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A stochastic calculus for multidimensional
fractional Brownian motion with arbitrary Hurst

index

Jérémie Unterberger

We construct in this article an explicit rough path over a multi-dimensional
fractional Brownian motion B with arbitrary Hurst index H (in particular,
for H < 1/4) by regularizing an associated random Fourier series defined
in [32]. The regularization procedure is applied to ’Fourier normal ordered’
iterated integrals obtained by permuting the order of integration so that in-
nermost integrals have highest Fourier modes. The algebraic properties of
this rough path are best understood using the Hopf algebra structure of the
algebra of decorated rooted trees. Rough path theory gives then a general
procedure to define a stochastic calculus and solve stochastic differential
equations driven by this very irregular process. A variant of our regular-
ization scheme is also expected to apply to arbitrary deterministic Hölder
paths.

The last section is also dedicated to the definition of a related two-dimensional
Gaussian process, called antisymmetric two-dimensional fractional Brown-

ian motion, with the same regularity as B but with dependent components,
to which the above construction extends naturally.
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0 Introduction

The (two-sided) fractional Brownian motion t → Bt, t ∈ R (fBm for short)
with Hurst exponent α, α ∈ (0, 1), defined as the centered Gaussian process
with covariance

E[BsBt] =
1

2
(|s|2α + |t|2α − |t − s|2α), (0.1)

is a natural generalization in the class of Gaussian processes of the usual
Brownian motion (which is the case α = 1

2 ), in the sense that it exhibits
two fundamental properties shared with Brownian motion, namely, it has
stationary increments, viz. E[(Bt−Bs)(Bu−Bv)] = E[(Bt+a−Bs+a)(Bu+a−
Bv+a)] for every a, s, t, u, v ∈ R, and it is self-similar, viz.

∀λ > 0, (Bλt, t ∈ R)
(law)
= (λαBt, t ∈ R). (0.2)

One may also define a d-dimensional vector Gaussian process (called: d-
dimensional fractional Brownian motion) by setting Bt = (Bt(1), . . . , Bt(d))
where (Bt(i), t ∈ R)i=1,...,d are d independent (scalar) fractional Brownian
motions.

Its theoretical interest lies in particular in the fact that it is (up to
normalization) the only Gaussian process satisfying these two properties.

A standard application of Kolmogorov’s theorem shows that fBm has
a version with α−-Hölder continuous (i.e. κ-Hölder continuous for every
κ < α) paths. In particular, fBm with small Hurst parameter α is a natural,
simple model for continuous but very irregular processes.

There has been a widespread interest during the past ten years in con-
structing a stochastic integration theory with respect to fBm and solv-
ing stochastic differential equations driven by fBm, see for instance [23,
15, 5, 28, 29]. The multi-dimensional case is very different from the one-
dimensional case. When one tries to integrate for instance a stochastic
differential equation driven by a two-dimensional fBm B = (B(1), B(2)) by
using any kind of Picard iteration scheme, one encounters very soon the
problem of defining the Lévy area of B which is the antisymmetric part of
Ats :=

∫ t
s dBt1(1)

∫ t1
s dBt2(2). This is the simplest occurrence of iterated

integrals Bk
ts(i1, . . . , ik) :=

∫ t
s dBt1(i1) . . .

∫ tk−1

s dBtk(ik), i1, . . . , ik ≤ d for
d-dimensional fBm B = (B(1), . . . , B(d)) which lie at the heart of the rough
path theory due to T. Lyons, see [24, 25]. An alternative construction has
been given in [16] under the name of ’algebraic rough path theory’, which
we now propose to describe briefly.
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Assume Γt = (Γt(1), . . . ,Γt(d)) is some non-smooth d-dimensional path
which is α-Hölder continuous. Integrals such as

∫

f1(Γt)dΓt(1) + . . . +
fd(Γt)dΓt(d) do not make sense a priori because Γ is not differentiable
(Young’s integral [22] works for α > 1

2 but not beyond). In order to de-
fine the integration of a differential form along Γ, it is enough to define a
truncated multiplicative functional or rough path (Γ1, . . . ,Γ⌊1/α⌋) lying above
Γ, ⌊1/α⌋=entire part of 1/α, where Γ1

ts = (δΓ)ts := Γt −Γs is the increment
of Γ between s and t, and each Γk = (Γk(i1, . . . , ik))1≤i1,...,ik≤d, k ≥ 2 is a

substitute for the iterated integrals
∫ t
s dΓt1(i1)

∫ t1
s dΓt2(i2) . . .

∫ tk−1

s dΓtk(ik)
with the following two properties:

(i) (Hölder continuity) each component of Γk is kα−-Hölder continuous,
that is to say, kκ-Hölder for every κ < α;

(ii) (multiplicativity) letting δΓk
tus := Γk

ts − Γk
tu − Γk

us, one requires

δΓk
tus(i1, . . . , ik) =

∑

k1+k2=k

Γk1
tu(i1, . . . , ik1)Γ

k2
us(ik1+1, . . . , ik). (0.3)

If furthermore the following property holds

(iii) (geometricity)

Γn1
ts (i1, . . . , in1)Γ

n2
ts (j1, . . . , jn2) =

∑

k∈Sh(i,j)

Γn1+n2
ts (k1, . . . , kn1+n2)

(0.4)
where Sh(i, j) is the subset of permutations of i1, . . . , in1 , j1, . . . , jn2

which do not change the orderings of (i1, . . . , in1) and (j1, . . . , jn2),

then Γ is called a geometric rough path.
The multiplicativity property implies in particular the following identity

for the (non anti-symmetrized) Lévy area:

Ats = Atu + Aus + (Bt(1) − Bu(1))(Bu(2) − Bs(2)) (0.5)

while the geometric property implies

∫ t

s
dBt1(1)

∫ t1

s
dBt2(2) +

∫ t

s
dBt2(2)

∫ t2

s
dBt1(1)

=

(
∫ t

s
dBt1(1)

)(
∫ t

s
dBt2(2)

)

= (Bt(1) − Bs(1))(Bt(2) − Bs(2)).

(0.6)
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Then there is a standard procedure which allows to define out of these
data iterated integrals of any order and to solve differential equations driven
by Γ.

The multiplicativity property (0.3) and the geometric property (0.4) are
satisfied by smooth paths, as can be checked by direct computation. So the
most natural way to construct such a multiplicative functional is to start

from some smooth approximation Γ(η), η
>→ 0 of Γ such that each iterated

integral Γk
ts(η)(i1, . . . , ik), k ≤ ⌈q⌉ converges in the kκ-Hölder norm for every

κ < α.
This general scheme has been applied to fBm in a paper by L. Coutin and

Z. Qian [9] and later in a paper by the author [32], using different schemes
of approximation of B by Bη with η → 0. In both cases, the variance of the
Lévy area has been proved to diverge in the limit η → 0 when α ≤ 1/4.

The approach developed in [32] makes use of a complex-analytic process
Γ defined on the upper half-plane Π+ = {z = x + iy | y > 0}, called Γ-
process or better analytic fractional Brownian motion (afBm for short) [31].
Fractional Brownian motion Bt appears as the real part of the boundary

value of Γz when Im z
>→ 0. A natural approximation of Bt is then obtained

by considering
Bη

t := Γt+iη + Γt+iη = 2Re Γt+iη (0.7)

for η
>→ 0.

The so-called analytic iterated integrals

∫ t

s
f1(z1)dΓz1(1)

∫ z1

s
f2(z2)dΓz2(2) . . .

∫ zd−1

s
fd(zd)dΓzd

(d)

(where f1, . . . , fd are analytic functions), defined a priori for s, t ∈ Π+ by
integrating over complex paths wholly contained in Π+, converge to a finite
limit when Im s, Im t → 0 [32], which is the starting point for the construc-
tion of a rough path associated to Γ [31]. The main tool for proving this
kind of results is analytic continuation.

Computing iterated integrals associated to Bt = 2 limη→0 Re Γt+iη in-
stead of Γ yields analytic iterated integrals, together with mixed integrals
such as for instance

∫ t
s dΓz1(1)

∫ z1

s dΓz2(2). For these the analytic continu-
ation method may no longer be applied because Cauchy’s formula fails to
hold, and the above quantities may be shown to diverge when Re s,Re t →
0, see [32, 33].

We shall use here instead (essentially for convenience) a series decompo-
sition of Γ also introduced in [32]. Let D := {z ∈ C | |z| < 1} be the unit
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disk. We denote by Φ : Π+ → D, z 7→ ζ := Φ(z) = z−i
z+i the Cayley transform

(which is a biholomorphism). Letting

Γ̃′
ζ := (1 − ζ)2αΓ′

Φ−1(ζ) (0.8)

(essentially a trivial time-change), we obtain a new process Γ̃′, called unit-
disk Γ-process or unit-disk analytic fractional Brownian motion, which lives
on the open unit disk. This process may be written as a random entire series
as follows:

Γ̃′
ζ :=

∑

k≥0

ak+1ζ
kξk+1, (0.9)

where:
– (ξk)k≥1 is a sequence of independent standard complex Gaussian vari-

ables, i.e. E[ξjξk] = 0, E[ξj ξ̄k] = δj,k;

– the coefficients ak+1 = cα

√

(2−2α)k

k! (with cα = 2α−1
√

α(1−2α)
2 cos πα ) scale

like k
1
2
−α when k → ∞ (by definition, (2− 2α)k = (2− 2α)(3 − 2α) . . . (1−

2α + k) ∼k→∞ k1−2α . k! is Pochhammer’s symbol).
Then the integrated series

Γ̃ζ :=
∑

k≥1

ak
ζk

k
ξk, ζ = reiθ (0.10)

may be shown to converge in the κ-Hölder norm (for every κ < α) to a
κ-Hölder process on the unit circle C when r → 1−, which is simply the
associated random Fourier series

Γ̃eiθ =
∑

k≥1

ak

k
eikθξk. (0.11)

Such random Fourier series have been extensively studied, see for instance
J.-P. Kahane’s book [20], where it is shown in particular that

∑

k∈Z
bke

ikθξk

converges a.s. to an α−-Hölder continuous random function provided |bk|2 =
O(k−1−2α) when k → ∞ (which is the case here).

