro-magnetic field is given by the Maxwell equa-

tions

@E—ammB:—g,@B+mezq(u@eRxQ (5)
0

div, E = Eﬂ, div,B =0, (t,z) €R xQ (6)
0

with the Silver-Miiler boundary condition

n(x) N E(t,x) + cn(x) A (n(z) A B(t,z)) = h(x), (t,z) € R x I (7)
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where ¢ is the permittivity of the vacuum, p(t,z) = ¢ [gs f(t,2,p) dp is the charge
density, j(t,x) = q [psv(p)f(t,x,p) dp is the current density and h is a given tan-
gential field on the boundary 092 i.e., (n(x) - h(x)) = 0, = € 9, such that H =
Joo |R(x)]? do < +o0. The system (3), (4), (5), (6), (7) is called the Vlasov-Maxwell

problem. By weak solution we understand solution in the distribution sense.

Definition 1.1 Assume that h € L*(0Q)3, (n - h)|sq = 0. We say that (f, E, B) €
Li (R; LY(Q x R?)) x Ll (R; L*(Q)%)? is a T periodic weak solution for the Vlasov-

loc loc

Mazxwell problem iff

/ / [ (2.p)(08 + v(p) - V0 + q(B(t.) + vlp) A Blt, ) - V,6) dpeadt = 0

for any T periodic function § € C*(R x Q x R3) satisfying 0(t, z,p) = 0(t, z, R(x)p),
(t,z,p) € R x 3T and

T
//{E(t, z) -0+ EB(t,x) - 0 + A (B(t, ) - curl,p — E(t, x) - curl,y))} dadt
0Jo

4 c/OT/m(n(x)mp)- do—dt——///Rg ftz,p) dpdadt =0 (8)

for all T periodic fields o, € CY(R x Q) satisfying n(z) A o(t,x) —cn(z) A (n(z) A
Y(t,x)) =0, (t,x) € R x 99N.

Remark 1.1 In order to also satisfy the divergence constraint (6) it is convenient
to solve the perturbed periodic problem (which is obtained by replacing all the time

derivatives 0y by o + 0;)

a f(t,x,p) +0f +o(p) - Vaof +q(E(t,2) +v(p) A B(t,2)) -V f =0

a B(t,r) +0,F — eurl, B = _](Z’ z) ©)
0

a B(t,x) + 0B+ curl,E =0

for any a > 0 and then to pass to the limit when o goes to 0. Indeed, in this case it is
easily seen that

o divy,B + 0, div,B =0

and therefore, by time periodicity one gets div,B = 0. Similarly, using the continuity
equation

ap(t,x) + Op+divej =0
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we deduce that

a (divxE - ﬁ) ) <divxE - ﬁ) —0
o €0

which implies by time periodicity that div, F = %. For simplifying our computations

we skip these details: we perform the computations with o = 0, assuming that the
divergence constraints hold true (the reader can convince himself that similar results

hold when keeping o > 0 in the equations).

The existence of global weak solution for the Vlasov-Maxwell system in three dimen-
sions was obtained by DiPerna and Lions [9]. The global existence of strong solutions
is still an open problem. Results for the relativistic case were obtained by Glassey
and Schaeffer [11], [12], Glassey and Strauss [13], [14], Klainerman and Staffilani [18],
Bouchut, Golse and Pallard [7].

Neglecting the relativistic corrections and the magnetic field leads to the Vlasov-
Poisson problem. This model is justified by studying the asymptotic behaviour of the
relativistic Vlasov-Maxwell problem when the particle velocities are small with respect
to the light speed [8], [24], [19], [5].

The Cauchy problem for the free space Vlasov-Poisson system is now well under-
stood, see Arseneev [1], Horst and Hunze [17] for weak solutions, Ukai and Okabe [26],
Pfaffelmoser [22], Bardos and Degond [2], Schaeffer [25], Lions and Perthame [20] for
strong solutions.

For applications (vacuum diodes, tube discharges, satellite ionization, thrusters,
etc.) the boundary conditions need to be considered [3], [16]. The stationary problems
were studied by Greengard and Raviart [15], Poupaud [23]. Results for the time periodic
case can be found in [4], [6].

Our main result is the following

Theorem 1.1 Assume that Q is a bounded open set of R® with smooth boundary,
strictly star-shaped. Let g = g(t,z,p) be a T periodic non negative bounded function
on R x X~ and h = h(x) be a tangential field on O verifying

= [ 1) @) gt p) dpdodt <+

K= / / 1(0(0) - n(a))] E(p)g(t, . p) dpdodt < +00
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H= | [|h()]?do < +oc.
o

Then there is a weak T periodic solution (f, E, B) for the Viasov-Mazwell problem (3),
(4), (5), (6), (7), with traces v*f on R x ¥*, tangential traces (n A E,n A B) and
normal traces (n- E,n - B) on R x 09 satisfying

/ /gi z))|y* f dpdodt = / / . 7))|g dpdodt = M~ (10)
/0// E(p)f(t,.p) dpd:cdtJr—// (B[ + @|BJ?) dadt < Cy

/ / (v E(p)f(t,z,p) dpdodt < C4

T
@// (In A E|? + *ln A BJ? )dadt—l——// n-E)?+c*(n-B)?dodt < C)
2 JoJoao o9

for some constant Cy depending on Q, T, H, ||g|| peomxs—y, M ™, K.

