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A rough path over multidimensional fractional
Brownian motion with arbitrary Hurst index by

Fourier normal ordering

Jérémie Unterberger

Fourier normal ordering [36] is a new algorithm to construct explicit rough
paths over arbitrary Hölder-continuous multidimensional paths. We apply in
this article the Fourier normal ordering ordering algorithm to the construc-
tion of an explicit rough path over multi-dimensional fractional Brownian
motion B with arbitrary Hurst index α (in particular, for α ≤ 1/4, which
was till now an open problem) by regularizing the iterated integrals of the
analytic approximation of B defined in [34]. The regularization procedure is
applied to ’Fourier normal ordered’ iterated integrals obtained by permut-
ing the order of integration so that innermost integrals have highest Fourier
modes. The algebraic properties of this rough path are best understood us-
ing two Hopf algebras: the Hopf algebra of decorated rooted trees [6] for the
multiplicative or Chen property, and the shuffle algebra for the geometric or
shuffle property. The rough path lives in Gaussian chaos of integer orders
and is shown to have finite moments.

As well-known, the construction of a rough path is the key to defining a
stochastic calculus and solve stochastic differential equations driven by B.

The article [37] gives a quick overview of the method.
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0 Introduction

The (two-sided) fractional Brownian motion t → Bt, t ∈ R (fBm for short)
with Hurst exponent α, α ∈ (0, 1), defined as the centered Gaussian process
with covariance

E[BsBt] =
1

2
(|s|2α + |t|2α − |t − s|2α), (0.1)

is a natural generalization in the class of Gaussian processes of the usual
Brownian motion (which is the case α = 1

2 ), in the sense that it exhibits
two fundamental properties shared with Brownian motion, namely, it has
stationary increments, viz. E[(Bt−Bs)(Bu−Bv)] = E[(Bt+a−Bs+a)(Bu+a−
Bv+a)] for every a, s, t, u, v ∈ R, and it is self-similar, viz.

∀λ > 0, (Bλt, t ∈ R)
(law)
= (λαBt, t ∈ R). (0.2)

One may also define a d-dimensional vector Gaussian process (called: d-
dimensional fractional Brownian motion) by setting Bt = (Bt(1), . . . , Bt(d))
where (Bt(i), t ∈ R)i=1,...,d are d independent (scalar) fractional Brownian
motions.

Its theoretical interest lies in particular in the fact that it is (up to
normalization) the only Gaussian process satisfying these two properties.

A standard application of Kolmogorov’s theorem shows that fBm has
a version with α−-Hölder continuous (i.e. κ-Hölder continuous for every
κ < α) paths. In particular, fBm with small Hurst parameter α is a natural,
simple model for continuous but very irregular processes.

There has been a widespread interest during the past ten years in con-
structing a stochastic integration theory with respect to fBm and solv-
ing stochastic differential equations driven by fBm, see for instance [24,
15, 5, 30, 31]. The multi-dimensional case is very different from the one-
dimensional case. When one tries to integrate for instance a stochastic
differential equation driven by a two-dimensional fBm B = (B(1), B(2)) by
using any kind of Picard iteration scheme, one encounters very soon the
problem of defining the Lévy area of B which is the antisymmetric part of
Ats :=

∫ t
s dBt1(1)

∫ t1
s dBt2(2). This is the simplest occurrence of iterated

integrals Bk
ts(i1, . . . , ik) :=

∫ t
s dBt1(i1) . . .

∫ tk−1

s dBtk(ik), i1, . . . , ik ≤ d for
d-dimensional fBm B = (B(1), . . . , B(d)) which lie at the heart of the rough
path theory due to T. Lyons, see [25, 26]. An alternative construction has
been given by M. Gubinelli in [16] under the name of ’algebraic rough path
theory’, which we now propose to describe briefly.
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Assume Γt = (Γt(1), . . . ,Γt(d)) is some non-smooth d-dimensional path
which is α-Hölder continuous. Integrals such as

∫

f1(Γt)dΓt(1) + . . . +
fd(Γt)dΓt(d) do not make sense a priori because Γ is not differentiable
(Young’s integral [23] works for α > 1

2 but not beyond). In order to de-
fine the integration of a differential form along Γ, it is enough to define a
geometric rough path (Γ1, . . . ,Γ⌊1/α⌋) lying above Γ, ⌊1/α⌋=entire part of
1/α, where Γ1

ts = (δΓ)ts := Γt − Γs is the increment of Γ between s and
t, and each Γk = (Γk(i1, . . . , ik))1≤i1,...,ik≤d, k ≥ 2 is a substitute for the

iterated integrals
∫ t
s dΓt1(i1)

∫ t1
s dΓt2(i2) . . .

∫ tk−1

s dΓtk(ik) with the following
three properties:

(i) (Hölder continuity) each component of Γk is kα−-Hölder continuous,
that is to say, kκ-Hölder for every κ < α;

(ii) (multiplicativity) letting δΓk
tus := Γk

ts − Γk
tu − Γk

us, one requires

δΓk
tus(i1, . . . , ik) =

∑

k1+k2=k

Γk1
tu(i1, . . . , ik1)Γ

k2
us(ik1+1, . . . , ik); (0.3)

(iii) (geometricity)

Γn1
ts (i1, . . . , in1)Γ

n2
ts (j1, . . . , jn2) =

∑

k∈Sh(i,j)

Γn1+n2
ts (k1, . . . , kn1+n2)

(0.4)
where Sh(i, j) is the subset of permutations of i1, . . . , in1 , j1, . . . , jn2

which do not change the orderings of (i1, . . . , in1) and (j1, . . . , jn2).

The multiplicativity property implies in particular the following identity
for the (non anti-symmetrized) Lévy area:

Ats = Atu + Aus + (Bt(1) − Bu(1))(Bu(2) − Bs(2)) (0.5)

while the geometric property implies
∫ t

s
dBt1(1)

∫ t1

s
dBt2(2) +

∫ t

s
dBt2(2)

∫ t2

s
dBt1(1)

=

(∫ t

s
dBt1(1)

)(∫ t

s
dBt2(2)

)

= (Bt(1) − Bs(1))(Bt(2) − Bs(2)).

(0.6)

Then there is a standard procedure which allows to define out of these
data iterated integrals of any order and to solve differential equations driven
by Γ.
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The multiplicativity property (0.3) and the geometric property (0.4) are
satisfied by smooth paths, as can be checked by direct computation. So the
most natural way to construct such a multiplicative functional is to start

from some smooth approximation Γη, η
>→ 0 of Γ such that each iterated

integral Γk,η
ts (i1, . . . , ik), k ≤ ⌊1/α⌋ converges in the kκ-Hölder norm for

every κ < α.
This general scheme has been applied to fBm in a paper by L. Coutin and

Z. Qian [9] and later in a paper by the author [34], using different schemes
of approximation of B by Bη with η → 0. In both cases, the variance of the
Lévy area has been proved to diverge in the limit η → 0 when α ≤ 1/4.

The approach developed in [34] makes use of a complex-analytic process
Γ defined on the upper half-plane Π+ = {z = x + iy | y > 0}, called Γ-
process or better analytic fractional Brownian motion (afBm for short) [33].
Fractional Brownian motion Bt appears as the real part of the boundary

value of Γz when Im z
>→ 0. A natural approximation of Bt is then obtained

by considering
Bη

t := Γt+iη + Γt+iη = 2Re Γt+iη (0.7)

for η
>→ 0. We show in subsection 3.1 that Bη may be written as a Fourier

integral,

Bη
t = cα

∫

R

e−η|ξ||ξ| 12−α eitξ − 1

iξ
W (dξ) (0.8)

for some constant cα, where (W (ξ), ξ ≥ 0) is a standard complex Brownian
motion extended to R by setting W (−ξ) = −W̄ (ξ), ξ ≥ 0. When η → 0,
one retrieves the well-known harmonizable representation of B [32].

The so-called analytic iterated integrals
∫ t

s
f1(z1)dΓz1(1)

∫ z1

s
f2(z2)dΓz2(2) . . .

∫ zd−1

s
fd(zd)dΓzd

(d)

(where f1, . . . , fd are analytic functions), defined a priori for s, t ∈ Π+ by
integrating over complex paths wholly contained in Π+, converge to a finite
limit when Im s, Im t → 0 [34], which is the starting point for the construc-
tion of a rough path associated to Γ [33]. The main tool for proving this
kind of results is analytic continuation.

Computing iterated integrals associated to Bt = 2 limη→0 Re Γt+iη in-
stead of Γ yields analytic iterated integrals, together with mixed integrals
such as for instance

∫ t
s dΓz1(1)

∫ z1

s dΓz2(2). For these the analytic continu-
ation method may no longer be applied because Cauchy’s formula fails to
hold, and the above quantities may be shown to diverge when Re s,Re t →
0, see [34, 35].
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Let us explain first how to define a Lévy area for B. Proofs (as well
as a sketch of the Fourier normal ordering method for general iterated in-
tegrals) may be found in [37]. As mentioned before, the uncorrected area
Aη

ts :=
∫ t
s dBη

u1(1)
∫ u1

s dBη
u2(2) diverges when η → 0+. The idea is now to

find some increment counterterm (δZη)ts = Zη
t − Zη

s such that the regu-
larized area RAη

ts := Aη
ts − (δZη)ts converges when η → 0+. Note that

the multiplicativity property (0.5) holds for RAη as well as for Aη since
(δZη)ts = (δZη)tu + (δZη)us. This counterterm Zη may be found by using
a suitable decomposition of Aη

ts into the sum of :
– an increment term, (δGη)ts;
– a boundary term denoted by Aη

ts(∂).
The simplest idea one could think of would be to set

(δGη)ts =

∫ t

s
dBη

u1
(1)Bη

u1
(2), (0.9)

and

Aη
ts(∂) = −

∫ t

s
dBη

u1
(1) . Bη

s (2) = −Bη
s (2)(Bη

t (1) − Bη
s (1)). (0.10)

Alternatively, rewriting Aη
ts as

∫ t
s dBη

u2(2)
∫ t

u2
dBη

u1(1), one may equivalently
set

(δGη)ts = −
∫ t

s
dBη

u2
(2)Bη

u2
(1) (0.11)

and

Aη
ts(∂) =

∫ t

s
dBη

u2
(2) . Bη

t (1) = Bη
t (1)(Bη

t (2) − Bη
s (2)). (0.12)

Now δGη diverges when η → 0+, but since it is an increment, it may be
discarded (i.e. it might be used as a counterterm). The problem is, Aη

ts(∂)
converges when η → 0+ in the κ-Hölder norm for every κ < α, but not in
the 2κ-Hölder norm (which is of course well-known and may be seen as the
starting point for rough path theory).