We then let
B̃eiθ = 2Re Γ̃eiθ ; (0.12)

this α−-Hölder process is naturally approximated by B̃r
eiθ = 2Re Γ̃reiθ . We

thus obtain a variant of fBm, B̃, together with a family of real-analytic
approximations B̃r, r → 1− of B̃ which is very closely related to fBm B and
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its family of approximations Bη; note however the change of origin: B̃0 = 0
but B̃Φ(0) = B̃−1 6= 0 whereas B0 = 0 by definition.

Let us explain first how to define a Lévy area for B̃. As mentioned before,
the uncorrected area Ãr

τσ :=
∫ τ
σ dB̃r

ζ1
(1)
∫ ζ1
σ dB̃r

ζ2
(2) diverges when r → 1−.

The idea is now to find some increment counterterm (δZr)τσ = Zr
τ −Zr

σ such
that the regularized area RÃr

τσ := Ãr
τσ − (δZr)τσ converges when r → 1−.

Note that the multiplicativity property (0.5) holds for RÃr as well as for
Ãr since (δZr)τσ = (δZr)τu + (δZr)uσ . This counterterm X may be found
by using a suitable decomposition of Ãr

τσ into the sum of :
– an increment term, (δG)τσ ;
– a boundary term denoted by Ãr

τσ(∂).
The simplest idea one could think of would be to set

(δG)τσ =

∫ τ

σ
dB̃r

ζ1(1)B̃
r
ζ1(2), (0.13)

and

Ãr
τσ(∂) = −

∫ τ

σ
dB̃r

ζ1(1) . B̃r
σ(2) = −B̃r

σ(2)(B̃r
τ (1) − B̃r

σ(1)). (0.14)

Alternatively, rewriting Ãr
τσ as

∫ τ
σ dB̃r

ζ2
(2)
∫ τ

ζ2
dB̃r

ζ1
(1), one may equivalently

set

(δG)τσ = −
∫ τ

σ
dB̃r

ζ2(2)B̃
r
ζ2(1) (0.15)

and

Ãr
τσ(∂) =

∫ τ

σ
dB̃r

ζ2(2) . B̃r
τ (1) = B̃r

τ (1)(B̃
r
τ (2) − B̃r

σ(2)). (0.16)

Now δG diverges when r → 1−, but since it is an increment, it may be
discarded (i.e. it might be used as a counterterm). The problem is, Ãr

τσ(∂)
converges when r → 1− in the κ-Hölder norm for every κ < α, but not in
the 2κ-Hölder norm (which is of course well-known and may be seen as the
starting point for rough path theory).

It turns out that a slight adaptation of this poor idea gives the solution.
Decompose Ãr

τσ into a double series in k1, k2 using (0.9). Use the first
increment/boundary decomposition (0.13,0.14) for all indices k1 ≤ k2, and
the second one (0.15,0.16) if k1 > k2. Then Ãr

τσ(∂), defined as the sum as
two contributions, one coming from (0.14) and the other from (0.16), does
converge in the 2κ-Hölder norm when r → 1−, for every κ < α.
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As for the increment term δG defined similarly as the sum of two contri-
butions coming from (0.13) and (0.15), it diverges, but may be discarded at
will. Actually we use in this article a minimal regularization scheme: only
the close-to-diagonal (i.e. k1/k2 ≈ 1) terms in the double series defining δG
make it diverge. Summing over an appropriate subset, e.g. k1 6∈ [k2/2, 2k2]
yields an increment which converges in the 2κ-Hölder norm for every κ < α.
More precisely still, only the mixed term coming from the iterated inte-

gral
∫

dΓ̃(1)
∫

d
(

Γ̃(2)
)

is problematic, the analytic integrals
∫

dΓ̃(1)
∫

dΓ̃(2)

needing no regularization whatsoever.
Let α < 1/4. As noted in [33], the uncorrected Lévy area Aη of the

regularized process Bη converges in law to a Brownian motion when η → 0+

after a rescaling by the factor η
1
2
(1−4α). In the latter article, the following

question was raised: is it possible to define a counterterm Xη living on the
same probability space as fBm, such that (i) the rescaled process η

1
2
(1−4α)Xη

converges in law to Brownian motion; (ii) (Bη,Aη −Xη) is a multiplicative
or almost multiplicative functional in the sense of [22], Definition 7.1; (iii)
Aη −Xη converges in the 2κ-Hölder norm for every κ < α when η → 0 ? A
suitable time-change of the above defined counterterm δZr gives a solution
to this problem.

The above ideas have a suitable generalization to integrated integrals
∫

dB̃(i1) . . .
∫

dB̃(in) of order n ≥ 3. There is one more difficulty though:

decomposing (B̃r)′ζj
(ij) into 2Re

∑

kj≥0 akj+1
ζ

kj

j ξkj+1
(ij), a straightforward

extension of the first increment/boundary decomposition (0.13,0.14) yields
the correct Hölder estimate provided k1 ≤ . . . ≤ kn. What should one do
then if kε(1) ≤ . . . ≤ kε(n) for a suitable permutation ε instead ? The idea is

to permute the order of integration and write
∫ τ
σ dB̃ζ1(i1) . . .

∫ ζn−1

σ dB̃ζn
(in)

as some iterated integral
∫

dB̃ζ1(iε(1)) . . .
∫

dB̃ζn
(iε(n)). The integration do-

main, in the general case, becomes a little involved, and necessitates the
introduction of combinatorial tools on graphs and trees, such as admissible
cuts, skeletons, etc. Our terminology is inspired from the renormalization
of Feynmann graphs. The underlying structure (as already noted in [17]) is
that of the Hopf algebra of decorated rooted trees, see for instance [12] or
[19] or references in section 6).

We show in the last section that the above rough path construction
extends naturally to the two-dimensional process Zt = (Zt(1), Zt(2)) :=
(2Re Γt, 2Im Γt), t ∈ R, where Γ is a one-dimensional analytic fractional
Brownian motion of Hurst index α. Both components of Z are fBm, but
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they are correlated in a non-trivial way. Since Cov(Γ,Γ) = 0, the covari-
ance matrix Cov(Z(1), Z(2)) (which is the imaginary part of the Hermitian
covariance kernel of Γ) is antisymmetric, hence we suggest to call Z the
antisymmetric two-dimensional fBm. This ’new’ process is, so we believe,
as fundamental as the usual two-dimensional fBm.

The main result of the paper may be stated as follows. Recall C = {ζ ∈
C | |ζ| = 1} is the unit circle.

Theorem 0.1 Let Γ̃ = (Γ̃(1), . . . , Γ̃(d)) be a d-dimensional unit-disk ana-
lytic fBm of Hurst index α, with real part B̃ = (B̃(1), . . . , B̃(d)). Then there
exists a rough path (RB̃1,r = δB̃r, . . . ,RB̃⌊1/α⌋,r) over B̃r (r < 1), living in
the chaos of order 1, . . . , ⌊1/α⌋ of Γ̃, satisfying properties (ii) (multiplicative
property) and (iii) (geometric property) of the Introduction, together with
the following estimates:

(Hölder estimate) There exists a constant C > 0 such that, for every σ, τ ∈ C and 0 <
r < 1,

E|RB̃n,r
τσ (i1, . . . , in)|2 ≤ Cd(σ, τ)2nα;

(rate of convergence) there exists a constant C > 0 such that, for every σ, τ ∈ C and 1
2 <

r1, r2 < 1,

E|RB̃n,r1
τσ (i1, . . . , in) −RB̃n,r2

τσ (i1, . . . , in)|2 ≤ C|r1 − r2|2α.

These results imply the existence of an explicit rough path RB̃ over B̃,
obtained as the limit of RB̃r when r → 1.

The general idea underlying our construction could be expressed roughly
as follows: take the Fourier decomposition of Γ̃(i1), . . . , Γ̃(in) and move the
largest Fourier modes to the right, so that innermost integrals have highest
Fourier frequencies (adepts of conformal field theory may like to call this
’Fourier normal ordering’, [10]). Hence we expect it to imply (using the
ordinary Fourier transform this time) an explicit construction of a rough
path above any α-Hölder d-dimensional path. Using Fourier integrals instead
of Fourier series for fBm (and working directly with B instead of B̃) involves
some (superficial) technical complications that can easily be overcome (see
subsection 7.3). A general construction in the deterministic case will be
given shortly in a forthcoming article.
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Here is an outline of the article. Sections 1, 2 and 3 are preliminary;
we first recall briefly some prerequisites on algebraic rough path theory, and
also the definition of the analytic fBm process Γ with its first properties.
The regularized Lévy area is constructed in section 4. Sections 5 and 6
are dedicated to the construction in the general multidimensional case; the
algebraic stuff needed to deal with the case when the above permutation ε
is not trivial is introduced in section 6. We conclude the proof, show how to
work directly with the usual fBm instead of the unit-disk fBm and introduce
the antisymmetric two-dimensional fBm in section 7.