We also study the Vlasov-Maxwell problem with perfect conducting boundary condi-
tions

nANE=0, n-B=0, (t,x) € R x 9. (11)

The second perfect conducting boundary condition in (11) is a consequence of the first
perfect conducting boundary condition in (11) and the time periodicity. Indeed, as

before, replacing 0; by a + 0, leads to
aB+ 0B +curl,E =0, (t,z) € R x .

Multiplying by V., where ¢ € C*(Q) and taking into account that div,B = 0,nAE =
0 yield after integration by parts

a/m(n(x) -B(t,z))p do + % (n(z) - B(t,z))y do = 0.

Therefore, since t — [, (n(x)-B(t, z))p do is T periodic, one gets [, (n(x)-B(t, z))p(z) do =
0, t € R, for any p € C''(Q), saying that n- B = 0 on R x 9€2. As said before, we per-
form our computations only for a = 0, assuming that the perfect conducting boundary

condition n - B = 0 holds true. We establish the existence result



Theorem 1.2 Assume that Q0 is a bounded open set of R® with smooth boundary,
strictly star-shaped. Let g = g(t,x,p) be a T periodic non negative bounded function
on R x X7 werifying

M~ // x))| g(t,z,p) dpdodt < +oo

// x))| E(p)g(t, x,p) dpdodt < +oo.
Then there is a weak T periodic solution (f, E, B) for the Viasov-Mazwell problem (3),
(4), (5), (6), (11) satisfying

// )|y f dpdodt = // x))|g dpdodt =
DE -
/// ft,z,p) dpd:)sdt—l——// (|E)? + | BJ?) dzdt < Cy
R3

/0 / (0(p) - n(@))] E)1f(t, 2, p) dpdodt < C,

T
5—0// (A A B> + (n- E)?) dodt < Gy
2 JoJoag

for some constant Cy depending on 0, T, || g|| Lo @xx-y, M, K.

Our paper is organized as follows. We start by constructing 7' periodic solutions
(f-, E., B:) for the Vlasov-Maxwell system with the boundary condition (4) replaced
by

[tz p) =eg(t,z,p) + (1 — &) f(t, , R(x)p), (t,x,p) € Rx X" (12)

where ¢ €]0, 1] is a small parameter and ¢ is a T periodic bounded non negative function
on R x 37 such that M~ (g) < +00, K~ (g) < +00. The existence of such solutions has
been established in [6], pp. 660. The key point here is that the boundary condition
(12) is of the form

[t x,p) = g(t,2,p) + af (t, x, R(x)p), (t,2,p) € R x X~

where 0 < a < 1. Section 2 is devoted to uniform estimates with respect to the small
parameter €. In the last section we appeal to compactness arguments, in order to con-
struct T periodic weak solutions for the Vlasov-Maxwell system with specular boundary
condition for particles and Silver-Miiler or perfect conducting boundary condition for

the electro-magnetic field.



2 A priori estimates

In this section we establish uniform estimates with respect to e €]0, 1] for the peri-
odic solutions (f., E., B:)->0 of (3), (12), (5), (6), (7). We perform these computations
only for smooth solutions, compactly supported in momentum. The general case fol-
lows by standard arguments using regularization and weak stability, see [6]. We skip
these details. We appeal to the conservation of the mass, momentum and total energy.

We need the following easy lemma.

Lemma 2.1 Let f = f(z,p),9 = g(z,p), (x,p) € ¥ be non negative functions satisfy-
mg
f(z,p) =eg(z,p) + (1 =) f(z, R(z)p), (z,p) X

We assume that F' = F(x,|p|) is a non negative function such that

/BQ R3 (v n(z))|F(z, p|) f(z, p) dpdo < +o0

/aQ/Rs(U(p) -n(x))- F(z, [pl)g(z,p) dpdo < +oo.

Then for a.a. x € OS2 we have

/Rg(v(p) -n(@))F(z, [p) f(z,p)dp = 6/}1@(0(19) n(x))4 F(z, |pl)f(z,p) dp
- = [ 00) n@))- Pla.lpat.p) dp
where () stands for the positive /negative part.