It turns out that a slight adaptation of this poor idea gives the solution.
Decompose Aη

ts into a double integral in the Fourier coordinates ξ1, ξ2 using
(0.8). Use the first increment/boundary decomposition (0.9,0.10) for all
indices |ξ1| ≤ |ξ2|, and the second one (0.11,0.12) if |ξ1| > |ξ2|. Then Aη

ts(∂),
defined as the sum of two contributions, one coming from (0.10) and the
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other from (0.12), does converge in the 2κ-Hölder norm when η → 0+, for
every κ < α.

As for the increment term δGη , defined similarly as the sum of two con-
tributions coming from (0.9) and (0.11), it diverges as soon as α ≤ 1/4, but
may be discarded at will. Actually we use in this article a minimal regu-
larization scheme: only the close-to-diagonal (i.e. ξ1/ξ2 ≈ −1) terms in the
double integral defining δGη make it diverge. Summing over an appropriate
subset, e.g. −ξ1 6∈ [ξ2/2, 2ξ2] yields an increment which converges (for every
α ∈ (0, 1

2)) when η → 0 in the 2κ-Hölder norm for every κ < α.
Let α < 1/4. As noted in [35], the uncorrected Lévy area Aη of the

regularized process Bη converges in law to a Brownian motion when η → 0+

after a rescaling by the factor η
1
2
(1−4α). In the latter article, the following

question was raised: is it possible to define a counterterm Xη living on the
same probability space as fBm, such that (i) the rescaled process η

1
2
(1−4α)Xη

converges in law to Brownian motion; (ii) (Bη,Aη −Xη) is a multiplicative
or almost multiplicative functional in the sense of [23], Definition 7.1; (iii)
Aη − Xη converges in the 2κ-Hölder norm for every κ < α when η → 0 ?
The counterterm Xη := Aη −RAη gives a solution to this problem.

The above ideas have a suitable generalization to iterated integrals
∫

dB(i1) . . .
∫

dB(in) of order n ≥ 3. There is one more difficulty though:

decomposing (Bη)′uj
(ij) into cα

∫

dWξj
(ij)e

iujξje−η|ξj ||ξj |
1
2
−α, an extension

of the first increment/boundary decomposition (0.9, 0.10), together with a
suitable regularization scheme, yield the correct Hölder estimate provided
|ξ1| ≤ . . . ≤ |ξn|. What should one do then if |ξσ(1)| ≤ . . . ≤ |ξσ(n)| for some
permutation σ instead ? The idea is to permute the order of integration by
using Fubini’s theorem, and write

∫ t
s dBη

u1(i1) . . .
∫ un−1

s dBη
un(in) as some it-

erated tree integral
∫

dBη
u1(iσ(1)) . . .

∫

dBη
un(iσ(n)). The integration domain,

in the general case, becomes a little involved, and necessitates the introduc-
tion of combinatorial tools on trees, such as admissible cuts for instance.
The underlying structures are those of the Hopf algebra of decorated rooted
trees [6, 7] (as already noted in [21] or [17]), and of the Hopf shuffle algebra
[27, 28]. The proof of the multiplicative and of the geometric properties
for the regularized rough path, as well as the Hopf algebraic reinterpreta-
tion, are to be found in [36]. The general idea (see subsection 2.5 for more
details) is that the fundamental objects are skeleton integrals (a particular
type of tree integrals) defined in subsection 2.1, and that any regulariza-
tion of the skeleton integrals (possibly even trivial) yielding finite quantities
with the correct Hölder regularity produces a regularized rough path, which
implies a large degree of arbitrariness in the definition. The idea of can-
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celling singularities by building iteratively counterterms, originated from
the Bogolioubov-Hepp-Parasiuk-Zimmermann (BPHZ) procedure for renor-
malizing Feynmann diagrams in quantum field theory [18], mathematically
formalized in terms of Hopf algebras by A. Connes and D. Kreimer, has been
applied during the last decade in a variety of contexts ranging from numer-
ical methods to quantum chromodynamics or multi-zeta functions, see for
instance [21, 28, 38]. We plan to such a (less arbitrary) construction in the
near future (see discussion at the end of subsection 2.5).

The main result of the paper may be stated as follows.

Theorem 0.1 Let B = (B(1), . . . , B(d)) be a d-dimensional fBm of Hurst
index α ∈ (0, 1), defined via the harmonizable representation, with the associ-
ated family of approximations Bη, η > 0 living in the same probability space,
see eq. (0.8). Then there exists a rough path (RB1,η = δBη, . . . ,RB⌊1/α⌋,η)
over Bη (η > 0), living in the chaos of order 1, . . . , ⌊1/α⌋ of B, satisfying
properties (ii) (multiplicative property) and (iii) (geometric property) of the
Introduction, together with the following estimates:

(uniform Hölder estimate) There exists a constant C > 0 such that, for every s, t ∈ R and η > 0,

E|RBn,η
ts (i1, . . . , in)|2 ≤ C|t − s|2nα;

(rate of convergence) there exists a constant C > 0 such that, for every s, t ∈ R and η1, η2 >
0,

E|RBn,η1
ts (i1, . . . , in) −RBn,η2

ts (i1, . . . , in)|2 ≤ C|η1 − η2|2α.

These results imply the existence of an explicit rough path RB over B,
obtained as the limit of RBη when η → 0.

Here is an outline of the article. We first recall briefly some definitions
and preliminary results on algebraic rough path theory in Section 1, which
show in particular that Theorem 0.1 implies the convergence of RBη to a
rough path RB over fractional Brownian motion B when η → 0. Section 2
is dedicated to tree combinatorics and to the introduction of quite general
regularization schemes for the iterated integrals of an arbitrary smooth path
Γ. The proof of the multiplicative and geometric properties are to be found
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in [36] and are not reproduced here. We apply a suitable regularization
scheme to the construction of the regularized rough path RBη in section 3,
and prove the Hölder and rate of convergence estimates of Theorem 0.1 for
the iterated integrals RBn,η(i1, . . . , in) with distinct indices, i1 6= . . . 6= in.
We conclude in Section 4 by showing how to extend these results to coincid-
ing indices, and introducing a new, real-valued, two-dimensional Gaussian
process which we call two-dimensional antisymmetric fractional Brownian
motion, to which the above construction extends naturally.

Notations. The group of permutations of {1, . . . , n} will be denoted
by Σn. The Fourier transform is F : f → Ff(ξ) = 1√

2π

∫

f(x)e−ixξdx. If

|a| ≤ C|b| for some constant C (a and b depending on some arbitrary set of
parameters), then we shall write |a| . |b|.

1 The analysis of rough paths

The present section will be very sketchy since the objects and results needed
in this work have alread been presented in great details in [33]. The fun-
dational paper on the subject of algebraic rough path theory is due to M.
Gubinelli [16], see also [17] for more details in the case α < 1/3. Let us re-
call briefly the original problem motivating the introduction of rough paths.
Let Γ : R → R

d be some fixed irregular (i.e. not differentiable) path, say
κ-Hölder, and f : R → R

d some function which is also irregular (mainly
because one wants to consider functions f obtained as a composition g ◦ Γ
where g : R

d → R
d is regular). Can one define the integral

∫

fxdΓx ? The
answer depends on the Hölder regularity of f and Γ. Assuming f is γ-
Hölder with κ+γ > 1, then one may define the so-called Young integral [23]
∫ t
s fxdΓx as the Riemann sum type limit lim|Π|→0

∑

{tj}∈Π fti(Γti+1 − Γti),

where Π = {s = t0 < . . . < tn = t} is a partition of [s, t] with mesh |Π|
going to 0. Then the resulting path Yt − Ys :=

∫ t
s fxdΓx has the same reg-

ularity as Γ. If κ + γ ≤ 1 instead, this is no more possible in general. One
way out of this problem, giving at the same time a coherent way to solve
differential equations driven by Γ, is to define a class of Γ-controlled paths
Q, such that the above integration problem may be solved uniquely in this
class by a formula generalizing the above Riemann sums, in which formal
iterated integrals Γn(i1, . . . , in) of Γ appear as in the Introduction.

Definition 1.1 (Hölder spaces) Let κ ∈ (0, 1) and T > 0 fixed.

(i) Let Cκ
1 = Cκ

1 ([0, T ], C) be the space of complex-valued κ-Hölder func-

tions f in one variable with (semi-)norm ||f ||κ = sups,t∈[0,T ]
|f(t)−f(s)|

|t−s|κ .
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(ii) Let Cκ
2 = Cκ

2 ([0, T ], C) be the space of complex-valued functions f =
ft1,t2 of two variables vanishing on the diagonal t1 = t2, such that
||f ||2,κ < ∞, where || . ||2,κ is the following norm:

||f ||2,κ = sup
s,t∈[0,T ]

|ft1,t2|
|t − s|κ . (1.1)

(iii) Let Cκ
3 = Cκ

3 ([0, T ], C) be the space of complex-valued functions f =
ft1,t2,t3 of three variables vanishing on the subset {t1 = t2} ∪ {t2 =
t3} ∪ {t1 = t3}, such that ||f ||3,κ < ∞ for some generalized Hölder
semi-norm || . ||3,κ defined for instance in [16], section 2.1.

Definition 1.2 (increments) (i) Let f be a function of one variable:
then the increment of f , denoted by δf , is (δf)ts := f(t) − f(s).

(ii) Let f = fts be a function of two variables: then we define

(δf)tus := fts − ftu − fus. (1.2)

Note that δ ◦ δ(f) = 0 if f is a function of one variable.

Let Γ = (Γ(1), . . . ,Γ(d)) : [0, T ] → R
d be a κ-Hölder path, and (Γ1

ts(i1) :=

Γt(i1) − Γs(i1),Γ
2
ts(i1, i2), . . . ,Γ

⌊1/κ⌋
ts (i1, . . . , i⌊1/κ⌋)) be a rough path lying

above Γ, satisfying properties (i) (Hölder property), (ii) (multiplicativity
property) and (iii) (geometricity property) of the Introduction.