Notations. Throughout the article, we shall use the following notations:
D = {z ∈ C | |z| < 1} will be the (open) unit disk, with closure D = {z ∈
C | |z| ≤ 1}. The unit circle {z ∈ C | |z| = 1} will be denoted by C.
If σ, τ ∈ C, the distance d(σ, τ) between σ and τ will be measured along
the circle (i.e. d(σ, τ) is a minimal measure of the angle between its two
arguments). The group of permutations of {0, . . . , n − 1} is denoted by
Σn. Finally, if |a| ≤ C|b| for some constant C (a and b depending on some
arbitrary set of parameters), then we shall write |a| . |b|.

1 The analysis of rough paths

The present section will be very sketchy since the objects and results needed
in this work have alread been presented in great details in [31]. The fun-
dational paper on the subject of algebraic rough path theory is due to M.
Gubinelli [16], see also [17] for more details in the case α < 1/3. Let us re-
call briefly the original problem motivating the introduction of rough paths.
Let Γ : R → R

d be some fixed irregular (i.e. not derivable) path, say
κ-Hölder, and f : R → R

d some function which is also irregular (mainly
because one wants to consider functions f obtained as a composition g ◦ Γ
where g : R

d → R
d is regular). Can one define the integral

∫

fxdΓx ? The
answer depends on the Hölder regularity of f and Γ. Assuming f is γ-
Hölder with κ+γ > 1, then one may define the so-called Young integral [22]
∫ t
s fxdΓx as the Riemann sum type limit lim|Π|→0

∑

{tj}∈Π fti(Γti+1 − Γti),

where Π = {s = t0 < . . . < tn = t} is a partition of [s, t] with mesh |Π|
going to 0. Then the resulting path Yt − Ys :=

∫ t
s fxdΓx has the same reg-

ularity as Γ. If κ + γ ≤ 1 instead, this is no more possible in general. One
way out of this problem, giving at the same time a coherent way to solve
differential equations driven by Γ, is to define a class of Γ-controlled paths
Q, such that the above integration problem may be solved uniquely in this
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class by a formula generalizing the above Riemann sums, in which formal
iterated integrals Γn(i1, . . . , in) of Γ appear as in the Introduction.

Definition 1.1 (Hölder spaces) Let κ ∈ (0, 1) and T > 0 fixed.

(i) Let Cκ
1 = Cκ

1 ([0, T ], C) be the space of complex-valued κ-Hölder func-

tions f in one variable with (semi-)norm ||f ||κ = sups,t∈[0,T ]
|f(t)−f(s)|

|t−s|κ .

(ii) Let Cκ
2 = Cκ

2 ([0, T ], C) be the space of complex-valued functions f =
ft1,t2 of two variables vanishing on the diagonal t1 = t2, such that
||f ||2,κ < ∞, where || . ||2,κ is the following norm:

||f ||2,κ = sup
s,t∈[0,T ]

|ft1,t2|
|t − s|κ . (1.1)

(iii) Let Cκ
3 = Cκ

3 ([0, T ], C) be the space of complex-valued functions f =
ft1,t2,t3 of three variables vanishing on the subset {t1 = t2} ∪ {t2 =
t3} ∪ {t1 = t3}, such that ||f ||3,κ < ∞ for some generalized Hölder
semi-norm || . ||3,κ defined for instance in [16], section 2.1.

Definition 1.2 (increments) (i) Let f be a function of one variable:
then the increment of f , denoted by δf , is (δf)ts := f(t) − f(s).

(ii) Let f = fts be a function of two variables: then we define

(δf)tus := (δf)ts − (δf)tu − (δf)us. (1.2)

Note that δ ◦ δ(f) = 0 if f is a function of one variable.

Let Γ = (Γ(1), . . . ,Γ(d)) : [0, T ] → R
d be a κ-Hölder path, and (Γ1

ts(i1) :=

Γt(i1) − Γs(i1),Γ
2
ts(i1, i2), . . . ,Γ

⌊1/κ⌋
ts (i1, . . . , i⌊1/κ⌋)) be a rough path lying

above Γ, satisfying properties (i) (Hölder property), (ii) (multiplicativity
property) and (iii) (geometricity property) of the Introduction.

Definition 1.3 (controlled paths) Let z = (z(1), . . . , z(d)) ∈ Cκ
1 for some

κ < α and N = ⌊1/κ⌋ + 1. Then z is called a (Γ-)controlled path if its in-
crements can be decomposed into

δz(i) =
N
∑

n=1

∑

(i1,...,in)

Γn(i1, . . . , in).fn(i1, . . . , in; i) + g0(i) (1.3)
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for some remainders g0(i) ∈ CNκ
2 and some paths fn(i1, . . . , in; i) ∈ (Cκ

1 )n

such that

δfn(i1, . . . , in; i) =
N−1−n
∑

l=1

∑

(j1,...,jl)

Γl(j1, . . . , jl).f
l+n(j1, . . . , jl, i1, . . . , in; i) + gn(i1, . . . , in; i), n = 1, . . . , N

(1.4)

for some remainder terms gn(i1, . . . , in; i) ∈ C
(N−n)κ
2 .

We denote by Qκ the space of all such paths, and by Qα− the intersection
∩κ<αQκ.

We may now state the main result.

Proposition 1.4 (see [17], Theorem 8.5, or [31], Proposition 3.1) Let
z ∈ Qα− . Then the limit

∫ t

s
zxdΓx := lim

|Π|→0

n
∑

k=0

d
∑

i=1



δXtk+1,tk(i)ztk (i) +

N−1
∑

n=1

∑

(i1,...,in)

Γn+1
tk+1,tk

(i1, . . . , in, i)ζn
tk

(i1, . . . , in; i)





(1.5)
exists in the space Qα− .

The Proposition below gives very convenient moment conditions on a
family of multiplicative functionals (Γη,Γ2,η, . . . ,Γ⌊1/κ⌋,η) to converge in the
right Hölder norms when η → 0 and to define a rough path lying above a
centered Gaussian process Γ.

Proposition 1.5 Let Γ be a d-dimensional centered Gaussian process ad-
mitting a version with a.s. α−-Hölder paths. Let N = ⌊1/α−⌋. Assume:

1. there exists a family Γη, η → 0+ of Gaussian processes living in the
first chaos of Γ such that

(i)
E|Γη

t − Γη
s |2 ≤ C|t − s|2α; (1.6)

(ii)
E|Γη

t − Γε
t |2 ≤ C|ε − η|2α; (1.7)

(iii) ∀t ∈ [0, T ], Γη
t

L2

→ Γt when η → 0;
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2. there exists a truncated multiplicative functional (Γ1,η
ts = Γη

t−Γη
s ,Γ

2,η
ts , . . . ,ΓN,η

ts )
lying above Γη and living in the n-th chaos of Γ, n = 1 . . . , N , such
that, for every 2 ≤ k ≤ N ,

(i)

E|Γk,η
ts |2 ≤ C|t − s|2kα; (1.8)

(ii)

E|Γk,ε
ts − Γk,η

ts |2 ≤ C|ε − η|2α. (1.9)

Then (Γ1,η, . . . ,ΓN,η) converges in L2(Ω;Cκ
2 ([0, T ], Rd)×C2κ

2 ([0, T ], Rd2
)×

. . . × CNκ
2 ([0, T ], RdN

)) for every κ < α to a rough path (Γ1, . . . ,ΓN ) lying
above Γ.

Short proof (see [31], Lemma 5.1, Lemma 5.2 and Prop. 5.4). The
main ingredient is the Garsia-Rodemich-Rumsey (GRR for short) lemma
[14] which states that, if f ∈ Cκ

2 ([0, T ], C),

||f ||2,κ ≤ C

(

||δf ||3,κ +

(∫ T

0

∫ T

0

|fvw|2p

|w − v|2κp+2
dv dw

)1/2p
)

(1.10)

for every p ≥ 1.
Then properties (1.6,1.8) imply by using the GRR lemma for p large

enough, Jensen’s inequality and the equivalence of Lp-norms for processes
living in a fixed Gaussian chaos

E||Γk,η||2,kκ . E||δΓk,η||3,kκ + C. (1.11)

By using the multiplicative property (ii) in the Introduction and induction
on k, E||δΓk,η||3,kκ may in the same way be proved to be bounded by a
constant.

On the other hand, properties (1.6,1.7,1.8,1.9), together with the equiv-
alence of Lp-norms, imply (for every κ < α)

E|Γk,ε
ts − Γk,η

ts |2 . |t − s|2kκ|ε − η|2(α−κ) (1.12)

hence, by the same arguments,

E||Γk,ε − Γk,η||2,kκ . |ε − η|α−κ (1.13)

which shows that Γk,ε is a Cauchy sequence in Ckκ
2 ([0, T ], Rdk

). 2
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Let us conclude with the following remark, which reduces the construc-
tion of a rough path for Γ to that of a rough path for Γ̃ defined by eq. (0.9),
The following Proposition is intuitively true (an explicit reference is missing
for that).