Proof. Pick any function ¢ € C(0f2) and observe that

/BQ/RS(U-n)SDFfdpda = /m/RS D). o) Fe. |pl)f dpdo
- /aQ/Ra(U(p) -n(x))- o(x)F(z,|p|) f dpdo
- // )+ @(@)F(x,p]) f dpdo

~ o[ [ 00 (@) l@)F g dpao

- (1-¢) /E)Q/R3 _ @F f(x, R(x)p) dpdo.(13)



Notice that we have |R(x)p| = |p|, (v(p) - n(x)) = —(v(R(x)p) - n(z)) implying that

Performing the change of variable ¢ = R(z)p yields the equality

/(99/RS(U(p) -n(x))_ o(z)F(z,|p|)f(x, R(z)p) dpdo

— /é)ﬂ/w(v(Q) -n(z))y p(z)F(x,|q|)f(x,q) dgdo. (14)

Combining (13), (14) implies
/{)Q/s(v(p) -n(z))4 o(x)F(z, |pl) f(x, p) dpdo

/aQ/Rs(U'n)SOFf dpde =

e / (v(p) - n(2))— p(x)F(z |p)g(. p) dpdo (15)

MNJR3

m
=

Es

and therefore one gets for a.a. x € 02

| ) @) PG lp)s : . b)) () dp

™

%\%\

, |p|)g(x, p) dp. (16)

(|

The first uniform estimate comes by the mass conservation.

Proposition 2.1 For any € €]0,1], the T periodic particle density f. satisfies

// / x))+ fo(t,z,p) dpdodt =
o0Jrs

Proof. Integrating the Vlasov equation (3) on [0,7] x Q x R3 yields

/// x)) fe(t, x,p) dpdedt = 0.
o0 Rr3

Applying Lemma 2.1 with F' = 1 implies

//BQ/RB 7))fe(t 2, p) dpdodt - = g/OT/m/W(U(p) -n(x))4 fe(t,z,p) dpdodt

T
e [ [ ] ) @) ott.z.p) dpdod.
0J90JR3
We deduce that

/ /aQ/R J+ Je(t, @ p) dpdodt = /0 T/m /R (v(p)n(@))- g(t,x,p) dpdodt =

8



Using the boundary condition (12) we obtain also

/OT/aQ/RS(v-n)—fEdpdadt = //89/R3U n)_ (eg+ (1 —e)fo(t,x, R(x)p) dpdodt

= eM + 1—5/// x))y fo(t,x,q) dqdodt
o0JRr3
= M.

The second uniform estimate is obtained by the conservation of the total energy

Wit =3 [ [ et dme+ 3 [(E(0P + B0 do

Since we intend to impose the Silver-Miiler boundary condition (7) or the perfect
conducting boundary condition (11) we perform the total energy balance for solutions

satisfying the boundary condition
nAE.+dcnA(nAB.)=h(z), (t,z) € R x Q. (17)

Thus, when analyzing the Vlasov-Maxwell problem with the Silver-Miiler boundary
condition (7) we take 6 = 1 and when studying the Vlasov-Maxwell problem with
perfect conducting boundary condition (11) we assume that A = 0 and let 6 \ 0.

Proposition 2.2 For any € €]0,1] the T periodic solution (f., E., B.) satisfies

T
5///(vn Efedpdadt%——// (In A E.* + 82 n A B.?) dodt = e K~ + 7.
0JooJr3 o0 20

In particular we have for any e €]0, 1]
500// (|In A E|* + 6°n A Be| )dadth—+zi§TH.
20

Proof. Multiplying (3) by £(p), (5) by (E.(t,z),*B.(t,x)) yields after integration

/ fedpdx+/ /RJ fsdpda—q//w E.)f. dpdz =0

a1
%5/52(\E€|2+c2\35\2) dr — 02/ (n() A B.) - E. do

/ /]R i E.)f. dpdz.



Putting together the balances for the kinetic and electro-magnetic energies implies

d
—/ E(p)f. dpdx + f0d (\E\2+c2|B| dx+// v-n)E(p)f. dpdo
dt (9} E o0NJR3
— 050/ (nA\B.) - E.do=0.
onN

After integration with respect to t € [0, 7] one gets by time periodicity

//m/Rs )E(p) f- dpdodt — goc? //aQn/\B) E. dodt =0 (18)

By the Silver-Miiler boundary condition (17) we deduce

T T
50// (nAB.)- E.dodt = 50// (nA(nAB))- - (nAE;)dodt (19)
0J0Q 0J00
1 T
= —// (|h)? = [n A B> = 8%°¢An A (n A B.)|?) dodt.
2 JoJoa

Using now Lemma 2.1 with the function F' = £ we obtain

/OT/E)Q/RB@@) n(z))Ef. dpdodt = g/OT/m/Ra(U(p) n(2))s E(p)f. dpdodt
- 5/;/@9/[&3(@(29) -n(x))-E(p)g dpdadt. (20)

Finally combining (18), (19), (20) yields

a/OZQ/R3<U(p).n(x))+ Ep)f- dpdodt + EOC//@Q In A E.]> + 6% n A B.|?) dodt
- < / ] ) nta))- g anioe

+ 600/ |h)? dodt
8Q

saying that the tangential traces of the electro-magnetic field are uniformly bounded

in L2 (R; L?(09Q)*) with respect to €0, 1]. -

loc

We need also a uniform bound for the outgoing kinetic energy

/oT/em/Ra(U(p) -n(x))+ E(p) fe dpdodt.