Definition 1.3 (controlled paths) Let z = (z(1), . . . , z(d)) ∈ Cκ
1 for some

κ < α and N = ⌊1/κ⌋ + 1. Then z is called a (Γ-)controlled path if its in-
crements can be decomposed into

δz(i) =

N
∑

n=1

∑

(i1,...,in)

Γn(i1, . . . , in).fn(i1, . . . , in; i) + g0(i) (1.3)

for some remainders g0(i) ∈ CNκ
2 and some paths fn(i1, . . . , in; i) ∈ (Cκ

1 )n

such that

δfn(i1, . . . , in; i) =
N−1−n
∑

l=1

∑

(j1,...,jl)

Γl(j1, . . . , jl).f
l+n(j1, . . . , jl, i1, . . . , in; i) + gn(i1, . . . , in; i), n = 1, . . . , N

(1.4)
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for some remainder terms gn(i1, . . . , in; i) ∈ C
(N−n)κ
2 .

We denote by Qκ the space of all such paths, and by Qα− the intersection
∩κ<αQκ.

We may now state the main result.

Proposition 1.4 (see [17], Theorem 8.5, or [33], Proposition 3.1) Let
z ∈ Qα− . Then the limit

∫ t

s
zxdΓx := lim

|Π|→0

n
∑

k=0

d
∑

i=1



δXtk+1,tk(i)ztk (i) +
N−1
∑

n=1

∑

(i1,...,in)

Γn+1
tk+1,tk

(i1, . . . , in, i)ζn
tk

(i1, . . . , in; i)





(1.5)
exists in the space Qα− .

Assume Γ is a centered Gaussian process, and Γη a family of Gaus-
sian approximations of Γ living in its first chaos. Then the Proposition
below gives very convenient moment conditions for a family of rough paths
(Γη,Γ2,η , . . . ,Γ⌊1/κ⌋,η) to converge in the right Hölder norms when η → 0,
thereby defining a rough path above Γ.

Proposition 1.5 Let Γ be a d-dimensional centered Gaussian process ad-
mitting a version with a.s. α−-Hölder paths. Let N = ⌊1/α⌋. Assume:

1. there exists a family Γη, η → 0+ of Gaussian processes living in the
first chaos of Γ and an overall constant C such that

(i)
E|Γη

t − Γη
s |2 ≤ C|t − s|2α; (1.6)

(ii)
E|Γη

t − Γε
t |2 ≤ C|ε − η|2α; (1.7)

(iii) ∀t ∈ [0, T ], Γη
t

L2

→ Γt when η → 0;

2. there exists a truncated multiplicative functional (Γ1,η
ts = Γη

t−Γη
s ,Γ

2,η
ts , . . . ,ΓN,η

ts )
lying above Γη and living in the n-th chaos of Γ, n = 1 . . . , N , such
that, for every 2 ≤ k ≤ N ,

(i)

E|Γk,η
ts |2 ≤ C|t − s|2kα; (1.8)

11



(ii)

E|Γk,ε
ts − Γk,η

ts |2 ≤ C|ε − η|2α. (1.9)

Then (Γ1,η, . . . ,ΓN,η) converges in L2(Ω;Cκ
2 ([0, T ], Rd)×C2κ

2 ([0, T ], Rd2
)×

. . . × CNκ
2 ([0, T ], RdN

)) for every κ < α to a rough path (Γ1, . . . ,ΓN ) lying
above Γ.

Short proof (see [33], Lemma 5.1, Lemma 5.2 and Prop. 5.4). The
main ingredient is the Garsia-Rodemich-Rumsey (GRR for short) lemma
[14] which states that, if f ∈ Cκ

2 ([0, T ], C),

||f ||2,κ ≤ C

(

||δf ||3,κ +

(∫ T

0

∫ T

0

|fvw|2p

|w − v|2κp+2
dv dw

)1/2p
)

(1.10)

for every p ≥ 1.
Then properties (1.6,1.8) imply by using the GRR lemma for p large

enough, Jensen’s inequality and the equivalence of Lp-norms for processes
living in a fixed Gaussian chaos

E||Γk,η||2,kκ . E||δΓk,η||3,kκ + C. (1.11)

By using the multiplicative property (ii) in the Introduction and induction
on k, E||δΓk,η||3,kκ may in the same way be proved to be bounded by a
constant.

On the other hand, properties (1.6,1.7,1.8,1.9), together with the equiv-
alence of Lp-norms, imply (for every κ < α)

E|Γk,ε
ts − Γk,η

ts |2 . |t − s|2kκ|ε − η|2(α−κ) (1.12)

hence, by the same arguments,

E||Γk,ε − Γk,η||2,kκ . |ε − η|α−κ (1.13)

which shows that Γk,ε is a Cauchy sequence in Ckκ
2 ([0, T ], Rdk

). 2

2 Tree combinatorics and the Fourier normal or-

dering method

2.1 From iterated integrals to trees

It was noted already long time ago [3] that iterated integrals could be en-
coded by trees. This remark has been exploited in connection with the

12



construction of the rough path solution of (partial, stochastic) differential
equations in [17]. The correspondence between trees and itegrated integrals
goes simply as follows.

Definition 2.1 A decorated rooted tree (to be drawn growing up) is a finite
tree with a distinguished vertex called root and edges oriented downwards
(i.e. directed towards the root), such that every vertex wears an integer
label.

If T is a decorated rooted tree, we let V (T) be the set of its vertices
(including the root), and ℓ : V (T) → N be its vertex labeling.

More generally, a decorated rooted forest is a finite set of decorated rooted
trees. If T = {T1, . . . , Tl} is a forest, then we shall write T as the formal
commutative product T1 . . . Tl.

Definition 2.2 Let T be a decorated rooted tree.

• Letting v,w ∈ V (T), we say that v connects directly to w, and write
v → w or equivalently w = v−, if (v,w) is an edge oriented downwards
from v to w. (Note that v− exists and is unique except if v is the root).

• If vm → vm−1 → . . . → v1, then we shall write vm ։ v1, and say that
vm connects to v1. By definition, all vertices (except the root) connect
to the root.

• Let (v1, . . . , v|V (T)|) be an ordering of V (T). Assume that (vi ։ vj) ⇒
(i > j) (in particular, v1 is the root). Then we shall say that the
ordering is compatible with the tree partial ordering defined by ։.

Definition 2.3 (i) Let Γ = (Γ(1), . . . ,Γ(d)) be a d-dimensional smooth
path, and T a decorated rooted tree such that ℓ : V (T) → {1, . . . , d}.
Then IT(Γ) : R

2 → R is the iterated integral defined as

[IT(Γ)]ts :=

∫ t

s
dΓxv1

(ℓ(v1))

∫ x
v
−
2

s
dΓxv2

(ℓ(v2)) . . .

∫ x
v
−
|V (T)|

s
dΓxv|V (T)|

(ℓ(v|V (T)|))

(2.1)
where (v1, . . . , v|V (T)|) is any ordering of V (T) compatible with the tree
partial ordering.

In particular, if T is a trunk tree with n vertices (see Fig. 1) – so that
the tree ordering is total – we shall write

IT(Γ) = Iℓ
n(Γ), (2.2)

13



where

[Iℓ
n(Γ)]ts :=

∫ t

s
dΓx1(ℓ(1))

∫ x1

s
dΓx2(ℓ(2)) . . .

∫ xn−1

s
dΓxn(ℓ(n)). (2.3)

(ii) (generalization) Assume T is a subtree of T̃. Let µ be a Borel measure

on R
T̃. Then

[I
T̃
(µ)]ts :=

∫ t

s

∫ x
v
−
1

s
. . .

∫ x
v
−
|V (T)|

s
µ(dxv1 , . . . , dxv|V (T)|

) (2.4)

is a measure on R
T̃\T.

1

2

n

Figure 1: Trunk tree.

Assume T = T̃ so [I
T̃
(µ)]ts is a number. Then case (i) may be seen

as a particular case of case (ii) with µ = dΓ(ℓ(v1)) ⊗ . . . ⊗ dΓ(ℓ(v|V (T)|)).
Conversely, case (ii) may be seen as a multilinear extension of case (i), and
will turn out to be useful later on for the regularization procedure. Note
however that (i) uses the labels of T while (ii) doesn’t.

The above correspondence extends by (multi)linearity to the algebra of
decorated rooted trees which we shall now introduce.

Definition 2.4 (algebra of decorated rooted trees) (i) Let T be the
free commutative algebra over R generated by decorated rooted trees.
If T1, T2, . . . Tl are (decorated rooted) trees, then the product T1 . . . Tl

is the forest with connected components T1, . . . , Tl.

(ii) Let T
′ =

∑L
l=1 mlTl ∈ T , where ml ∈ R and each Tl = Tl,1 . . . Tl,L(l)

is a forest with labels in the set {1, . . . , d}, and Γ be a smooth d-
dimensional path as above. Then

[IT′(Γ)]ts :=

L
∑

l=1

ml[ITl,1
(Γ)]ts . . . [ITl,L(l)

(Γ)]ts. (2.5)
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Let us now rewrite these iterated integrals by using Fourier transform.

Definition 2.5 (formal integral) Let f : R → R be a smooth, compactly
supported function such that Ff(0) = 0. Then the formal integral

∫ t
f =

−
∫

t f of f is defined as 1√
2π

∫ +∞
−∞ (Ff)(ξ)eitξ

iξ dξ.

Formally one may write:

∫ t

eixξdx =

∫ t

±i∞
eixξdx =

eitξ

iξ
(2.6)

(depending on the sign of ξ). The condition Ff(0) = 0 prevents possible
infra-red divergence when ξ → 0.

The skeleton integrals defined below must be understood in a formal
sense because of the possible infra-red divergences.

Definition 2.6 (skeleton integrals) (i) Let T be a tree with ℓ : T →
{1, . . . , d} and Γ be a d-dimensional compactly supported, smooth path.
Let (v1, . . . , v|V (T)|) be any ordering of V (T) compatible with the tree
partial ordering. Then the skeleton integral of Γ along T is by defini-
tion

[SkIT(Γ)]t =

∫ t

dΓxv1
(ℓ(v1))

∫ x
v
−
2 dΓx2(ℓ(v2)) . . .

∫ x
v
−
|V (T)| dΓxv|V (T)|

(ℓ(v|V (T)|)).

(2.7)

(ii) (multilinear extension, see Definition 2.3) Assume T is a subtree of T̃,

and µ a compactly supported Borel measure on R
T̃. Then

[SkIT(µ)]t =

∫ t ∫ x
v
−
2 . . .

∫ x
v
−
|V (T)| µ(dxv1 , . . . , dxv|V (T)|

) (2.8)

is a measure on R
T̃\T.