Proposition 1.6 Let Γ̃ be an α−-Hölder path such that

(δΓ)ts =

∫ φ−1(t)

φ−1(s)
φ′(x)(f ◦ φ)(x)dΓ̃x. (1.14)

for some C∞-function f and some C∞-diffeomorphism φ. Assume Γ̃ is a
rough path lying above Γ̃. Then there is an explicit method to construct a
rough path Γ above Γ derived from Γ̃. The method is functorial and stable
under limits, so that in particular, if Γ̃ = limη→0 Γ̃η, then Γ = limη→0 Γη.

’Proof’. Fix s = t0. Eq. (1.14) writes after an integration by parts

Γt−Γt0 =
(

φ′(φ−1(t))f(t)Γ̃φ−1(t) − φ′(φ−1(t0))f(t0)Γ̃φ−1(t0)

)

−
∫ φ−1(t)

φ−1(t0)
(φ′ . f◦φ)′xΓ̃x dx.

(1.15)
In other words, Γ is essentially obtained from Γ by a regular time-change
and the addition of a C1-path. Note that (formally or if Γ is regular) eq.
(1.14) writes simply Γ′

u = f(u)Γ̃′
φ−1(u), which is eq. (0.8) with φ = Φ−1 and

f(u) = (1 − Φ(u))−2α. 2

2 Preliminary results on random Fourier series

Let f(z) =
∑

n∈Z
znXn (z ∈ C) be a random Fourier series constructed

out of a sequence of independent centered complex-valued random variables
(Xn)n∈Z. The function f may be seen as the boundary value on C of the sum
of an (a priori formal) analytic series f+(z) :=

∑

n≥0 znXn and of an anti-
analytic series f−(z̄) :=

∑

n≥1 z̄nX−n, both living on the unit disk. Under
very general growth conditions on the sequence (VarXn)n∈Z, f+, resp. f−

may be shown to be analytic, resp. anti-analytic on the open unit disk.
Hence

f r(z) := f+(rz) + f−(rz̄) (z ∈ C) (2.1)

is real-analytic on C and may be considered as the extension of f to the
circle Cr := {z ∈ C | |z| = r} with radius r < 1.

A general question could be to prove Hölder regularity properties of f (or,
equivalently, of f+ and f−) under appropriate hypotheses on the ’growth’
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of the sequence (Xn), as measured for instance by their variances. ’Almost’
optimal hypotheses for symmetric variables (Xn) is given in J.-P. Kahane’s
book [20]; roughly speaking, f is a.s. α−-Hölder if and only if

∑

2j≤|n|<2j+1

VarXn = O(2−2jα) (2.2)

(see [20], section 7.4 for a correct statement, and also the references at the
end of chapter 7). In particular, if VarXn = O(n−1−2α), then f is a.s.
α−-Hölder. The statements in [20] are much more refined; for instance,
the modulus of continuity of f , ωf (h) := supd(z,z′)≤h |f(z) − f(z′)|, may be
proved (under condition (2.2)) to be a O((| log h|)γhα) for an appropriate γ,
with γ = 1

2 if the (Xn) are (sub-)Gaussian variables.
It turns out to be much easier in our setting (where f belongs to the n-th

chaos of a fixed Gaussian process) to show L2-estimates such as E|f(z) −
f(z′)|2 ≤ C|z − z′|2nα, from which f may be proved to be a.s. nκ-Hölder
continuous for every κ < α, by using Kolmogorov’s lemma together with
the equivalence of Lp-norms.

We shall prove elementary uniform L2-estimates for the function f ex-
tended continuously to the closed unit disk D̄ as

f(z) := f+(z) + f−(z̄), (2.3)

and also for (non necessarily converging) truncated series or the remainder
of the series (in the converging case).

In the sequel, we shall always consider random Fourier series f(z) :=
∑

n∈Z
znXn, z ∈ C, constructed out of a sequence (Xn)n∈Z of independent,

L2, centered random variables, together with their above extension f(z) :=
f+(z) + f−(z̄) to D. For the sake of brevity, we shall simply say that f is a
centered random Fourier series.

Notation.
Let f(z) :=

∑

n∈Z
anzn be a Fourier series. Then Nf(z) :=

∑

|n|≤N anzn

is the truncation to order N of f , and (if f converges) Nf(z) :=
∑

|n|>N anzn

is the remainder.

Lemma 2.1 (modulus of continuity for symmetric series) Let f(z) :=
∑

n∈Z
znXn be a centered random Fourier series. Assume there is some

α ∈ (0, 1) such that





∑

2j≤|n|<2j+1

VarXn





1/2

= O(2−jα) (2.4)
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(This holds true in particular if VarXn = O(|n|−1−2α)). Then there exists
a constant C such that

sup
z∈D

sup
N≥0

E|Nf(z)|2 ≤ C (2.5)

and
sup

z,z′∈C

sup
N≥0

E|Nf(z) − Nf(z′)|2 ≤ C|z − z′|2α. (2.6)

Proof.
The convergence of the series E|Nf(z)|2 when N → ∞ is obvious. Con-

cerning the second inequality, one has:

E|Nf(z) − Nf(z′)|2 ≤ E|f(z) − f(z′)|2 ≤
∑

n∈N

|zn − (z′)n|2(VarXn + VarX−n)

. |z − z′|2
∑

|n|≤1/|z−z′|

n2VarXn +
∑

|n|>1/|z−z′|

VarXn

(2.7)

by Taylor’s formula. Now (grouping together the (VarXn) for 2j ≤ |n| <
2j+1) one gets the result. 2

Let us now consider successively estimates for truncated centered Fourier
series and for the remainder of convergent centered Fourier series.

Lemma 2.2 (estimates for truncated centered Fourier series) Let f(z) =
∑

n∈Z
znXn be a centered random Fourier series. Assume, as in Lemma 2.1,

that there is some α ∈ (0, 1) such that





∑

2j≤|n|<2j+1

VarXn





1/2

= O(2−jα) (2.8)

(in particular if VarXn . |n|−1−2α). Then

E|Nf(z) − Nf(z′)|2 . (|z − z′|N1−α)2. (2.9)

The same bound also holds true if α ≤ 0 (case of a divergent series)
provided N . 1

|z−z′| .
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Proof.
Let α < 1. As in the proof of Lemma 2.1,

E|Nf(z) − Nf(z′)|2 . |z − z′|2
∑

|n|≤N

n2VarXn . (|z − z′|N1−α)2 (2.10)

if N ≤ 1
|z−z′| . Otherwise (by Lemma 2.1), if α > 0 (so the series converges),

E|Nf(z) − Nf(z′)|2 . |z − z′|2α . (|z − z′|N1−α)2. (2.11)

2

Lemma 2.3 (remainder estimate for convergent Fourier series) Let
f(z) =

∑

n∈Z
znXn be a centered random Fourier series. Assume there is

some α ∈ (0, 1) such that





∑

2j≤|n|<2j+1

VarXn





1/2

= O(2−jα) (2.12)

(in particular if VarXn = O(|n|−1−2α)).
Then

E|Nf(z)|2 ≤ CN−2α. (2.13)

Proof. Elementary. 2

3 Series decomposition and approximation of frac-

tional Brownian motion

3.1 Series decomposition of analytic fractional Brownian mo-

tion

The easiest way to define Γ = {Γz; z ∈ Π+} makes use of a series expansion
involving the analytic functions {fk; k ≥ 0}, defined on Π+ by:

fk(z) = ak+1

[

z + i

2i

]2α−2 [z − i

z + i

]k

. (3.1)

where

ak+1 = 2α−1

[

α(1 − 2α)(2 − 2α)k
2 cos(πα)k!

]1/2

. (3.2)
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The Pochhammer symbol (x)k is defined by:

(x)k =

k−1
∏

j=0

(x + j) =
Γ(x + k)

Γ(x)
,

where Γ is the usual Gamma function.
Note that

ak ∼k→∞ 2α−1

[

α(1 − 2α)

2 cos πα

]
1
2

k
1
2
−α. (3.3)

It is shown in [32] that the series
∑

k≥0 fk(z)fk(w) converges in absolute
value for z,w ∈ Π+, and that the following identity holds true:

∑

k≥0

fk(z)fk(w) =
α(1 − 2α)

2 cos(πα)
(−i(z − w̄))2α−2 . (3.4)

This fact allows to define the process Γ in the following way:

Proposition 3.1 (see [32] or [31]) Let {ξ1
k, ξ2

k; k ≥ 1} be two families of
independent standard Gaussian random variables, defined on a complete
probability space, and for k ≥ 0, set ξk = ξ1

k + iξ2
k. Consider the process

Γ′ defined for z ∈ Π+ by Γ′
z =

∑

k≥0 fk(z)ξk+1. Then:

1. Γ′ is a well-defined analytic process on Π+.

2. Let Γ : (0, 1) → Π+ be any continuous path with endpoints Γ(0) = 0
and Γ(1) = z, and set Γz =

∫

Γ Γ′
u du. Then Γ is an analytic process

on Π+. Furthermore, as z runs along any path in Π+ going to t ∈ R,
the random variables Γz converge almost surely to a random variable
called again Γt.

3. The family {Γt; t ∈ R} defines a Gaussian centered complex-valued
process, whose covariance function is given by:

E[ΓsΓt] = 0, E[ΓsΓ̄t] =
e−iπα sgn(s)|s|2α + eiπα sgn(t)|t|2α − eiπα sgn(t−s)|s − t|2α

4 cos(πα)
.