Notice that, for the moment, the equality (21) gives only a bound in 1/e (if 6 > 0 is
kept fixed). Actually we will see that (21) provides a uniform bound for the outgoing

10



kinetic energy, but this requires the orthogonal decomposition of the tangential field
h € L*(02)? into irrotational and rotational parts. These result is analogous to the
well-known orthogonal decompsition result for fields of L*(Q2)? (see [10] pp. 22). For
the sake of the presentation we give here some details cf. [5]. We assume that 2 is
bounded and smooth (generally C*). For any function u € C*(92) we denote by V., u
the tangential gradient of u. We also define curl,u := n A V,u if u € C*(09). It is
easily seen that n - V,u = 0, n - curl,u = 0 and a direct computation shows that V.,

and curl, are orthogonal in L?(99)?
/ V- (nAVw)de =0, u,veCHIN).
o0
Moreover, by density we have

/ Voo (nAVp)do =0, ¢, € H(09).
o0

For the definition of Sobolev spaces on df2 the reader can refer to [21]. We introduce the
notations : X = {u € L2(00)° | n-u(z) = 0ae. z € 00}, Y = {V, ¢ | p € H(OO)},
Z={nAV,¢|yeH ()}

Proposition 2.3 (¢f. [5], Proposition A.5, pp. 487) Assume that OS) is bounded,
simply connected and reqular (C*). Then'Y and Z are closed orthogonal subspaces of

X and we have the decomposition
X=Y+7Z (22)
By the previous result we deduce that there are hy, ho € H'(9) such that
h=V,h +nAV, hs.

Actually the functions hy, hy are unique up to a constant. Without loss of generality

we assume that [, hy do = [,, ho do = 0. By the orthogonality we have

|h|2 dO':/ \VT h1‘2 d0'+/ |n/\VT h2|2 dO':/ |v7— h1‘2 d0'+/ |v7— h2|2 do
o0 o0 o0 o0 o0
and by Poincaré inequality one gets
1hl[mo0) + [h2llm@0) < CQ)||A]|r200)-

We recall now the divergence equations verified on the boundary R x 02 by T periodic
solutions of the Maxwell equations cf. [5]. We denote by V() ,div) the gradient

and divergence operators on R x 0f2.

11



Proposition 2.4 Assume that Q is reqular and consider (E, B) € L2 (R; L*(Q)°)? a

T periodic weak solution for the Maxwell equations

/ (i’ ") 8B+ eurl,E =0, div,E = @, diveB =0 (23)
0 0

LE — Peurl,B = —

with tangential and normal traces (n A E,n A B) € L% _(R; L2(8§2)3)2, respectively
((n-E),(n-B)) e L (R; L>(00))*. We assume also that the charge density p belongs
to LL (R; LX(Q)), the current density belongs to L (R; L*(Q)%) and that the continuity

loc

equation Oyp + div,j = 0 holds true in D, (R x Q)

per

T T
// pOyp dxdt—l—//jVVmgo dxdt:// (n-j)p dodt, Yo € CH(RxQ), T periodic
0Ja 0Ja 0Joq

for some function (n - j) € L (R;L'(09Q)). Then the traces of the electro-magnetic

field verify the following divergence equations in D! _ (R x 0)

per

divgry ((n- E),c*(n A B)) = —(Tl?;)j), divgrsy (n-B),—(nAE)) =0

1.€.,

T T 1 /7
— - E)ouh dodt — 2 B)- -V, ¢ dodt = —— - dod
/o/asz(n )Ouh dodt — ¢ /o/an(n/\ ) - Vo dodt = O/é)Q(n ) dodt

and
// n- B&t¢dadt+// (nAE)- -V dodt =0,
a0 o0

for all function ¢ € CY(R x 99Q), T periodic.

Proof. Consider the test function n(t)V,p, where n € C'(R) is T periodic and
¢ € CY(Q). By using the first equation of (23) with this test function, we deduce

T
// E(t,z)-V,p dedt—c // )(nAB)-V,p dodt = l// n(t)j-Vep dzdt.
oQ €o JoJo (

24)

By using now the third equation of (23) with the test function —n'(¢)p(z) we deduce
that

/ /8 ) 2) dodi+ / / V.o dedt = / / (1, 2 (D)ol dedl.

(25)
By adding the equations (24), (25), by observing that (n A B) - Voo = (n A B) - V,¢

and by using the continuity equation finally we obtain that

—~ /Ozﬂ(n - E)oyp) dodt — ¢ /OT/aQ(n A B) -V, dodt = _51_0 /OT/aQ(n +J)¢ dodt,

12



for all ¢(t,z) = n(t)p(z). By density we deduce that the previous equality holds for
all test function v € C*(R x 9Q), T periodic, or divy,) ((n-E),*(nAB)) = (’Z—O’) in
D! (R x 02). In order to establish the second divergence equation on the boundary

per

we use the second equation of (23) with the test function n(¢)V,e which gives

// B(t,x) mgodxdt+// Y(nAE)-Vupdodt =0.
Py

By using also the fourth equation of (23) one gets finally :

// n- B&t¢dadt+// (nAE)-V, ¢ dodt =0,
o9 o9

or diviyy ((n- B),—(n A E))=0in D, (R x 08).