Formally again, [SkIT(Γ)]t may be seen as [IT(Γ)]t,±i∞. Note that (de-
noting by µ̂ the partial Fourier transform of µ with respect to (xv)v∈V (T)),
the following equation holds,

[Sk IT(µ)]t = (2π)−|V (T)|/2〈µ̂,
[

Sk IT

(

(xv)v∈V (T) → ei
P

v∈V (T) xvξv

)]

t
〉. (2.9)
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Lemma 2.7 The following formula holds:

[SkIT(Γ)]t = (i
√

2π)−|V (T)|
∫

. . .

∫

RT

∏

v∈V (T)

dξv . eit
P

v∈V (T) ξv

∏

v∈V (T) F(Γ′(ℓ(v)))(ξv)
∏

v∈V (T)(ξv +
∑

w։v ξw)
.

(2.10)

Proof. We use induction on |V (T)|. After stripping the root of T

(denoted by 0) there remains a forest T
′ = T

′
1 . . . T′

J , whose roots are the
vertices directly connected to 0. Assume

[SkIT
′
j
(Γ)]x0 =

∫

. . .

∫

∏

v∈V (T′
j)

dξv . e
ix0

P

v∈V (T
′
j
) ξv

Fj((ξv)v∈T
′
j
). (2.11)

Note that

F





J
∏

j=1

SkIT
′
j
(Γ)



 (ξ) =

∫

P

v∈V (T)\{0} ξv=ξ

∏

v∈V (T)\{0}
dξv

J
∏

j=1

Fj((ξv)v∈V (T′
j)

).

(2.12)
Then

[SkIT(Γ)]t =

∫ t

dΓx0(ℓ(0))

J
∏

j=1

[SkIT
′
j
(Γ)]x0

=
1√
2π

∫ +∞

−∞

dξ

iξ
eitξF



Γ′(ℓ(0))
J
∏

j=1

SkIT
′
j
(Γ)



 (ξ)

=
1√
2π

∫ +∞

−∞
dξ0F(Γ′(ℓ(0)))(ξ0)e

itξ0 .

∫ +∞

−∞

dξ

iξ
eit(ξ−ξ0)

∫

P

v∈V (T)\{0} ξv=ξ−ξ0

dξv

J
∏

j=1

Fj((ξv)v∈V (T′
j)

)

(2.13)

hence the result. 2

Skeleton integrals are the fundamental objects from which regularized
rough paths will be constructed in the next subsections.
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2.2 Coproduct structure and increment-boundary decompo-

sition

Consider for an example the trunk tree T
Idn (see subsection 2.4 for an ex-

planation of the notation) with vertices n → n − 1 → . . . → 1 and labels
ℓ : {1, . . . , n} → {1, . . . , d}, and the associated iterated integral (assuming
Γ = (Γ(1), . . . ,Γ(d)) is a smooth path)

[Iℓ
n(Γ)]ts = [ITIdn (Γ)]ts =

∫ t

s
dΓx1(ℓ(1)) . . .

∫ xn−1

s
dΓxn(ℓ(n)). (2.14)

Cutting T
Idn at some vertex v ∈ {2, . . . , n} produces two trees, LvT

Idn

(left or rather bottom part of T
Idn) and RvT

Idn (right or top part), with
respective vertex subsets {1, . . . , v− 1} and {v, . . . , n}. One should actually
see the couple (LvT

Idn , RvT
Idn) as LvT

Idn ⊗ RvT
Idn sitting in the tensor

product algebra T ⊗T . Then multiplicative property (ii) in the Introduction
reads

[δITIdn (Γ)]tus =
∑

v∈V (TIdn )\{1}
[ILvTIdn (Γ)]tu[IRvTIdn (Γ)]us. (2.15)

On the other hand, one may rewrite [ITIdn (Γ)]ts as the sum of the incre-
ment term

[δG]ts =
∫ t

dΓx1(ℓ(1))
∫ x1 dΓx2(ℓ(2)) . . .

∫ xn−1 dΓxn(ℓ(n))

−
∫ s

dΓx1(ℓ(1))
∫ x1 dΓx2(ℓ(2)) . . .

∫ xn−1 dΓxn(ℓ(n))

(2.16)

and of the boundary term

[ITIdn (Γ)(∂)]ts = −
∑

n1+n2=n

∫ t

s
dΓx1(ℓ(1)) . . .

∫ xn1−1

s
dΓxn1

(ℓ(n1)) .

.

∫ s

dΓxn1+1(ℓ(n1 + 1))

∫ xn1+1

dΓxn1+2(ℓ(n1 + 2)) . . .

∫ xn−1

dΓxn(ℓ(n)).

(2.17)

The above decomposition is fairly obvious for n = 2 (see Introduction)
and obtained by easy induction for general n. Thus (using tree notation this
time)

[ITIdn (Γ)]ts = [δSkITIdn ]ts −
∑

v∈V (TIdn )\{1}
[ILvTIdn (Γ)]ts . [SkIRvTIdn (Γ)]s.

(2.18)
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The above considerations extend to arbitrary trees (or also forests) as
follows.

Definition 2.8 (admissible cuts) 1. Let T be a tree, with set of ver-
tices V (T) and root denoted by 0. If v = (v1, . . . , vJ ), J ≥ 1 is
any totally disconnected subset of V (T) \ {0}, i.e. vi 6։ vj for all
i, j = 1, . . . , J , then we shall say that v is an admissible cut of T, and
write v |= V (T). We let RvT be the sub-forest (or sub-tree if J = 1)
obtained by keeping only the vertices above v, i.e. V (RvT) = v∪{w ∈
V (T) : ∃j = 1, . . . , J, w ։ vj}, and LvT be the sub-tree obtained by
keeping all other vertices.

2. Let T = T1 . . . Tl be a forest, together with its decomposition into trees.
Then an admissible cut of T is a disjoint union v1 ∪ . . .∪ vl, vi ⊂ Ti,
where vi is either ∅, {0i} (root of Ti) or an admissible cut of Ti. By
definition, we let LvT = Lv1T1 . . . Lvl

Tl, RvT = Rv1T1 . . . Rvl
Tl (if

vi = ∅, resp. {0i}, then (Lvi
Ti, Rvi

Ti) := (Ti, ∅), resp. (∅, Ti)).

We exclude by convention the two trivial cuts ∅ ∪ . . . ∪ ∅ and {01} ∪
. . . ∪ {0l}.

See Fig. 2 and 3. Defining the co-product operation ∆ : T → T ⊗ T ,
T → e⊗T+T⊗e+

∑

v|=V (T) LvT⊗RvT (where e stands for the empty tree,
which is the unit of the algebra) yields a coalgebra structure on T which
makes it (once the antipode – which we do not need here – is defined) a Hopf
algebra (see articles by A. Connes and D. Kreimer [6, 7, 8]). The convention
is usuall to write v = c (cut), LvT = Rc(T) (root part), RvT = P c(T) and
∆(T) = e ⊗ T + T ⊗ e +

∑

c P c(T) ⊗ Rc(T) (note the inversion of the order
of the factors in the tensor product).

0

vu
vd

w

w’

Figure 2: Admissible cut.
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0

w

w’

Figure 3: Non-admissible cut.

Eq. (2.15) extends to the general formula (called: tree multiplicative
property), which one can find in [21] or [17],

[δIT(Γ)]tus =
∑

v|=V (T)

[ILvT(Γ)]tu[IRv T(Γ)]us, (2.19)

satisfied by any regular path Γ for any tree T.
Letting formally s = ±i∞ in eq. (2.19) yields

[IT(Γ)]tu = [δSkIT]tu −
∑

v∈V (T)\{0}
[ILvT(Γ)]tu . [SkIRvT(Γ)]u. (2.20)

which generalizes eq. (2.18). Conversely, eq. (2.20) implies the tree
multiplicative property eq. (2.19), as shown in Lemma 2.10 below.

2.3 Regularization procedure

Definition 2.9 (regularization procedure for skeleton integrals) Let
T̃ = {v1 < . . . < v|T̃ |} be a tree, T ⊂ T̃ a subtree, µ a compactly supported

Borel measure on R
T̃ such that suppµ̂ ⊂ {(ξ1, . . . , ξ|V (T̃ )|) | |ξ1| ≤ . . . ≤

|ξ|V (T̃)|}, and Dreg ⊂ R
T a Borel subset.

The (formal) Dreg-regularized skeleton integral RSk IT is the linear map-
ping (see eq. (2.9))

µ → [RSk IT(µ)]t = (2π)−|V (T)|/2〈µ̂,1Dreg (ξ) .
[

Sk IT

(

(xv)v∈V (T) → ei
P

v∈V (T) xvξv

)]

t
〉

(2.21)
where µ̂ is the partial Fourier transform of µ with respect to (xv)v∈V (T).

By assumption we shall only allow Dreg = R if T is a tree reduced to one
vertex.
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Lemma 2.10 (regularization) Let T = T1 . . . Tl be a forest, together with
its tree decomposition. Define by induction on |V (T)| the regularized inte-
gration operator [RIT]ts by

l
∏

j=1







[

δRSk ITj

]

ts
−

∑

v|=V (Tj )

[

RILvTj

]

ts

[

RSk IRv Tj

]

s







(2.22)

Then [RIT]ts satisfies the following tree multiplicative property:

[δRIT]tus =
∑

v|=V (T)

[RILv T]tu . [RIRvT]us . (2.23)

By analogy with eq. (2.16, 2.17, 2.18),
[

δRSk ITj

]

ts
, resp. [RITj

(∂)]ts :=

−∑v|=V (Tj )

[

RILv Tj

]

ts

[

RSk IRv Tj

]

s
may be called the increment, resp. bound-

ary operators associated to the tree Tj.

Remark. By Definition 2.9, the condition [RIT]ts = [IT]ts holds for a
tree reduced to one vertex. This implies in the end that one has constructed
a rough path over the original path Γ.

Proof. If the multiplicative property (2.23) holds for trees, then it
holds automatically for forests since [RIT1...Tl

]ts is the product
∏l

j=1[RITj
]ts.

Hence we may assume that T is a tree, say, with n vertices. Suppose (by
induction) that the above multiplicative property (2.23) holds for all trees
with ≤ n − 1 vertices. Then

[δRIT]tus =
∑

v|=V (T)

(− [δRILv T]tus [RSk IRv T]s + [RILvT]tu [δRSk IRv T]us)

=
∑

v|=V (T)

∑

w|=V (Lv T)

(

−
[

RILw◦Lv (T)

]

tu

[

RIRw◦Lv (T)

]

us
[RSk IRvT]s

+ [RILvT]tu [δRSk IRv T]us) .