The paths of this process are almost surely κ-Hölder for any κ < α.

4. The real part of {Γt; t ∈ R} is a fractional Brownian motion indexed
by R.

17



Lemma 3.2 Let U := {z = t + iη ∈ C | 0 ≤ t, η ≤ 1
2}. Then:

1. There exists a constant C such that:

∀z, z′ ∈ U, E|Γ(z) − Γ(z′)|2 ≤ C|z − z′|2α. (3.5)

2. There exists a.s. a constant C > 0 such that

sup
z,z′∈U

|Γ(z) − Γ(z′)|
|z − z′|α log

1
2 (1/|z − z′|)

≤ C. (3.6)

Proof.

1. See [32], Lemma 1.5.

2. Let ∆z :=
∫ z
0

(

u+i
2i

)−2α
Γ′

u du. By the above Proposition,

∆z − ∆w = 4

∫ z

w





∑

k≥0

ak+1ξk+1

(

u − i

u + i

)k




(

u + i

i

)−2

du.

Now use the Cayley transform Φ : Π+ → D, z → ζ := z−i
z+i , with

inverse z = Φ−1(ζ) = i1+ζ
1−ζ : then

∆z −∆w = 2i
∑

k≥0

ak+1ξk+1

∫ Φ(z)

Φ(w)
ζk dζ = 2i

∑

k≥1

ak

k
ξk(Φ(z)k −Φ(w)k).

Consider the time-changed process Γ̃ := ∆ ◦ Φ−1. Note that

Γ̃′
ζ = (1 − ζ)2αΓ′

Φ−1(ζ) (3.7)

and conversely,

Γ′
z =

(

z + i

2i

)2α

Γ̃′
Φ(z). (3.8)

Then Γ̃ lives on the unit disk D, which allows to use standard results on
random Gaussian series on the unit circle by an immediate extension
to the closed unit disk. We define the modulus of continuity of Γ̃ to
be the function

ω(h) := sup
ζ,ζ′∈D,|ζ−ζ′|≤h

|Γ̃ζ − Γ̃ζ′ |.
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Recall ak ∼k→∞ cαk
1
2
−α for some positive constant cα. By Theorem

7.3.2 in [20] (see preamble to section 2) there exists a.s. a constant C
such that

sup
ζ,ζ′∈D,|ζ−ζ′|≤1/2

|Γ̃ζ − Γ̃ζ′ |
|ζ − ζ ′|α log

1
2 (1/|ζ − ζ ′|)

≤ C. (3.9)

Now

Γz′ − Γz =

∫ z′

z

(

u + i

2i

)2α

Γ̃′
Φ(u) du

=

(

z′ + i

2i

)2α

(Γ̃Φ(z′) − Γ̃Φ(z)) + iα

∫ z′

z

(

u + i

2i

)2α−1

(Γ̃Φ(u) − Γ̃Φ(z)) du.

(3.10)

Since the prefactors
(

z′+i
2i

)2α
,
(

u+i
2i

)2α−1
are bounded (and bounded

away from zero) in U , and Φ : U → Φ(U) is a diffeomorphism, the
same bound (up to a constant) holds for Γz − Γz′ .

2

3.2 Approximation of fractional Brownian motion

A natural way to get a regular approximation of Bt is the following.

Definition 3.3 Let, for η > 0,

Bη
t := 2Re

∫ t+iη

iη
Γ′

u du = 2Re (Γt+iη − Γiη). (3.11)

Note that t → Bη
t has a.s. real-analytic paths for every fixed η > 0.

Proposition 3.4 (see [32])
Let T > 0. The process Bη converges in L2(Ω;Cκ

1 ([0, T ])) to B for every
κ < α.
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3.3 A variant of fBm: the unit-disk fractional Brownian mo-

tion

We shall now introduce a process B̃ living on the unit disk, called unit-disk
fractional Brownian motion, which is more or less equivalent (via the Cayley
transform) to fBm.

Definition 3.5 (unit-disk Γ-process) Let Γ̃′ be the random series defined
on the open unit disk by

Γ̃′
ζ :=

∑

k≥0

ak+1ζ
kξk+1. (3.12)

Its covariance kernel writes:

EΓ̃′
ζ1

(

Γ̃′
ζ2

)

= c2
α(1 − ζ1ζ̄2)

2α−2. (3.13)

By standard arguments, see for instance [32], one may prove that the
above series defines an analytic process on the open unit disk D. Set

Γ̃ζ :=

∫

γ
Γ̃′

ζ′ dζ ′ =
∑

k≥1

ak
ζk

k
ξk, ζ ∈ D (3.14)

where γ : [0, 1] → D is any path in D such that γ(0) = 0 and γ(1) = ζ.
Then (the proof is exactly the same as for the original Γ-process) Γ̃ may be
extended into an α−-Hölder process on the closed unit disk D.

Definition 3.6 (unit-disk fBm) Let B̃r
τ = 2Re

∫ rτ
0 Γ̃′

ζ dζ = 2Re Γ̃rτ (r ≤
1) and B̃τ := B̃1

τ = 2Re
∫ τ
0 Γ̃′

ζ dζ.

The Proposition below may be proved in exactly the same way as Propo-
sition 3.4.

Proposition 3.7 When r → 1−, the process B̃r converges in L2(Ω;Cκ
1 (C))

to B̃ for every κ < α.

The unit-disk Γ-process was originally introduced in the proof of Lemma
3.2. As noted there,

Γ′
z =

(

z + i

2i

)2α

Γ̃′
Φ(z).
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The extra prefactor
(

z+i
2i

)2α
is C∞ (actually, analytic) for z ∈ Π+, so Γ̃ is

essentially obtained from Γ by a C∞ time-change. Hence (see Proposition
1.6), the construction of a rough-path for B follows in a straightforward way
from the construction of a rough-path for B̃. Working with B̃ instead of B
will make it possible to use random Fourier series techniques as in section
2.

Note once again the ’change of origin’ (Γ̃ vanishes at 0 and not at
−1 = Φ(0)). This is a priori not important since we shall always consider
increments of Γ. However, this change of origin will prove to be essential to
get Hölder regularity estimates in the sequel (see next section).

4 Definition of a Lévy area for the unit-disk fBm

4.1 Definitions and notations.

Let Γ̃ := (Γ̃(1), Γ̃(2)) be a two-component unit-disk Γ-process (with Hurst
exponent α < 1

2 ) living on the closed unit disk D, with series decomposition

Γ̃′
ζ(j) =

∑

k≥0

ak+1ζ
kξk+1(j), ζ ∈ D, j = 1, 2 (4.1)

and B̃r
τ := (2Re

∫ rτ
0 Γ̃′

ζ(1) dζ, 2Re
∫ rτ
0 Γ̃′

ζ(2) dζ) (r ≤ 1) be the correspond-
ing family of approximations of the unit-disk fBm. It proves convenient to

write Γ̃ζ(j̄) instead of
(

Γ̃ζ(j)
)

and similarly, ξk(j̄) instead of −ξ̄k(j) (note

the coefficients (ak) are real). We shall use this notation in the whole sec-
tion. Using the real-valued angle measure −idζ

ζ = dθ instead of dζ, we shall
write

∫ rτ

rσ
Γ̃′

ζ(j) dζ =

∫ rτ

rσ





∑

k≥1

akζ
k ξk(j)





dζ

ζ
=

∫ τ

σ





∑

k≥1

rkakζ
kξk(j)





dζ

ζ
,

(4.2)

with complex conjugate
∫ τ
σ

(

∑

k≥1 rkakζ
−kξk(j̄)

)

dζ
ζ .

We want to define a two-time process B̃2,r
τσ (1, 2) which is a Lévy area for

B̃r, i.e. such that δB̃2,r
τuσ(1, 2) = B̃r

τu(1)B̃r
uσ(2), and converges when r → 1−

in L2(Ω;C2κ
1 (C)) to some limiting process B̃2

τσ(1, 2) for every κ < α, to be
interpreted as the Lévy area of B̃ (see section 1).

The natural candidate for B̃2,r(1, 2) is simply the usual, uncorrected area
process.
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Definition 4.1 (uncorrected area process) For r < 1 and σ, τ ∈ C, let
Ãr

τσ denote the following second-order iterated integral of the unit-disk fBm
B̃:

Ãr
τσ := 2Re

∫ τ

σ
Γ̃′

rζ1(1)dζ1

(
∫ ζ1

σ
Γ̃′

rζ2(2) dζ2 + c.c.

)

(4.3)

where c.c. stands for ’complex conjugate’.

It is closely related to the Lévy area defined in [32] and hence diverges
when r → 1−.

More precisely, decompose Ãr
τσ into

Ãr
τσ := Γ̃2,r

τσ (1, 2) + Γ̃2,r
τσ (1, 2̄) + Γ̃2,r

τσ (1̄, 2) + Γ̃2,r
τσ (1̄, 2̄), (4.4)

where Γ̃2,r
τσ (1, 2), resp. Γ̃r

τσ(1̄, 2̄) is the usual Lévy area of Γ̃r, resp.
(

Γ̃r
)

,

and

Γ̃2,r
τσ (1̄, 2) =

∫ τ

σ
Γ̃′

rζ1(1̄)dζ1

∫ ζ1

σ
Γ̃′

rζ2(2) dζ2, Γ̃2,r
τσ (1, 2̄) =

(

Γ̃2,r
τσ (1̄, 2)

)

.