.

Based on the previous divergence equations satisfied by the electro-magnetic traces, we
derive the following representation for the electro-magnetic energy flux gyc? fﬂ a0 (M A

B.)- E. dodt

Lemma 2.2 For any ¢ €|0, 1] the T periodic solution (f., E., B.) satisfies

1

T T
—// dc (n A\ B.)- E.dodt = —/ In A E. —n AV, hy)?® dodt
0Joo 2 Jo Joa

17
+ —/ |sen A (n A B.) — V, hy|* dodt

- // n - je)hy dodt (26)
€oC a0

where h = ¥V, hy +n AV, hy is the orthogonal decomposition of the tangential field

h € L2(80Q)° into irrotational and rotational parts.

Proof. By the Silver-Miiler boundary condition (17)
nAE:.+0cnAN(nAB:)=h=V,;h +nAV, hy

we have

nANE.—nAV, hy=—(fcnA(nAB.)—V, hy)

13



and therefore we can write

—0c(mA(MAB:)) - (nNE.) = —(0c(nA(nAB.))—V,h +V; h)

MAE.—n AV, hyg+nAV, hy)

1 1
= §|n/\E€—n/\VT h2|2—|—§|5cn/\(n/\B€)—VT hil?

- VT hl(n/\VT hg)—(n/\EE—n/\VT h2)~VT hl

— (denAN(nAB:) =V, h)-(nAV, hs). (27)

We will transform the last three terms. By the orthogonality of V. and n AV, we

have

VT hl-(n/\VT hg)dO’ZO

o0

/(n/\Ea—n/\VThg)-VThlda:/ (nANE.) -V, hydo
a0

/ (Gen A(nAB) — Vs hi)- (nAV, hy) do
[2)9]

implying that

2

o0N

/ Se(mA(nAB)) - (n AV, hy) do

/ dc(nAB:) -V, hydo
a0

T 1 T
—50// (nAB.)-E.dodt = —/ InANE.—nAV, h2|2 dodt
00 0Jo0

1
2

0J0Q

T

+ —// |scn A (n A B.) =V, h|* dodt
0Jog
T

— // (nAE;)-V, hy dodt

T
- 50// (n A B.) -V, hy dodt. (28)
0Joa

Applying now the divergence equations in the conclusion of Proposition 2.4 with the

test function hy(x), hi(x) yields

g 1
—02// (n A B:) -V, hydodt = —
0Jo

and

T
/ (n - j.)hy dodt
009

T
// (nAE;)-V, hy dodt =0.
0Joq

14



Finally one gets by (28)

T 1 T
—50// (nAB.)- E.dodt = —// InAE. —n AV, hyl? dodt
0Joa 2 JoJoa

A
+ —// |scn A (n A B.) =V, h|* dodt
2 Jo Joo

(5 T
— —// (n - je)hy dodt.
€0C Jo Joq

We derive now a uniform estimate for the outgoing/incoming kinetic energy fluxes

7

fﬂ o0 Jrs (V(p) - n(x))+ E(p) fe dpdodt. This bound is a consequence of the total energy
balance in Proposition 2.2 and the representation formula in Lemma 2.2. First we

establish a uniform L*> bound for (f.)..

Proposition 2.5 Assume that g € L*(R x ¥7) is non negative. Then we have for

any € €]0,1]
max{ || fol| Lo @xaxr3), | fell Lo @xst) b < gl Lo mxs-)-

Proof. For any fixed o > 0, ¢ €0, 1] and given electro-magnetic field (E., B:) the
solution of the Vlasov equation in (9) with the boundary condition (12) is obtained by
the iterative scheme

af©® +0,fO +u(p)  Vof O +q(E. +v(p) AB.) -V, f O =0, (t,7,p) ERx QxR?

FOt, x,p) = eg(t, x, p), (t,z,p) € R x X7
and for any n € N

af) 49, f ) 4o V) 4 g(E.+ v A B.) -V f) =0, (t,7,p) ER x Q2 x R?

fO (¢t 2, p) = eg(t,x,p) + (1 — &) fM(t, 2, R(z)p), (t,z,p) € R x X7,
Indeed, we have 0 < f® < f) on R x ¥~ and thus, by comparison principle (which
holds true for time periodic solutions and any o > 0) one gets 0 < f@ < f() on
R x Q xR? and on R x ¥F. Assuming that 0 < ™ < f0+) on Rx QO xR? and R x XF
we deduce that f"+Y < f"2) on R x ¥~ which implies by comparison principle
that f+) < f4+2) on R x Q x R? and on R x ©*. Finally we check easily that
the monotonous sequence (f™), converges to a T periodic solution f. , of the Vlasov