(2.24)

Let x = v ∐ w := v ∪ w \ {i ∈ v ∪ w | ∃j ∈ v ∪ w | i ։ j}. Then
one easily proves that Lw ◦ Lv(T) = Lx(T), Rv(T) = Rv ◦ Rx(T) and
Rw ◦ Lv(T) = Lv ◦ Rx(T). Hence

[δRIT]tus =
∑

x|=V (T)

[RILxT]tu



−
∑

v|=V (RxT)

[RILv (RxT)]us[RSk IRv (RxT)]s + [δRSk IRxT]us





=
∑

x|=V (T)

[RILxT]tu[RIRxT]us. (2.25)

2
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2.4 Permutation graphs

Consider now a permutation σ ∈ Σn. Applying Fubini’s theorem yields

Iℓ
n(Γ) =

∫ t

s
dΓx1(ℓ(1))

∫ x1

s
dΓx2(ℓ(2)) . . .

∫ xn−1

s
dΓxn(ℓ(n))

=

∫ t1

s1

dΓxσ(1)
(ℓ(σ(1)))

∫ t2

s2

dΓxσ(2)
(ℓ(σ(2))) . . .

∫ tn

sn

dΓxσ(n)
(ℓ(σ(n))),

(2.26)

with s1 = s, t1 = t and sj ∈ {s}∪{xσ(i), i < j}, tj ∈ {t}∪{xσ(i), i < j} (j ≥
2). Now decompose

∫ tj
sj

dΓxσ(j)
(ℓ(σ(j))) into

(

∫ tj
s −

∫ sj

s

)

dΓxσ(j)
(ℓ(σ(j))) if

sj 6= s, tj 6= t, and
∫ t
sj

dΓxσ(j)
(ℓ(σ(j))) into

(

∫ t
s −

∫ sj

s

)

dΓxσ(j)
(ℓ(σ(j))) if

sj 6= s. Then Iℓ
n(Γ) has been rewritten as a sum of terms of the form

±
∫ τ1

s
dΓx1(ℓ(σ(1)))

∫ τ2

s
dΓx2(ℓ(σ(2))) . . .

∫ τn

s
dΓxn(ℓ(σ(n))), (2.27)

where τ1 = t and τj ∈ {t} ∪ {xi, i < j}, j = 2, . . . , n. Note the renaming of
variables and vertices from eq. (2.26) to eq. (2.27). Encoding each of these
expressions by the forest T with set of vertices V (T) = {1, . . . , n}, label
function ℓ◦σ, roots {j = 1, . . . , n | τj = t}, and oriented edges {(j, j−) | j =
2, . . . , n, τj = xj−}, yields

Iℓ
n(Γ) = ITσ(Γ) (2.28)

for some T
σ ∈ T called permutation graph associated to σ.

Summarizing:

Lemma 2.11 (permutation graphs) To every permutation σ ∈ Σn is
associated a permutation graph

T
σ =

Jσ
∑

j=1

g(σ, j)Tσ
j ∈ T , (2.29)

g(σ, j) = ±1, each forest T
σ
j being provided by construction with a total

ordering compatible with its tree structure, image of the ordering {v1 <
. . . < vn} of the trunk tree T

Idn by the permutation σ. The label function of
T

σ is ℓ ◦ σ, where ℓ is the original label function of T
Idn .
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Example 2.12 Let σ =

(

1 2 3
2 3 1

)

. Then

∫ t

s
dΓx1(ℓ(1))

∫ t2

s
dΓx2(ℓ(2))

∫ t3

s
dΓx3(ℓ(3)) =

−
∫ t

s
dΓx2(ℓ(2))

∫ x2

s
dΓx3(ℓ(3))

∫ x2

s
dΓx1(ℓ(1))

+

∫ t

s
dΓx2(ℓ(2))

∫ x2

s
dΓx3(ℓ(3)) .

∫ t

s
dΓx1(ℓ(1)). (2.30)

Hence T
σ = −T

σ
1 + T

σ
2 is the sum of a tree and of a forest with two compo-

nents (see Fig. 4).

3

3

3

3

2 2

2

2

1 1
1

1

Figure 4: Example 2.12. From left to right: Tσ

1
, Tσ

2
; L{1}T

σ

1
⊗R{1}T

σ

1
; L{1,2}T

σ

1
⊗

R{1,2}T
σ

1

2.5 Fourier normal ordering algorithm

Let Γ = (Γ(1), . . . ,Γ(d)) be a compactly supported, smooth path, and
Γn(i1, . . . , in) some iterated integral of Γ. To regularize Γn(i1, . . . , in), we
shall apply the following algorithm (a priori formal, since skeleton integrals
may be infra-red divergent) :

1. (Fourier projections) Split the measure µ = dΓ(i1)⊗ . . . ⊗ dΓ(in) into
∑

σ∈Σn
F−1 (1Dσ(ξ)µ̂(ξ)), where Dσ = {(ξ1, . . . , ξn) ∈ R

n | |ξσ(1)| ≤
. . . ≤ |ξσ(n)|}, and µ̂ is the Fourier transform of µ. We shall write

µσ := F−1 (1Dσ .µ̂) ◦ σ = F−1 (1DIdn .(µ̂ ◦ σ)) ; (2.31)

2. Rewrite Iℓ
n

(

F−1(1Dσ .µ̂)
)

, where ℓ(j) = ij , as ITσ(µσ) :=
∑Jσ

j=1 g(σ, j)ITσ
j
(µσ),

where T
σ is the permutation graph defined in subsection 2.4;
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3. Replace ITσ(µσ) with some regularized integral as in Definition 2.9 and
Lemma 2.10,

RITσ(µσ) :=

Jσ
∑

j=1

g(σ, j)RITσ
j
(µσ); (2.32)

4. Sum the terms corresponding to all possible permutations, yielding
ultimately

RΓn(i1, . . . , in) =
∑

σ∈Σn

RITσ(µσ). (2.33)

Explicit formulas for Γ = Bη may be found in the following section.

Theorem 2.1 [36]
RΓ satisfies the multiplicative (ii) and geometric (iii) properties defined

in the Introduction.

The proof given in [36] shows actually that any choice of linear maps
[RSkIT]t : µ → [RSkIT(µ)]t such that

(i) [RSkIT1.T2(µ1 ⊗ µ2)]t = [RSkIT1(µ1)]t[RSkIT2(µ2)]t and
(ii) [RSkIT(f)]t = [SkIT(f)]t =

∫ t
f(u) du if T is the trivial tree with

one vertex,
yields a regularized rough path over Γ if Γ is smooth. Hence our ’cut’

Fourier domain construction is arbitrary if convenient. As already said in
the Introduction, it seems natural to look for some more restrictive rules
for the regularization; iterated renormalization schemes (such as BPHZ or
dimensional regularization) are obvious candidates (work in progress). The
question is: is such or such regularization scheme better in any sense ? Con-
trary to the case of quantum field theory where all renormalization schemes
may be implemented by local counterterms, which amount to a change of the
value of the (finite number of) parameters in the functional integral (which
are experimentally measurable), and give ultimately after resumming the
perturbation series one and only one theory, we do not know of any prob-
abilistically motivated reason to choose a particular regularization scheme
here.

3 Rough path construction for fBm: case of dis-

tinct indices

The strategy is now to choose an appropriate regularization procedure, so
that regularized skeleton integrals of Bη are finite and satisfy the uniform
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Hölder and convergence rate estimates given in Theorem 0.1.

3.1 Analytic approximation of fBm

Recall B may be defined via the harmonizable representation [32]

Bt = cα

∫

R

|ξ| 12−α eitξ − 1

iξ
W (dξ) (3.1)

where (Wξ, ξ ≥ 0) is a complex Brownian motion extendeded to R by setting

W−ξ = −W ξ (ξ ≥ 0), and cα = 1
2

√

− α
cos παΓ(−2α) .

We shall use the following approximation of B by a family of centered
Gaussian processes (Bη, η > 0) living in the first chaos of B.

Definition 3.1 (approximation Bη) Let, for η > 0,

Bη
t = cα

∫

R

e−η|ξ||ξ| 12−α eitξ − 1

iξ
W (dξ). (3.2)

The process Bη is easily seen to have a.s. smooth paths. The infinites-
imal covariance E(Bη)′s(B

η)′t may be computed explicitly using the Fourier
transform [11]

FK
′,−
η (ξ) =

1√
2π

∫

R

K
′,−
η (x)e−ixξdx = − πα

2 cos παΓ(−2α)
e−2η|ξ||ξ|1−2α1|ξ|>0,

(3.3)

where K
′,−
η (s − t) := α(1−2α)

2 cos πα (−i(s − t) + 2η)2α−2. By taking the real part
of these expressions, one finds that Bη has the same law as the analytic
approximation of B defined in [34], namely, Bη = Γt+iη +Γt−iη = 2Re Γt+iη,
where Γ is the analytic fractional Brownian motion (see also [33]).

3.2 Choice of the regularization procedure

Let σ ∈ Σn be a permutation. Recall (see Lemma 2.11) that the permutation
graph T

σ may be written as a finite sum
∑Jσ

j=1 g(σ, j)Tσ
j , where each T

σ
j is

a forest which is automatically provided with a total ordering. In the two
following subsections, we shall consider regularized tree or skeleton integrals,
RIT or RSkIT, for a forest T which is one of the T

σ
j .

Definition 3.2 Fix Creg ∈ (0, 1). Let, for T with set of vertices V (T) =
{v1 < . . . < vj},

R
T

+ :=
{

(ξv1 , . . . , ξvj
) ∈ R

T | |ξv1 | ≤ . . . ≤ |ξvj
|}, (3.4)
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R
T

reg :=
{

(ξv1 , . . . , ξvj
) ∈ R

T

+ | ∀v ∈ V (T), |ξv+
∑

w։v

ξw| > Creg max{|ξw|; w ։ v}
}

,

(3.5)
and RIT, resp. RSk IT be the corresponding R

T
reg-regularized iterated, resp.

skeleton integrals as in subsection 2.3.

Condition (3.5) ensures that the denominators in the skeleton integrals
are not too small (see Lemma 2.7).

The following Lemma (close to arguments used in the study of random
Fourier series [20]) is fundamental for the estimates of the following subsec-
tions.