(4.5)
It is a consequence of [32] (see also [31, 33] for more precise statements)

that Γ̃r
τσ(1, 2) converges in L2(Ω;C2κ

1 (C)) while Γ̃r
τσ(1̄, 2) diverges; in par-

ticular, E

∣

∣

∣
Γ̃r

τσ(1̄, 2)
∣

∣

∣

2
→r→1− ∞.

The idea is now to substract to Γ̃r
τσ(1̄, 2) some increment counterterm

δZr
τσ(1̄, 2) := Zr

τ (1̄, 2) − Zr
σ(1̄, 2), so that:

– the multiplicative property (ii) in the Introduction still holds, i.e.
δ(Γ̃2,r(1̄, 2) − δZr(1̄, 2)) = δΓ̃2,r(1̄, 2) since δ ◦ δ = 0 (see section 1);

– the regularized Lévy area RΓ̃2,r(1̄, 2) := Γ̃2,r(1̄, 2) − δZr converges in
L2(Ω;C2κ

1 (C)).
For that purpose, let us use the series decomposition of Γ̃:

Lemma 4.2 Let, for k1, k2 ≥ 1,

Fk̄1,k2
(σ, τ) :=

∫ τ

σ
ak1ζ

−k1
1

dζ1

ζ1

∫ ζ1

σ
ak2ζ

k2
2

dζ2

ζ2
(4.6)

so that
Γ̃2,r

τσ (1̄, 2) =
∑

k1≥1

∑

k2≥1

rk1+k2Fk̄1,k2
(σ, τ)ξk1(1̄)ξk2(2). (4.7)
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Then
Fk̄1,k2

(σ, τ) = F ∂
k̄1,k2

(σ, τ) + (δGk̄1,k2
)τσ , (4.8)

where

F ∂
k̄1,k2

(σ, τ) = −ak2

σk2

k2

∫ τ

σ
ak1ζ

−k1
1

dζ1

ζ1
(k1 ≤ k2), −ak1

τ−k1

k1

∫ τ

σ
ak2ζ

k2
2

dζ2

ζ2
(k1 > k2)

(4.9)
and

Gk̄1,k2
(ζ) = ak1

ak2

k2

ζk2−k1

k2 − k1
(k1 < k2), ak2

ak1

k1

ζk2−k1

k2 − k1
(k1 > k2),

a2
k1

k1
ln ζ (k1 = k2). (4.10)

Proof. The formulas for k1 ≤ k2 are straightforward (replace
∫ ζ1
σ dζ2

with −
∫ σ
0 dζ2 +

∫ ζ1
0 dζ2, using once again as origin 0 instead of −1 = Φ(0)).

To obtain the formulas for k2 < k1, rewrite Fk̄1,k2
(σ, τ) as

∫ τ
σ ak2ζ

k2
2

dζ2
ζ2

∫ τ
ζ2

ak1ζ
−k1
1

dζ1
ζ1

.

Note that the two decompositions of F into F ∂ + δG coincide when k1 = k2.
2

Definition 4.3 (regularized unit-disk Lévy area) Let

Zr
ζ (1, 2) := 0, Zr

ζ (1̄, 2) :=
∑

k1≥1

2k1
∑

k2=k1/2

rk1+k2Gk̄1,k2
(ζ)ξk1(1̄)ξk2(2), (4.11)

Zr
ζ (1̄, 2̄) = Zr

ζ (1, 2) = 0, Zr
ζ (1, 2̄) = Zr

ζ (1̄, 2); (4.12)

RΓ̃2,r
τσ (i, j) := Γ̃2,r

τσ (i, j) − (δZr(i, j))τσ (4.13)

with i = 1 or 1̄, j = 2 or 2̄, and finally,

RÃr
τσ := RΓ̃2,r

τσ (1, 2) + RΓ̃2,r
τσ (1, 2̄) + RΓ̃2,r

τσ (1̄, 2) + RΓ̃2,r
τσ (1̄, 2̄). (4.14)

Note that the geometricity property (iii) in the Introduction holds for
RÃr, which is equivalent to saying that

RΓ̃2,r(1̄, 2) + RΓ̃2,r(2, 1̄) = Γ̃2,r(1̄, 2) + Γ̃2,r(2, 1̄), (4.15)
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or simply, δZr(1̄, 2) + δZr(2̄, 1) = 0. The last equality is an immediate
consequence of the antisymmetry property Gk̄1,k2

(ζ) + Gk̄2,k1
(ζ) = 0.

Recall d(σ, τ) (σ, τ ∈ C) is the distance along the unit circle.
We shall prove in this section the following two results.

Theorem 4.1 (Hölder estimate) Let α < 1
2 . There exists a constant C

such that, for every r < 1 and σ, τ ∈ C,

E

∣

∣

∣
RÃr

τσ

∣

∣

∣

2
≤ Cd(σ, τ)4α. (4.16)

Theorem 4.2 (rate of convergence) Let α < 1
2 . There exists a constant

C such that, for every 1
2 < r1, r2 < 1 and σ, τ ∈ C,

E

∣

∣

∣RÃr1
τσ −RÃr2

τσ

∣

∣

∣

2
≤ C|r1 − r2|2α. (4.17)

4.2 Uniform Hölder estimate for the regularized unit-disk

Lévy area

We shall prove in this subsection Theorem 4.1.
The regularized iterated integral RΓ̃2,r(1̄, 2) decomposes further as

RΓ̃2,r(1̄, 2) = δRG̃2,r(1̄, 2) + RΓ̃2,r(1̄, 2)(∂), (4.18)

(called respectively the increment term and the boundary term), where

RG̃2,r
ζ (1̄, 2) =

∑ ∑

k1,k2≥1:k2 6∈[k1/2,2k1]

rk1+k2Gk̄1,k2
(ζ)ξk1(1̄)ξk2(2) (4.19)

and

RΓ̃2,r
τσ (1̄, 2)(∂) =

∑ ∑

k1,k2≥1

rk1+k2F ∂
k̄1,k2

(σ, τ)ξk1(1̄)ξk2(2). (4.20)

By the overall symmetry k1 ↔ k2, ξ(1) ↔ ξ(2), σ ↔ τ , one may restrict
the study to the terms in the double series with indices (k1, k2) such that
k1 ≤ k2. We write RG̃2,r,+(1̄, 2), resp. RG̃2,r,−(1̄, 2) and RΓ̃2,r,+(1̄, 2)(∂),
resp. RΓ̃2,r,−(1̄, 2)(∂) for the sums over the restricted index set k1 ≤ k2,
resp. k1 > k2 and study henceforth only the terms with index ′+′ (note
that this corresponds to the decomposition of G̃2,r into its analytic and its
anti-analytic part).
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4.2.1 Study of the regularized increment term

One has

RG̃2,r,+
z (1̄, 2) =

∑ ∑

k1,k2≥1:k1<k2/2

rk1+k2Gk̄1,k2
(z)ξk1(1̄)ξk2(2) =

∑

m≥1

rm zm

m
RXr,+

m

(4.21)

where (setting m = k2 − k1)

RXr,+
m :=

∑

1≤k1<m

r2k1
ak1am+k1

m + k1
ξk1(1̄)ξm+k1(2). (4.22)

Now (recall ak ∼k→∞ cαk
1
2
−α)

VarRXr,+
m ≤

∑

1≤k1<m

(

am+k1

m + k1
ak1

)2

.
(am

m

)2 ∑

1≤k1<m

a2
k1

. m1−4α. (4.23)

Hence (by Lemma 2.1)

E

[

|RG̃2,r,+
z (1̄, 2) −RG̃2,r,+

z′ (1̄, 2)|2
]

≤ Cd(z, z′)4α. (4.24)

Remark. Suppose one removes the restriction k1 < k2/2. Then the
increment term (as expected) diverges when r → 1− for α ≤ 1

4 : namely, the

variance of X1,+
m :=

∑∞
k1=1

ak1
am+k1

m+k1
ξk1(1̄)ξm+k1(2) converges if and only if

∑∞
k2=1 k1

−4α < ∞, i.e. if and only if α > 1
4 .

4.2.2 Study of the boundary term

Cut the boundary term RΓ̃2,r,+(1̄, 2)(∂) into two parts: the first part con-
sists of indices k1, k2 ≥ 1 such that 0 ≤ k1 ≤ k2 ≤ 1

d(σ,τ) ; the second part

consists of the remaining indices, for which by necessity k2 > 1
d(σ,τ) . Then

the first part writes

X∂
τσ :=

∑ ∑

1≤k1≤k2≤1/d(σ,τ)

rk1+k2F ∂
k̄1,k2

(σ, τ)ξk1(1̄)ξk2(2)

= −
1/d(σ,τ)
∑

k2=1

rk2ak2

σk2

k2
ξk2(2)

(

δ k2Γ̃r(1̄)
)

τσ
(4.25)
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where k2Γ̃r(1)z :=
∑k2

k1=1 rk1
ak1
k1

zk1 (see notation in section 2) is the

Γ̃-process truncated to order k2.
By Lemma 2.2, there exists a constant C such that

E

∣

∣

∣

(

δk2 Γ̃r(1)
)

τσ

∣

∣

∣

2
≤ C

(

d(σ, τ)k2
1−α
)2

.