equation in (9) satisfying the boundary condition

fa,a(t,l',p) = Eg(t,!)ﬁ',p) _I— (1 - 8)fe,a(t,$,R($)p)’ (t,!)ﬁ',p) S ]R X Z_‘

15



Obviously we have

max{|| f Q|| 1 @xaxre), [ O |zo@xss)} < 19l e@xs-)-

Assuming that

max{|| £ o mxaxrz)s | F™] Lo @xsty b < N9 oo sy

implies that || f" ™| zeo®xs-) < ||g|lze@xs-) and therefore

(n+1

max{[| £ || Lo @xasr)s [T Lo @xsey} < 19 oous-)-

Passing to the limit with respect to n one gets

max{“fe,a||L°°(R><Q><R3)v er,aHLOO(]Rin)} < HQHLOO(]RXE*)-

In order to pass to the limit for o ™\, 0 observe that if 0 < o < 3 then f., > f.3

) in the iterative schemes

(actually this inequality holds true for any elements f,g"), é"

associated to the parameters «, 3). Finally it is easily seen that for any ¢ €]0, 1] the

function f. = lim,\ f- o solves the problem (3), (12) and satisfies
maX{||f€||L°°(R><Q><R3)7 erHLOO(Rin)} < ||9HL°°(R><E*)-
|

Proposition 2.6 There is a constant C' depending on T, Q, [|h||r200), ||9]l1e@xs-),
M~, K~ such that for any € €]0,1] the T' periodic solution (f., E-, B.) satisfies

/OT/@Q/RS (v(p) - n(x))+ E(p) fe(t, x, p) dpdodt < C

goC

T
% // InAE. —n AV, ho)®+1dc (n A (nAB.)) =V, h|* dodt < Ce.
0Joq

Proof. Combining (18), (20), (26) yields

T T
8// / (v(p) - n(x))4 E(p) f- dpdodt + coe // InAE. —n AV, hyl* dodt
0JooJr3 20 JoJog

T
+ %// 6¢ (n A (n A B.)) — V, ha|? dodt
20 JoJoa

- <f /a [ 00) i) £)g dpaoar

T

+ // (n - je)hy dodt. (29)
0Joa

16



Using now Lemma 2.1 with ' = 1 implies

o

T~

e) - gota) = [ ) n)fdp = ¢ [ (w)n(o)s £ dp
) n@)-gdp  (30)

and therefore

T
n - je)hg dodt = 2 fe dpdodi
hy dod + haof. dpdod
0Joq 8QR3
— /// _ heg dpdodt. (31)
o0.Jr3

Putting together (29), (31) one gets

T T
// / (v(p) - n(z))s E(p)f- dpdodt + @/ InAE. —n AV, hyl* dodt
0JoaJrs 2¢0 Jo Jon

T
+ @/ 6¢ (n A (n A B)) — Vy hy|? dodt
255 0J80

- [/ 3<v<p> (@) () — ha(x))g dpdod
N / /6Q /R 3 \ hof. dpdodt.  (32)

We estimate now fﬂanRS (v(p)n(z))y haof. dpdodt and fofaﬂfRS (v(p)n(z))_ hag dpdodt

by using Sobolev and interpolation inequalities. Since (f:)o<c<1 is uniformly bounded

we have for a.a. (t,z) € [0,7] x 09

L@ n@) o = [ @) n@) L1 a
[ 00 n@)s Ll dp

CRglu= + g [ (00) n(a))s (1+ E@N: d.

IA

By taking the optimal value for R one gets

4/5
[ 6w nts £ ap < Clal ([ 06 n(e) 0+ 0. ap)

implying that

4/5

[ £ o

, <Cllgl 2 (/// v-n) 1+8)f€dpdadt)
L1(]0,T[x8%) o9
4/5
<C|lg|l}2 (/// (v-n); Ef. dpdodt + M~ )(33)
]RS

17



Notice that in the last inequality we have used Proposition 2.1. Similarly one gets

<Cl\gll2 (/// v-n)_ 1+€)gdpdadt)
L1 (0,7[x09) o0.JR3

<Cllglly2 (M~ + K~)Y°. (34)

4/5

/Rg(v-n)— g(,-p)dp

Using now the Sobolev inclusion H'(9Q) — L>(09Q) and the Holder inequality we

‘/ (U'n)-i-fedp .

R3 L1(]0,T[x0N)
[ wm g
R3

< C, D) Al g2

(v [ [ e et avaoar) 159

obtain

T
//(U'n)+ h2fedpd0'dt‘ < el s qo,rxo0)
0Joars

IN

C(Q,T)||hal 100

Li(0,7[x09)

X

In the same manner we have

<wnxhw@mm4somﬂwmm@mmmaM-+Kv%. (36)

0JoaJr3
Combining (32), (35), (36) clearly gives a uniform bound for the outgoing kinetic
energies

T
sup //m/Rg(v(p) n(@))s E(p)f- dpdodt < C(Q, T, Al 12, gz, M, K 7).