Lemma 3.3 (i) Let F (u) =
∫

R
dWξa(ξ)eiuξ, where |a(ξ)|2 ≤ C|ξ|−1−2β

for some 0 < β < 1: then, for every u1, u2 ∈ R,

E|F (u1) − F (u2)|2 ≤ C ′|u1 − u2|2β. (3.6)

(ii) Let F̃ (η) =
∫

R
dWξa(ξ)e−η|ξ| (η > 0), where |a(ξ)|2 ≤ C|ξ|−1−2β for

some 0 < β < 1: then, for every η1, η2 ∈ R+,

E|F̃ (η1) − F̃ (η2)|2 ≤ C ′|η1 − η2|2β . (3.7)

Proof. Bound |eiu1ξ − eiu2ξ| by |u1 − u2||ξ| for |ξ| ≤ 1
|u1−u2| and by 2

otherwise, and similarly for |e−η1|ξ| − e−η2|ξ||. Note the variance integral is
infra-red convergent near ξ = 0. 2

Remark: Unless |a(ξ)|2 is L1
loc near ξ = 0, only the increments F (u1)−

F (u2), F̃ (η1) − F̃ (η2) are well-defined.

3.3 Estimates for the increment term

In this paragraph, as in the next one, we consider regularized tree integrals
associated to RBn,η(i1, . . . , in) where i1 6= . . . 6= in are distinct indices, so
that B(i1), . . . , B(in) are independent.

Lemma 3.4 (Hölder estimate and rate of convergence) Let T = T
σ
j

for some j, and α < 1/|V (T)|.

1. The skeleton term

[Gη,σ
T

(i1, . . . , in)]u = [RSk IT ((dBη(i1) ⊗ . . . ⊗ dBη(in))σ)]u (3.8)
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(see eq. (2.31)) writes

[Gη,σ
T

(i1, . . . , in)]u = (−icα)|V (T)|
∫

. . .

∫

(ξv)v∈V (T)∈RT
reg

∏

v∈V (T)

dWξv
(iσ(v))

eiu
P

v∈V (T) ξve−η
P

v∈V (T) |ξv|
∏

v∈V (T) |ξv|
1
2
−α

∏

v∈V (T)

[

ξv +
∑

w։v ξw

] .(3.9)

2. It satisfies the uniform Hölder estimate:

E
∣

∣[δGη,σ
T

(i1, . . . , in)]ts
∣

∣

2 ≤ C|t − s|2α|V (T)|. (3.10)

3. (rate of convergence) : there exists a constant C > 0 such that, for
every η1, η2 > 0 and s, t ∈ R,

E
∣

∣[δGη1,σ
T

(i1, . . . , in)]ts − [δGη2 ,σ
T

(i1, . . . , in)]ts
∣

∣

2 ≤ C|η1 − η2|2α.
(3.11)

Proof.

1. Follows from Lemma 2.7 and the definitions of Bη and of regularized
integrals in the previous subsections 2.3 and 3.1.

2. (Hölder estimate)

One may just as well (by multiplying the integral estimates on each
tree component) assume T is a tree, i.e. T is connected.

Let V (T) = {v1 < . . . < v|V (T)|}, so that |ξv1 | ≤ . . . ≤ |ξv|V (T)|
|. Since

every vertex v ∈ V (T) \ {v1} connects to the root v1, one has

|V (T)| . |ξv|V (T)|
| ≥ |ξv1 + . . . + ξv|V (T)|

| > Creg|ξv|V (T)|
|, (3.12)

so that ξ :=
∑

v∈V (T) ξv is comparable to ξv|V (T)|
, i.e. belongs to

[C−1ξv|V (T)|
, Cξv|V (T)|

] if C is some large enough positive constant. Write

[Gη,σ
T

(i1, . . . , in)]u =
∫

R
eiuξa(ξ)dξ.

Vertices at which 2 or more branches join are called nodes, and vertices
to which no vertex is connected are called leaves (see Fig. 5).

The set Br(v1 ։ v2) of vertices from a leaf or a node v1 to a node
v2 (or to the root) is called a branch if it does not contain any other
node. By convention, Br(v1 ։ v2) includes v1 and excludes v2.
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0

1

2

3 4 6

5

Figure 5: 3,4,6 are leaves; 1, 2 and 5 are nodes, 2 and 5 are uppermost; branches
are e.g. Br(2 ։ 1) or Br(6 ։ 1).

Consider an uppermost node n, i.e. a node to which no other node is
connected, together with the set of leaves {w1 < . . . < wJ} above n.

Let pj = |V (Br(wj ։ n))|. Note that

(

|ξn|
1
2−α

ξn+
P

w։n ξw

)2

. |ξwJ
|−1−2α.

Now we proceed to estimate Var a(ξ). On the branch number j from
wj to n,

∫

. . .

∫

|ξv|≤|ξwj
|,v∈Br(wj։n)\{wj}





∏

v∈Br(wj։n)

e−η|ξv||ξv|
1
2
−α

ξv +
∑

w։v ξw





2

. |ξwj
|−1−2αpj (3.13)

and (summing over ξw1, . . . , ξwJ−1
and over ξn)

|ξwJ
|−1−2αpJ

∫

|ξwJ−1
|≤|ξwJ

|
dξwJ−1

|ξwJ−1
|−1−2αpJ−1

(

. . .

(

∫

|ξw1 |≤|ξw2 |
dξw1 |ξw1|−1−2αp1

(

∫

|ξn|≤|ξw1 |
dξn

|ξn|1−2α

ξ2
wJ

))

. . .

)

. |ξwJ
|−(1+2αpj )+[2−2α(1+p1+...+pJ−1)]−2 = |ξwJ

|−1−2αW (n), (3.14)

where W (n) = p1 + . . . + pJ + 1 = |{v : v ։ n}|+ 1 is the weight of n.

One may then consider the reduced tree Tn obtained by shrinking
all vertices above n (including n) to one vertex with weight W (n)
and perform the same operations on Tn. Repeat this inductively
until T is shrunk to one point. In the end, one gets Var a(ξ) .

|ξv|V (T)|
|−1−2α|V (T)| . |ξ|−1−2α|V (T)|. Now apply Lemma 3.3 (i).

3. (rate of convergence)
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Let Xη1,η2
u := [Gη1,σ

T
(i1, . . . , in)]u − [Gη2,σ

T
(i1, . . . , in)]u. Expanding

∏|V (T)|
j=1 e−η1|ξj | −∏|V (T)|

j=1 e−η2|ξj | as

|V (T)|
∑

j=1

e−η2(|ξv1 |+...+|ξvj−1
|)(e−η1|ξvj

| − e−η2|ξvj
|)e

−η1(|ξvj+1 |+...+|ξvV (T)
|)

gives Xη1,η2
u as a sum, Xη1,η2

u =
∑

v∈V (T) Xη1,η2
u (v), where Xη1,η2

u (v) =
∫

dξvbu(ξv)(e
−η1|ξv| − e−η2|ξv|) is obtained from [Gη,σ

T
(i1, . . . , in)]u by

replacing e−η|ξv| with e−η1|ξv| − e−η2|ξv|, and e−η|ξw|, w 6= v either by
e−η1|ξw| or by e−η2|ξw|. We want to estimate Var bu(ξv) uniformly in u.

Fix the value of ξv in the computations in the above proof for the
Hölder estimate. Let wJ be the maximal leaf above v, and n ։ v be
the node just above v if v is not a node, n = v otherwise. Summing
over all nodes above n and taking the variance leads to an expression
bounded by |ξwJ

|−1−2αW (n), where W (n) = |{w : w ։ n}| + 1 is
as before the weight of n. Consider now the corresponding shrunk
tree Tn. Let Tn(v) be the trunk tree defined by Tn(v) = {w ∈ Tn :
w ։ v or v ։ w} ∪ {v}; similarly, let T(v) be the tree defined by
T(v) = {w ∈ T : w ։ v or v ։ w} ∪ {v}, so that Tn(v) is the
corresponding shrunk tree. Sum over all vertices w ∈ Tn(v)\{v}. The
variance of the coefficient of e−η1|ξv| is

S(ξv) .

∫

|ξn|≥|ξv|
dξn|ξn|−1−2αW (n)|ξn|−1−2α

∫

|ξw|≤|ξn|,w∈Tn(v)\{n,v}




∏

w∈Tn(v)\{n,v}
dξw . |ξn|−(1+2α)





.

∫

|ξn|≥|ξv|
dξn|ξn|−2−2α|T(v)| . |ξv|−1−2α|T(v)| (3.15)

if v 6= n, and

S(ξv) . |ξn|−1−2αW (n)

∫

|ξw|≤|ξn|,w∈Tn(v)\{n}

∏

w∈Tn(v)\{n}
|ξn|−(1+2α) . |ξv|−1−2α|T(v)|

(3.16)
if v = n.

Removing the vertices belonging to T(v) from T leads to a forest which
gives a finite contribution to the variance. Hence (by Lemma 3.3 (ii))
E|Xη1,η2

u (v)|2 . |η1 − η2|2α|T(v)|.
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2

The notion of weight W (v) of a vertex v introduced in this proof will be
used again in subsections 3.4 and 4.1.

3.4 Estimates for boundary terms

Let T = T
σ
j for some σ ∈ Σn, and i1 6= . . . 6= in as in the previous subsection.

By multiplying the estimates on each tree component, one may just as well
assume T is a tree, i.e. is connected.

We shall now prove estimates for the boundary term RIT ((dBη(i1) ⊗ . . . ⊗ dBη(in))σ) (∂)
associated to T (see Lemma 2.10).

Lemma 3.5 Let T = T
σ
j for some j (so that n = |V (T)|).

1. (Hölder estimate) The regularized boundary term RIT ((dBη(i1) ⊗ . . . ⊗ dBη(in))σ) (∂)
satisfies:

E |[RIT ((dBη(i1) ⊗ . . . ⊗ dBη(in))σ) (∂)]ts |2 ≤ C|t−s|2α|V (T)| (3.17)

for a certain constant C.

2. (rate of convergence) There exists a positive constant C such that, for
every η1, η2 > 0,

E |[RIT ((dBη1(i1) ⊗ . . . ⊗ dBη1(in))σ) (∂)]ts−
−[RIT ((dBη2(i1) ⊗ . . . ⊗ dBη2(in))σ) (∂)]ts|2 ≤ C|η1 − η2|2α.

(3.18)

Proof.