Since
ak2
k2

k2
1−α . k2

1
2
−2α, one gets (recall α < 1

2 ):

E|X∂
τσ|2 . d(σ, τ)2

1/d(σ,τ)
∑

k2=1

k1−4α
2 . d(σ, τ)4α. (4.26)

The second part writes

Y ∂
τσ :=

∑

k2> 1
d(σ,τ)

∑

k1≤k2

rk1+k2F ∂
k̄1,k2

(σ, τ)ξk1(1̄)ξk2(2)

= −
∑

k2> 1
d(σ,τ)

rk2ak2

σk2

k2
ξk2(2)

(

δ k2 Γ̃r(1̄)
)

τσ
. (4.27)

By Lemma 2.1,

E

∣

∣

∣

(

δk2 Γ̃r(1)
)

τσ

∣

∣

∣

2
. d(σ, τ)2α, (4.28)

and by Lemma 2.3, one gets

E|Y ∂
τσ|2 . d(σ, τ)4α. (4.29)

2

4.3 Rate of convergence of the regularized unit-disk Lévy

area

We shall now prove Theorem 4.2. Let 1
2 < r1, r2 < 1. We want to estimate

the difference RΓ̃2,r1,+
τσ (1̄, 2) −RΓ̃2,r2,+

τσ (1̄, 2).
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The analytic part of the regularized increment term, δRXr1,r2,+ :=

δRG2,r1,+(1̄, 2) − δRG2,r2,+(1̄, 2) writes δ
(

∑

m≥1
zm

m RXr1,r2,+
m

)

τσ
, where

RXr1,r2,+
m =

∑

1≤k1<m

[

rm+2k1
1 − rm+2k1

2

] am+k1

m + k1
ak1ξk1(1̄)ξm+k1(2)

= rm
1

∑

1≤k1<m

((r2k1
1 − r2k1

2 )
am+k1

m + k1
ak1ξk1(1̄)ξm+k1(2)

+(rm
1 − rm

2 )
∑

1≤k1<m

r2k1
2

am+k1

m + k1
ak1ξk1(1̄)ξm+k1(2).

(4.30)

Hence

RXr1,r2,+(z) =
∑

m≥1

rm
1

zm

m
(δY 1

m)r2
1 ,r2

2
+ δ





∑

m≥1

wm

m
Y 2

m





zr1,zr2

, (4.31)

where
Y 1

m(z) :=
∑

1≤k1<m

am+k1

m + k1
ak1z

k1ξk1(1̄)ξm+k1(2) (4.32)

and
Y 2

m :=
∑

1≤k1<m

r2k1
2

am+k1

m + k1
ak1ξk1(1̄)ξm+k1(2). (4.33)

The sum with the (Y 2
m) is similar to that treated in subsection 4.2.1,

hence contributes a term with variance uniformly bounded by C|r2 − r1|4α.

As for the sum with the Y 1
m, by Lemma 2.2,

E

∣

∣

∣
(δY 1

m)r2
1,r2

2

∣

∣

∣

2
. (r2 − r1)

2m3−4α, m .
1

|r2 − r1|
(4.34)

on the one hand , and

E

∣

∣

∣
(δY 1

m)r2
1,r2

2

∣

∣

∣

2
≤ 4 sup

z∈D̄

E|Y 1
m(z)|2 . m−1−2α

m
∑

k1=0

k1−2α
1 . m1−4α (4.35)

on the other hand. We use the first bound for m ≤ 1
|r2−r1|

and the second

one for m > 1
|r2−r1|

. Hence

E

∣

∣

∣

∣

∣

∣

∑

m≤1/|r2−r1|

rm
1

zm

m
(δY 1

m)r2
1 ,r2

2

∣

∣

∣

∣

∣

∣

2

. (r2−r1)
2

∑

m≤1/|r2−r1|

m1−4α . C|r2−r1|4α,

(4.36)
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while E

∣

∣

∣

∑

m>1/|r2−r1|
rm
1

zm

m (δY 1
m)r2

1,r2
2

∣

∣

∣
is bounded (by Lemma 2.3) by a con-

stant times |r2 − r1|4α.
All together one has proved that

E

∣

∣

∣
RG̃2,r1,+

τσ (1̄, 2) −RG̃2,r2,+
τσ (1̄, 2)

∣

∣

∣

2
≤ C|r2 − r1|4α. (4.37)

Consider now the difference of the boundary terms, Xr1,r2,+
τσ (∂) := RΓ̃2,r1,+(1̄, 2)(∂)−

RΓ̃2,r2,+(1̄, 2)(∂) : one gets

Xr1,r2,+
τσ (∂) = −

∞
∑

k2=1

(rk2
1 − rk2

2 )ak2

σk2

k2
ξk2(2)

(

δk2 Γ̃r1(1̄)
)

τσ

−
∞
∑

k2=1

rk2
2 ak2

σk2

k2
ξk2(2)

(

δ(k2 Γ̃r1(1̄) −k2 Γ̃r2(1̄))
)

τσ
.(4.38)

The variance of the first term is bounded by a constant times

sup
z∈C

(

E|Γ̃r1
z (1)|2

)

. E

∣

∣

∣

∣

(

δΓ̃(2)
)

r1σ,r2σ

∣

∣

∣

∣

2

. |r2 − r1|2α. (4.39)

As for the second term, one rewrites δ(k2 Γ̃r1(1̄)−k2 Γ̃r2(1̄))τσ as (k2 Γ̃r1τ (1̄)−k2

Γ̃r2τ (1̄))−(k2 Γ̃r1σ(1̄)−k2Γ̃r2σ(1̄)) and bounds it variance by 4 supz∈C |Γ̃r1z(1̄)−
Γ̃r2z(1̄)|2 . |r1 − r2|2α. Hence the variance of the second term is bounded
by C|r1 − r2|2α .

∑

k2≥1 k−1−2α
2 = C ′|r1 − r2|2α. 2

5 Iterated integrals of superior order: easy case

5.1 General outline

Consider a d-dimensional unit-disk analytic fractional Brownian motion Γ̃ =
(Γ̃(1), . . . , Γ̃(d)) with independent coordinates, together with its boundary
value B̃ζ := 2Re Γ̃ζ . Our purpose is to prove the two following results (see
Theorem 0.1), which together (using the theoretical results of section 1)
entail the existence of a rough path lying above B̃.

Theorem 5.1 (Hölder estimate) Let 1 ≤ i1, . . . , in ≤ d (n ≥ 3) and
α < 1/n. Then, for every σ, τ ∈ C, there exists a constant C such that

E

∣

∣

∣
RB̃n,r

τσ (i1, . . . , in)
∣

∣

∣

2
≤ Cd(σ, τ)2nα. (5.1)
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Theorem 5.2 (rate of convergence) Let 1 ≤ i1, . . . , in ≤ d (n ≥ 3) and
α < 1/n. Then there exists a constant C such that, for every 1

2 < r1, r2 < 1
and σ, τ ∈ C,

E

∣

∣

∣RB̃n,r1
τσ (i1, . . . , in) −RB̃n,r2

τσ (i1, . . . , in)
∣

∣

∣

2
≤ C|r1 − r2|2α. (5.2)

The proof is a generalization of the estimates of the previous section.
Since it is rather long, it will be divided into several steps and take up
essentially the rest of the paper. We restrict in this section to the case
i1 6= . . . 6= in, so that (by renumbering the components) we shall assume
i1 = 1, . . . , in = n.

Consider an iterated integral of order n,

B̃n,r
τσ (1, . . . , n) =

∫ τ

σ
dB̃r

ζ1(1)

∫ ζ1

σ
dB̃r

ζ2(2) . . .

∫ ζn−1

σ
dB̃r

ζn
(n). (5.3)

Decompose each B̃ into series as in section 4. For brevity, we rewrite

Γ̃′
z(i) + Γ̃′

z (̄i) = 2Re Γ̃′
z(i) =

∑

k∈Z

akz
k−1ξ̃k(i) (5.4)

with ξ̃k(i) = ξk(i) (k ≥ 1), and

a−k = ak+2, ξ̃−k(i) = −ξ̄k+2(i) = ξk+2(̄i) (k ≥ 0). (5.5)

The main problem (compared to the case of the Lévy area) is to define
properly the decomposition of B̃n,r(1, . . . , n) into the sum of an increment
term δG̃ and a boundary term B̃(∂).

As we noted in the Introduction, the ’natural’ boundary term for the
Lévy area, namely, −δB̃r

τσ(1)B̃r
σ(2), was not 2α−-Hölder, but only α−-

Hölder. It is only after restriction to the set of indices {k1, k2 ≥ 0 | k1 ≤
k2} that this boundary term becomes 2α−-Hölder. The particular feature
about the two-dimensional case is that there is a simple way to rewrite the
Lévy area

∫ τ
σ dB̃r

ζ1
(1)
∫ ζ1
σ dB̃r

ζ2
(2) by moving B̃(1) to the right of B̃(2) as

∫ τ
σ dB̃r

ζ2
(2)
∫ τ
ζ2

dB̃r
ζ1

(1), by using, so to speak, the time-reversal symmetry.
Then the correct definition of the boundary term requires to split the Lévy
area into a sum over each of the two sets of indices (k1 < k2), (k1 > k2),
and is given by similar but different expressions on each. Note that diagonal
indices (i.e. such that k1 = k2) play no particular role and may be grouped
together with either subset.
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The idea in the multi-dimensional setting is to split the set of indices
Z

n into ∪ε∈Σ′
n
Z

n
ε , where Σ′

n is the group of permutations of {1, . . . , n}, and
Z

n
ε = {(k1, . . . , kn) ∈ Z

n | |kε(1)| ≤ . . . ≤ |kε(n)|}. Then the correct definition
of the boundary term over each set of indices Z

n
ε is obtained by permuting

the order of integration of the multiple integral B̃n,r(1, . . . , n) according
to the permutation ε. Now (except if ε = Id is the trivial permutation,
or corresponds to time-reversal, i.e. ε(i) = n − i + 1, i = 1, . . . , n) the
resulting expression is much more complicated, which requires some extra
combinatorial considerations (see section 6).