0<e<1Jo

Using now the boundary condition f. = eg + (1 — ¢) f-(¢,z, R(z)p), (t,x,p) € R x ¥~
also gives a uniform bound for the incoming kinetic energies on R x 7. Notice also
that (32) implies

£oC

T
% /\nAEs—nAvTh2\2+|5an(nAB€)—vTh1\2do—dtgcg, 0<e<l.
o0

(|

Once we have estimated the tangential traces of the electro-magnetic field, cf. Proposi-
tion 2.2 and the kinetic energy flux, cf. Proposition 2.6 it is possible to obtain uniform
bounds for the total kinetic and electro-magnetic energy by appealing to the multiplier

method [4], [5]. Using the momentum conservation yields

18



Proposition 2.7 Assume that 2 is bounded and strictly star-shaped. Then for any

e €]0, 1] we have

// Efedpd:cdt+—//\E\2+c2|B| dxdt+—// (n- B.)* dodt
o0
{// / |(v )| |plfe dpdadt+—/ In A E.J* + 2n A B.J? dadt}.
o0

(37)

Moreover, if 6 = 1, then there is a constant C depending on Q,T,||h|L2, |g]lL=,
M=, K~ such that

T T
/// ) f- dpdxdt+@//(|EE|2+C2|B€|2) dedt < C (38)
0JQ JR3 2 0JQ
o T
3// (n-E.)*+c(n-B.)?dodt < C. (39)
0J002

Proof. Without loss of generality we assume that 02 is strictly star-shaped with

respect to the origin 0 €
dr>0: r<(x-n(z)), xecd.
We consider R > 0 such that 2 C B(0, R). The momentum conservation reads
Oy /R% pf- dp + div, /R3p ®v(p)fe dp = (p-E: + j: N B:) =0 (40)
and direct computations with the Maxwell equations yield

peE. +j. NB. = eo(E.div,E. — E. Acurl, E.) + eoc*(B.div,B. — B. A curl, B,)

— 20 (E. A B). (41)

Using the identity

3
0

widiveu — (u A curlu); = g a—(u,uj) - =
j=1 O

and the decomposition

(E.,B)=(n-En—nAnANE.),(n-B)n—nA(nAB.))

19



one gets after integration by parts
//peE + j. A\ By) :—50/ {n E)nA(mAE))+E(n-B)(nAnAB))}-x
/ {(n-E.)?+c*(n-B.)*}(n-x) dadt—;o /0T6£|n ANE? +En A B} (n - z) dodt
+ 50/0/9{\E€|2+02|B€\2}dxdt. (42)

Multiplying the momentum conservation (40) by x and integrating over [0, 7] x Q we

obtain

/ /m /R 3 )(p - 2)f- dpdodt / / /R (0(p)- ). dpdat

/ / (DB + o AB) - dadt (43)
0JQ

Combining (42), (43) and observing that £(p) < (v(p) - p) yields

g g [T 2, 21 |2 reg [T 2, 2 2
E(p)f- dpdadt —I— — |EE| + ¢*|B:|* dedt + 5 (n-E.)*+c¢*(n- B.)* dodt
R3 0Jon

< R//| )| |pl|f- dpdadt—l——/ {In AN E.]> + n A B>} dodt
+ REO/ (- E)|-InAE.|+(n- B - InA B} dodt. (44)
0J00

We obtain (37) by writing

T
50/ |(n- E.)||nAE.|dodt < — Heo // 2 do dt—l——/ In A E.|? dodt
0Joa o0 o9

T ueo [T e [T
50// ¢ |(n-B.)| |InAB.| dodt < == // ¢ (n-B.)? dodt+— // ¢ |nAB.|? dodt
0Joq 2 JoJoa 21 Jo Joo

with g > 0 small enough. The estimates (38), (39) follow easily since by Propositions
2.1, 2.6 we have

/ /ag [ 0@y bl dptoar < /m [ ) n(@)|(+£ () dpdodt < O

and by Proposition 2.2 we know that

500/ InAE)?+ AnA B dodt < K~ + %TH.
0N
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3 Existence results

We are ready now to prove the existence of T periodic weak solutions for the
Vlasov-Maxwell problem (3), (4), (5), (6), (7): it is a straightforward consequence of

the uniform estimates for 7" periodic solutions (f:, E., B:)o<e<1 With § = 1.

Proof. (of Theorem 1.1) The arguments are standard and are left to the reader. We
construct our 7" periodic solution by taking a weak limit point of (f;, Ex, B:)o<e<1. We
only justify that the limit solution satisfies the specular boundary condition (4) and the
mass constraints (10). Take (g4)r a sequence of positive numbers converging towards
0 such that

foo = f weakly x in L®(R x  x R?)

(E.,.B.,) = (E,B) weakly in L}, (R; L*(Q)°)
(nAE.,,nAB.,)— (nAE,nAB) weakly in L} (R;L*(0%)°)
(n-E..,n-B.,)— (n-E,n-B) weakly in L{_(R;L*(9Q)?).