1. Apply repeatedly Lemma 2.10 to T: in the end, [RIT ((dBη(i1) ⊗ . . . ⊗ dBη(in))σ) (∂)]ts
appears as a sum of ’skeleton-type’ terms of the form (see Figure 6)

Ats := [δRSk ILT]ts . [RSk IRvl
◦Lvl−1

◦...◦Lv1 (T)]s . . . [RSk IRv2◦Lv1 (T)]s[RSk IRv1T
]s

((dBη(i1) ⊗ . . . ⊗ dBη(in))σ) ,

(3.19)

where v1 = (v1,1 < . . . < v1,J1) |= T, v2 |= Lv1T, . . ., vl = (vl,1 <
. . . < vl,Jl

) |= Lvl−1
◦ . . . ◦ Lv1(T) and LT := Lvl

◦ . . . ◦ Lv1(T). In
eq. (3.19) the forest T has been split into a number of sub-forests,
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LT∪
(

∪J
j=1Tj

)

; we call this splitting the splitting associated to Ats for

further reference.

First step.

Let [Bv1
s [ξ]]u

∏J1
j=1 dWξv1,j

(iσ(v1,j )) be the contribution to RSk IRv1T of
all Fourier components such that ξ = (ξv1,1 , . . . , ξv1,J1

), |ξv1,1 | ≤ . . . ≤
|ξv1,J1

| is fixed. For definiteness (see Definition 3.2),

[

RSk IRv1T
((dBη(i1) ⊗ . . . ⊗ dBη(in))σ)

]

u
((xv)v∈Lv1T)

=

∫

. . .

∫

1
R

V (Lv1T)∪v1
+

(

(ξv)v∈V (Lv1T)∪v1

)



Bv1
s [ξ]

J1
∏

j=1

dWξv1,j
(iσ(v1,j ))



 .

.





∏

v∈Lv1T

cαe−η|ξv|eixvξv |ξv|
1
2
−αdWξv

(iσ(v))



 . (3.20)

Then

Var[Bv1
s [ξ]]s .

∫

. . .

∫

∏

v∈v1

dξv



|ξv|−1−2α

∫

. . .

∫

|ξw|≥|ξv|,w∈RvT\{v}

∏

w∈RvT\{v}
|ξw|−1−2α



 ,

(3.21)
hence

Var[Bv1
s [ξ]]s .

∏

v∈v1

|ξv|−2|V (RvT)|α−1. (3.22)

Second step.

More generally, let Bv1,...,vl
s [ξ]

∏Jl

j=1 dWξvl,j
(iσ(vl,j )) be the contribution

to

[RSk IRvl
◦Lvl−1

◦...◦Lv1 (T)]s . . . [RSk IRv2◦Lv1(T)]s[RSk IRv1T
]s ((dBη(i1) ⊗ . . . ⊗ dBη(in))σ)

(3.23)
of all Fourier components such that ξ = (ξvl,1

, . . . , ξvl,Jl
) is fixed. Then

Var(Bv1,...,vl
s [ξ]) .

∏

v∈vl

|ξv|−2|V (RvT)|α−1 (3.24)

(proof by induction on l).

Third step.
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Let V (LT) = {w1 < . . . < wmax}. By definition, Ats =
∫

R
as(Ξ)(eiΞt−

eiΞs)dΞ, with

as(Ξ) =

∫

dξ

∫

. . .

∫

((ξw)w∈V (LT))∈Dξ

∏

w∈V (LT)

dWξw
(iσ(w))

∏

w∈V (LT)(−icα)e−η|ξw ||ξw|
1
2
−α

∏

w∈V (LT)(ξw +
∑

w′։w,w′∈V (LT) ξw′)
Bv1,...,vl

s [ξ]

(3.25)

where Fourier components in Dξ satisfy in particular the following
conditions:

• |ξw +
∑

w′։w,w′∈V (LT) ξw′| > Creg max{|ξw′ | : w′ ։ w,w′ ∈

V (LT)}; in particular,

(

|ξw|
1
2−α

ξw+
P

w′։w,w′∈V (LT) ξw′

)2

. |ξw|−1−2α;

• ∑w∈V (LT) ξw = Ξ;

• for every w ∈ V (LT), |ξw| ≤ |ξwmax | and |ξw| ≤ |ξv| for every
v ∈ R(w) := {v = vl,1, . . . , vl,Jl

| v → w} (note that R(w) may
be empty). See Fig. 6.

0

1

2

4

v2,1

v1,1
v2,2

Figure 6: Here V (LT) = {0, 1, 2, 4}, R(0) = R(4) = ∅, R(1) = {v2,1}, R(2) =
{v2,2}.

Note that |Ξ| . |ξwmax| . |Ξ| since every vertex in V (LT) connects to
the root (see first lines of the proof of Lemma 3.4 (2)).

If w ∈ LT, split R(w) into R(w)> ∪ R(w)<, where R(w)≷ := {v ∈
R(w) | v ≷ wmax}. Summing over indices corresponding to vertices in
RT> := {v = vl,1, . . . , vl,Jl

| v > wmax} = ∪w∈LTR(w)>, one gets (see
again proof of Lemma 3.4 (2))

∏

v∈RT>

∫

|ξv|≥|Ξ|
dξv|ξv|−2|V (RvT)|α−1 . |Ξ|−2α

P

v∈RT>
|V (RvT)|

. (3.26)
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Let w ∈ LT\{wmax} such that R(w)< 6= ∅ (note that R(wmax)< = ∅).
Let R(w)< = {vi1 < . . . < vij}. Then (integrating over (ξv), v ∈
R(w)<)

|ξw|−1−2α

∫

|ξvi1
|≥|ξw|

dξvi1

∫

|ξvi2
|≥|ξvi1

|
dξvi2

. . .

∫

|ξvij
|≥|ξvij−1

|
dξvij

|ξvi1
|−2|V (Rvi1

T)|α−1
. . . |ξvij

|−2|V (Rvij
T)|α−1

. |ξw|−1−2α(1+
P

v∈R(w)<
|V (RvT)|)

.

(3.27)

In other words, each vertex w ∈ LT ’behaves’ as if it had a weight
1+
∑

v∈R(w)<
|V (RvT)|. Hence (by the same method as in the proof of

Lemma 3.4 (2)) Var(as(ξ)) . |Ξ|−1−2α(|V (LT)|+
P

v∈RT<
|V (RvT)|)

. |Ξ|−2α
P

v∈RT>
|V (RvT)|

=
|Ξ|−1−2α|V (T)|. Now apply Lemma 3.3 (i).

2. Similar to the proof of Lemma 3.4 (3). Details are left to the reader.

2

4 End of proof and final remarks

4.1 Estimates: case of coinciding indices

Our previous estimates for E|RBn,η
ts (i1, . . . , in)|2 (Hölder estimate) and

E|RBn,η1
ts (i1, . . . , in) − RBn,η2

ts (i1, . . . , in)|2 (rate of convergence) with i1 6=
. . . 6= in rest on the independence of the Brownian motions W (i1), . . . ,W (in).
We claim that the same estimates also hold true for E|RBn,η(i1, . . . , in)|2
and E|RBn,η1

ts (i1, . . . , in)−RBn,η2
ts (i1, . . . , in)|2 if some of the indices (i1, . . . , in)

coincide, with the same definition of the regularization procedure R. The
key Lemma for the proof is

Lemma 4.1 (Wick’s lemma) (see [22], §5.1.2 and 9.3.4)
Let (X1, . . . ,Xn) be a centered Gaussian vector. Denote by Xi1 ⋄ . . .⋄Xik

(1 ≤ i1, . . . , ik ≤ n) or : Xi1 . . . Xik : the Wick product of Xi1 , . . . ,Xik (also
called: normal ordering of the product Xi1 . . . Xik), i.e. the projection of the
product Xi1 . . . Xik onto the k-th chaos of the Gaussian space generated by
X1, . . . ,Xn. Then:
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1.

X1 . . . Xn = X1 ⋄ . . . ⋄ Xn +
∑

(i1,i2)

E[Xi1Xi2 ]X1 ⋄ . . . ⋄ X̌i1 ⋄ . . . ⋄ X̌i2 ⋄ . . . ⋄ Xn

+ . . . +
∑

(i1,i2),...,(i2k+1,i2k+2)

E[Xi1Xi2 ] . . . E[Xi2k+1
Xi2k+2

]

X1 ⋄ . . . ⋄ X̌i1 ⋄ . . . ⋄ X̌i2 ⋄ . . . ⋄ X̌i2k+1
⋄ . . . ⋄ X̌i2k+2

⋄ . . . ⋄ Xn

+ . . . , (4.1)

where the sum ranges over all partial pairings of indices (i1, i2), . . . , (i2k+1, i2k+2)
(1 ≤ k ≤ ⌊n

2 ⌋ − 1).

2. For every set of indices i1, . . . , ij , i
′
1, . . . , i

′
j ,

E

[

(Xi1 ⋄ . . . ⋄ Xij )(Xi′ ⋄ . . . ⋄ Xi′j
)
]

=
∑

σ∈Σj

j
∏

m=1

E[XimXi′
σ(m)

]. (4.2)

In our case (considering RBn,η
ts (i1, . . . , in)) we get a decomposition of the

product dWξ1(i1) . . . dWξn
(in) into dWξ1(i1) ⋄ . . . ⋄ dWξn

(in), plus the sum
over all possible non-trivial pair contractions, schematically 〈W ′

ξj
(ij)W

′
ξj′

(ij′)〉 =

δ0(ξj + ξj′)δij ,ij′ .

Consider first the normal ordering of RBn,η
ts (i1, . . . , in). As in the proof

of Lemma 5.10 in [33], let Σi be the ’index-fixing’ subgroup of Σn such that
: σ′ ∈ Σi ⇐⇒ ∀j = 1, . . . , n, iσ′(j) = ij . Then (by Wick’s lemma and the
Cauchy-Schwarz inequality) :

Var : RBn,η
ts (i1, . . . , in) := E |: RBn,η

ts (i1, . . . , in) :|2

=
∑

σ′∈Σi

E
[

: RBn,η
ts (1, . . . , n) : : RBn,η

ts (σ′(1), . . . , σ′(n)) :
]

≤ |Σi| . E|RBn,η(1, . . . , n)|2, (4.3)

hence the Hölder and rate estimates of section 3 also hold for
: RBn,η(i1, . . . , in) :.

One must now prove that the estimates of section 3 hold true for all pos-
sible contractions of RBn,η(i1, . . . , in). Fixing some non-trivial contraction
(j1, j2), . . . , (j2l−1, j2l), l ≥ 1, results in an expression Xcontr

ts belonging to
the chaos of order n − 2l. By necessity, ij1 = ij2 , . . . , ij2l−1

= ij2l
, but it

may well be that there are other index coincidences. The same reasoning
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as in the case of : RBn,η
ts (i1, . . . , in) : (see eq. (4.3)) shows that one may

actually assume im 6= im′ if m 6= m′ and {m,m′} 6= {j1, j2}, . . . , {j2l−1, j2l}.
Now (as we shall presently prove) the tree integrals related to the contracted
iterated integral Xcontr

ts may be estimated by considering the tree integrals
related to X̌ts := RBn−2l,r

ts (i1, . . . , ˇij1 , . . . , ˇij2l
, . . . , in) (which has same law

as RBn−2l,r
ts (1, . . . , n− 2l)) and (following the idea introduced in the course

of the proof of Lemma 3.4) increasing by one the weight W of some other
(possibly coinciding) indices j′1, . . . , j

′
2l 6= j1, . . . , j2l – or, in other words, ’in-

serting’ a factor |ξj′1
|−2α . . . |ξj′2l

|−2α in the variance integrals –. This amounts

in the end to increasing the Hölder regularity (n−2l)α− of X̌ts by 2lα, which
gives the expected regularity.

Fix some permutation σ ∈ Σn, and consider the integral over the Fourier
domain |ξσ(1)| ≤ . . . ≤ |ξσ(n)| as in section 2. Change as before the order
of integration and the names of the indices so that dWξσ(j)

(ij) → dWξj
(iσ(j));

for convenience, we shall still index the pairing indices as (j1, j2), . . . , (j2l−1, j2l).
We may assume that |j2k−1 − j2k| = 1, k = 1, . . . , l (otherwise |ξm| =
|ξj2k−1

| = |ξj2k
| for j2k−1 < m < j2k or j2k < m < j2k−1, which corresponds

to a Fourier subdomain of zero Lebesgue measure). In the sequel, we fix
σ ∈ Σn and (j, j′) = (j2k−1, j2k) for some k.

Let T̃ = T̃1 . . . T̃L be a forest appearing in the decomposition of the
permutation graph T

σ as in subsection 2.4. Applying repeatedly Lemma
2.10 to T̃ leads to a sum of terms obtained from the contraction of Ats =

Ats(1) . . . Ats(L), with Ats(k) = [δRSk ILT̃k
]ts
∏

j [RSk IT′
k,j

]s

((

⊗v∈V (T̃k)dBη(iv)
)σ)

,

where LT̃k, T
′
k,1, . . . , T

′
k,j, . . . are all subtrees appearing in the splitting as-

sociated to Ats(k) (see proof of Lemma 3.5).
Let T be one of the above trees, either LT̃k or T

′
k,j. Reconsider the proof

of the Hölder estimate or rate of convergence in Lemma 3.4 or Lemma 3.5.

The integrals
[

Sk I
(

(xv)v∈V (T) → ei
P

v∈V (T) xvξv

)]

u
appearing in the defini-

tion of the regularized skeleton integrals write i−|V (T)| e
iu

P

v∈V (T) ξv
Q

v∈V (T)(ξv+
P

w։v ξw)

(see Lemma 2.7). After the contractions, one must sum over Fourier in-
dices (ξv)v∈V (T) such that (ξv)v∈V (T) ∈ R

T
reg and ξj2m−1 = −ξj2m

if both
j2m−1, j2m ∈ V (T).

Let Ť be the contracted tree obtained by ’skipping’ {j1, . . . , j2l}∩ V (T)
while going down the tree T (see Fig. 7, 8, 9).

The denominator |ξv+
∑

w∈T,w։v ξw| is larger (up to a constant) than the
denominator |ξv +

∑

w∈Ť,w։v ξw| obtained by considering the same term in

the contracted tree integral X̌ts (namely, |ξv +
∑

w∈T,w։v ξw| is of the same
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Figure 7: Case (i-a). T and Ť.
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Figure 8: Case (i-b). T and Ť.

order as max{|ξw|;w ∈ T, w ։ v} ≥ max{|ξw|;w ∈ Ť, w ։ v}). Hence
E(Acontr

ts )2 may be bounded in the same way as EA2
ts in the proof of Lemma

3.4 or Lemma 3.5, except that each term in the sum over (ξv, v ∈ V (T), v 6=
j1, . . . , j2l) comes with an extra multiplicative pre-factor S = S((ξv), v ∈
V (T), v 6= j1, . . . , j2l) – due to the sum over (ξjm)m=1,...,2l – which may be
seen as an ’insertion’.

Let us estimate this prefactor. We shall assume for the sake of clarity
that there is a single contraction (j1, j2) = (j, j′) (otherwise the prefactor
should be evaluated by contracting each tree in several stages, ’skipping’
successively (j1, j2), . . . , (j2l−1, j2l) by pairs). As already mentioned before,
|j − j′| = 1 so that j and j′ must be successive vertices if they belong to
the same branch of the same tree T. Note that, if j and j′ are on the same
tree, the Fourier index Ξ :=

∑

v∈V (T) ξv (used in the Fourier decomposition
of Lemma 3.4 or in the third step of Lemma 3.5) is left unchanged since
ξj + ξj′ = 0.

Case (i): (j, j′) belong to unconnected branches of the same tree T. This
case splits into three different subcases:

(i-a) neither j nor j′ is a leaf. Let w, resp. w′ be the leaf above j, resp. j′

of maximal index and assume (without loss of generality) that |ξw| ≤
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Figure 9: Case (i-c). T and Ť.

|ξw′ |. Then

S .

(

∫

|ξj |≤|ξw|
dξj

|ξj |1−2α

|ξwξw′|

)2

.

(

∫

|ξj |≤|ξw|
dξj |ξw|−1−2α

)2

. |ξw|−4α

(4.4)

which has the effect of increasing the weight W (w) by 2.

(i-b) j is a leaf, j′ is not. Let w′ be the leaf of maximal index above j′.
Then

S ≤
(

∫

|ξj |≤|ξw′ |
dξj

|ξj |1−2α

|ξjξw′ |

)2

.

(

1

|ξw′ |

∫

|ξj |≤|ξw′ |
dξj |ξj|−2α

)2

. |ξw′ |−4α.

(4.5)

(i-c) both j and j′ are leaves. Let v, resp. v′ be the vertex below j, resp.
j′, i.e. j → v, j′ → v′. Then

S .

(

∫

|ξj |≥max(|ξv|,|ξv′ |)
dξj|ξj |−1−2α

)2

. |ξv|−4α (4.6)

which has the effect of increasing W (v) by 2.

Case (ii): (j, j′) are successive vertices on the same branch of the same
tree T. Assume (without loss of generality) that j → j′. Then S = 0 if j is
a leaf (since ξj′ +

∑

w։j′ ξw = ξj + ξj′ = 0 and such indices fail to meet the

condition defining R
T
reg), otherwise S . |ξw|−4α if w is the leaf of maximal

index above j (by the same argument as in case (i-a)).
Case (iii): (j, j′) belong to two different trees, T and T

′.
This case is a variant of case (i). Nothing changes compared to case (i)

unless (as in the proof of Lemma 3.4 or in the 3rd step of Lemma 3.5) one

36



needs to compute the variance of the coefficient a(Ξ) or as(Ξ) of eiuΞ for Ξ
fixed. Assume j belongs to the tree T = LT̃k while j′ is on one of the cut
trees T

′
k,1, . . . , T

′
k,j, . . .

Assume first j is not a leaf, and let w be the leaf above j. Then the
presence of the extra vertex j modifies the Fourier index Ξ in the Fourier
decomposition of Acontr

ts (k), Acontr
ts (k) =

∫

R
a(Ξ)(eiΞt−eiΞs)dΞ or Acontr

ts (k) =
∫

R
as(Ξ)(eiΞt−eiΞs)dΞ, by a factor which is bounded and bounded away from

0, hence S . |ξw|−4α as in case (i-a).

If j is a leaf as in case (i-b) – while w′ is as before the leaf of maximal
index over j′ –, one has: |ξj | . |Ξ| . |ξj|. Hence the sum over ξj contributes
an extra multiplicative pre-factor S to the variance of the coefficient of a(Ξ)
or as(Ξ) of order

S .

(

∫

|Ξ|/2≤|ξj |≤2|Ξ|
dξj

|ξj|1−2α

|ξjξw′ |

)2

.

(

∫

|Ξ|/2≤|ξj|≤2|Ξ|
|ξj|−1−2α

)2

. |Ξ|−4α,

(4.7)
which increases the Hölder index by 2α (see Lemma 3.3).

The case when both j and j′ belong to left parts LT̃k, LT̃k′ is similar
and left to the reader. 2

This concludes at last the proof of Theorem 0.1.

4.2 A remark: about the two-dimensional antisymmetric

fBm

Consider a one-dimensional analytic fractional Brownian motion Γ as in [33].

Definition 4.2 Let Zt = (Zt(1), Zt(2)) = (2Re Γt, 2Im Γt), t ∈ R. We
call this new centered Gaussian process indexed by R the two-dimensional
antisymmetric fBm.

Its paths are a.s. α−-Hölder. The marginal processes Z(1), Z(2) are
usual fractional Brownian motions. The covariance between Z(1) and Z(2)
writes (see [33])

Cov(Zs(1), Zt(2)) = −tan πα

2
[−sgn(s)|s|2α +sgn(t)|t|2α−sgn(t−s)|t−s|2α].

(4.8)
Note that we never used any particular linear combination of the analytic/anti-

analytic components of B in the estimates of section 3 and 4. Hence these
also hold for Z, which gives for free a rough path over Z satisfying Theorem
0.1 of the Introduction.
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Sci. Math., 126 (3), 193–239, and (II), Bull. Sci. Math., 126 (4), 249–
288 (2002).

[13] P. Friz, N. Victoir: Multidimensional dimensional processes seen as
rough paths. Cambridge University Press, to appear.

38



[14] A. Garsia. Continuity properties of Gaussian processes with multidi-
mensional time parameter, Proceedings of the Sixth Berkeley Sympo-
sium on Mathematical Statistics and Probability Vol. II: Probability
theory, 369–374. Univ. California Press (1972).

[15] M. Gradinaru, I. Nourdin, F. Russo, P. Vallois, m-order integrals and
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