Here nA is the tangential trace and n - is the normal trace over 9€2. For any T periodic
function 6 € C1(R x Q x R®) satisfying 0(¢, x, p) = 0(t,z, R(x)p), (t,7,p) € R x T we

have

T T
// (00 +v-V,0+q(E., +vAB.)-V,0)f., dpdedt = // /(v -n)0f., dpdodt.(45)
0Ja Jrs 0JoaJr3

But as in the proof of Lemma 2.1 we can write

/Ozﬂég(v(p)-n(x))ﬁfek dpdodt = gk//m/ﬂ@ 07, dpdodr
- ﬁkfo/m/Rg(v(pw (). 0 dpdods

lim // / z))0f., dpdodt = 0.
k=+oo Jo JoaJrs

We intend to pass to the limit for k& — 400 in (45). As usual we use the compactness

and therefore

average result of DiPerna and Lions [9] (which adapts easily in the time periodic case
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and for bounded domains) in order to treat the non linear terms f;, (E., +vAB;,)-V,0.

Finally one gets
T
// (00 +v(p) - Vo0 + q(E+v(p) N B)-V,0)f dpdedt = 0
R3

for any T periodic function # € C*(R x Q x R?) satisfying 0(t,z,p) = 0(t, z, R(x)p),
(t,z,p) € R x 3T, We have by Propositions 2.1, 2.6

/ /E ) ) fuw dpdodt =

sup/ / 2))|E(p)yE fe, dpdodt < +oo.
»+

keN

and

After extraction eventually, we can assume that
vEf, — 7 f weakly % in L(R x ©F)

and we obtain easily that

/ / z)) |y f dpdodt = M.
»+

Corollary 3.1 Under the hypotheses of Theorem 1.1 (with d = 1), the tangential traces
of the electro-magnetic field (E, B) satisfies

nAE=nAV,hy, cnAN(nANB)=V,
where h =V, hy +n AV, hy,

Proof. With the notations in the proof of Theorem 1.1 we know by Proposition 2.6
that

sup— InAE., —nAV, hy|>+|enA(nAB.,)—V, h|* dodt < +00
keN €k o0

which implies that

lim (nAE.,,cnA(nAB.,)) = AV, hy,V, hy) strongly in L2 (R; L2(9Q)°).

k—+4o00

Therefore we have (n A E,;cn A (nAB))=(nAV, hy,V, hy). -
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We investigate now the Vlasov-Maxwell problem (3), (4), (5), (6) with the perfect
conducting boundary condition (11). In order to construct 7" periodic solutions for this

problem we replace (4) by (12) and (11) by (17) with 6 = €]0,1] and h =0
nANE+eccnA(nAB)=0, (t,z) € R x 0. (46)

Proof. (of Theorem 1.2) For any ¢ €]0, 1] we denote by (f., E., B:) a T periodic weak
solution for (3), (12), (5), (6), (46). By Proposition 2.1 we know that

//89/11&3 )+ fe(t,x,p) dpdodt = , € €)0,1]. (47)

Notice also that by Proposition 2.2 we have

// / E(p)f- dpdadt+—/ InAE.|>+e?c|nAB.|* dodt = e K~
o0.JR3
implying that
T
[ ] @) nw) e dpaodt < - (18)
0JoaJrs
and
6OC/ In A E.|> + 2cn A B.|> dodt < K. (49)
o9

From the above inequality we deduce that (nAE.). converges towards 0 in L2 _(R; L?(0Q)3).

Combining (12) and (48) yields for any ¢ €]0, 1]

/oT/aQ/Rs(” )= Efe dpdodi = /T/m/RS(U n)- E(eg+ (1= ) f.(t, 2, R(x)p)) dpdodt
< //m/Rv n)_ E(p)g dpdodt + (1 — ) K~

= (50)

At this stage let us mention that (38), (39) still hold true uniformly with respect to

e €]0,1]. Indeed, this is a direct consequence of (37) (which is valid for any 6 = ¢ €]0, 1])

C//BQ/R% + (1+&(p))fe dpdodt

< C(M™+K7)

since we already know that

[ [0 ntay i, at
0N J RS

and

IN

@ In A B+ Aln A B.J? dodt < 2K~
0N
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Therefore we obtain uniform bounds for the total energy and the normal traces of the
electro-magnetic field. From now on the arguments are similar to those in the proof of
Theorem 1.1. Taking (g4)x a sequence of positive numbers converging towards 0 such
that

foo = f weakly x in L®(R x Q x R?)

(B, B,) — (E, B) weakly in L3, (R; I*(0)°)
(nANE.,nAB.,)— (nAE,nAB) weakly in L} (R;L*(0%)°)

(n-E..,n-B.,)— (n-E,n-B) weakly in L{_(R;L*(99)?).

loc

it is easily seen that (f, F, B) is a T periodic weak solution of (3), (4), (5), (6). Notice
also that by (49) we have limy_ o n A E., = 0 strongly in L2 (R; L?(9Q)?), saying

that the electric field E satisfies the perfect conducting boundary condition n A E = 0
on R x 0. O
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