In this section, we shall present our estimates in the easier case when ε
is the trivial permutation.

Definition 5.1 1. If A(z) =
∑

k1,...,kn∈Z
fk1,...,kn

(z)ξ̃k1(i1) . . . ξ̃kn
(in), then

we let
P+A(z) =

∑

|k1|≤...≤|kn|

fk1,...,kn
(z)ξ̃k1(i1) . . . ξ̃kn

(in) (5.6)

be the orthogonal projection of A(z) onto the subspace of the n-th Gaus-
sian chaos of Γ̃(i1), . . . , Γ̃(in) generated by {ξ̃k1(i1) . . . ξ̃kn

(in), |k1| ≤
. . . ≤ |kn|}.

2. Let Z
n,+ := {(k1, . . . , kn) ∈ Z

n | |k1| ≤ . . . ≤ |kn|} and B̃n,r,+(1, . . . , n) =
P+B̃n,r(1, . . . , n) be the restriction of the sum defining B̃n,r(1, . . . , n)
to the set of indices Z

n,+.

Generally speaking, all the quantities constructed below which are sums
over some subset of Z

n,+ bear an extra upper index ′+′.

Elementary computations yield an increment/boundary decomposition
of the iterated integral,

B̃n,r,+
τσ (1, . . . , n) =

(

δG̃n,r,+(1, . . . , n)
)

τσ
+ B̃n,r,+

τσ (1, . . . , n)(∂) (5.7)

where G̃ and B̃(δ) will be defined presently.
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Define first the increment term,

G̃n,r,+
z (1, . . . , n) =

∑

(k1,...,kn)∈Zn,+

r|k1|+...+|kn|ak1 . . . akn
ξ̃k1(1) . . . ξ̃kn

(n)

∫ z

ζk1
1

dζ1

ζ1

∫ ζ1

ζk2
2

dζ2

ζ2
. . .

∫ ζn−1

ζkn
n

dζn

ζn
= (5.8)

∑

(k1,...,kn)∈Zn
∗∩Zn,+

r|k1|+...+|kn|ak1 . . . akn
ξ̃k1(1) . . . ξ̃kn

(n)zk1+...+kn

kn(kn−1 + kn) . . . (k1 + . . . + kn)
+ R,

(5.9)

where by definition
∫ τ

ζk dζ
ζ = i

∫ θ
eikθ dθ := τk

k (k 6= 0) is the usual integral
of monomials, and Z

n
∗ = {(k1, . . . , kn) ∈ Z

n | kn 6= 0, kn−1 +kn 6= 0, . . . , k1 +
. . .+kn 6= 0}. The term R is a sum of logarithmic terms which will not bother
us since the regularization process will remove the indices (k1, . . . , kn) which
do not belong to Z

n
∗ . Note also that this formal integral is self-conjugate,

i.e. −i
∫ θ

e−ikθ dθ = −
∫ τ

ζ−k dζ =
(

τk

k

)

, so G̃ is real-valued.

Now, the boundary term B̃n,r,+
τσ (1, . . . , n)(∂) writes:

B̃n,r,+
τσ (1, . . . , n)(∂) = P+

[

∑

n1+n2=n

B̃n1,r,+
τσ (1, . . . , n1) .

∫

σ
dB̃r

ζn1+1
(n1 + 1)

∫ ζn1+1

dB̃r
ζn1+2

(n1 + 2) . . .

∫ ζn−1

dB̃r
ζn

(n)

]

= −P+
∑

n1+n2=n

B̃n1,r,+
τσ (1, . . . , n1)G̃

n2,r,+
σ (n1 + 1, . . . , n). (5.10)

Consider any regularization procedure G̃n,r,+ → RG̃n,r,+ commuting
with the projections onto the Fourier components (k1, . . . , kn) such that
δRG̃1,r,+ = δG̃1,r,+ = δB̃r (so that RB̃1,r

τσ = (δB̃r)τσ, i.e. the rough path
we are constructing lies aboves B̃r). Then the regularization scheme for B̃r

is defined as follows.

Definition 5.2 (regularization for ε = Id) Let i1 6= . . . 6= in. We define
by induction on n

RB̃n,r,+
τσ (i1, . . . , in)(∂) := −P+

∑

n1+n2=n

RB̃n1,r,+
τσ (i1, . . . , in1)RG̃n2,r,+

σ (in1+1, . . . , in)

(5.11)
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and

RB̃n,r,+
τσ (i1, . . . , in) :=

(

δRG̃n,r,+(i1, . . . , in)
)

τσ
+ RB̃n,r,+

τσ (i1, . . . , in)(∂),

(5.12)
where RG̃n,r,+ is an arbitrary regularization of G̃n,r,+ – commuting with the
projections onto the Fourier components (k1, . . . , kn) – such that δRG̃1,r,+ =
δG̃1,r,+ = δB̃r.

Then (by a straightforward computation, see also [16], eq. (6) with a
different sign convention for δ)

(

δRB̃n,r,+(i1, . . . , in)
)

τuσ

= −P+
∑

n1+n2=n

{(

δRB̃n1,r,+(i1, . . . , in1)
)

τuσ
RG̃n2,r,+

σ (in1+1, . . . , in)

−RB̃n1,r,+
τu (i1, . . . , in1)

(

δRG̃n2,r,+(in1+1, . . . , in)
)

uσ

}

. (5.13)

Let us prove that the multiplicative property
(

δRB̃n,r,+(i1, . . . , in)
)

τuσ
= P+

∑

n1+n2=n

RB̃n1,r,+
τu (i1, . . . , in1)RB̃n2,r,+

uσ (in1+1, . . . , in)

(5.14)
holds for every n ≥ 1. Assuming it is true for n = 1, . . . , N − 1, then

P+
∑

n1+n2=N

RB̃n1,r,+
τu (i1, . . . , in1)RB̃n2,r,+

uσ (in1+1, . . . , iN )

= P+
∑

n1+n2=N

RB̃n1,r,+
τu (i1, . . . , in1)

{(

δRG̃n2,r,+(in1+1, . . . , iN )
)

uσ
−

∑

p1+p2=n2

RB̃p1,r,+
uσ (in1+1, . . . , in1+p1)RG̃p2,r,+

σ (in1+p1+1, . . . , iN )

}

= P+
∑

n1+n2=N

RB̃n1,r,+
τu (i1, . . . , in1)

(

δRG̃n2,r,+(in1+1, . . . , iN )
)

uσ

−P+
∑

q1+q2=N

(

δRB̃q1,r,+(i1, . . . , iq1)
)

τuσ
RG̃q2,r,+

σ (iq1+1, . . . , iN )

=
(

δRB̃N,r,+(i1, . . . , iN )
)

τuσ
(5.15)

hence the multiplicative property holds for every N ≥ 1.
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5.2 Definition and estimates of the regularized increment

term

The regularized increment term (as in the case of the Lévy area) will be ob-
tained by restricting the sum defining the increment term to an appropriate
subset.

Definition 5.3 (regularized increment term for ε = 1) Let

Z
n,+
reg := {(k1, . . . , kn) ∈ Z

n,+ | ∀j = 1, . . . , n − 1, |kj + . . . + kn| > Creg|kn|}
(5.16)

for some constant Creg ∈ (0, 1). Then we define the regularized increment
term RG̃n,r(1, . . . , n) to be

RG̃n,r,+
z (1, . . . , n) :=

∑

(k1,...,kn)∈Z
n,+
reg

r|k1|+...+|kn|

ak1 . . . akn
ξ̃k1(1) . . . ξ̃kn

(n)

∫ z

ζk1
1

dζ1

ζ1

∫ ζ1

ζk2
2

dζ2

ζ2
. . .

∫ ζn−1

ζkn
n

dζn

ζn
.

(5.17)

If k ≥ 1, we denote by R kG̃n,r,+
z (1, . . . , n), resp. R kG̃

n,r,+
z (1, . . . , n)

the corresponding truncated series, resp. remainder as in section 2.

Note that the exponent of z in the series (5.17) is k1 + . . . + kn and that
condition (5.16) entails the absence of any logarithmic term in the series.

Remark. One may also set simply RG̃n,r,+(1, . . . , n) ≡ 0 for every
n ≥ 2 (or, formally, Creg = ∞). Our regularization procedure is minimal in
the sense that we only discard in the sum (5.17) (as in section 4) an adequate
subset of indices Z

n,+ \ Z
n,+
reg which makes the series divergent. Note also

that (Zn,+\Z
n,+
reg )∩N

n = ∅ if Creg ∈ (0, 1), so no regularization is required to
define iterated integrals of the Γ-process (corresponding to positive indices
k1, . . . , kn): hence our construction coincides with that of [31] in the case of
the analytic fractional Brownian motion Γ.

Lemma 5.4 (Hölder estimate for the regularized increment term)
Let α < 1/n. There exists a constant C such that

sup
σ,τ∈C

E

∣

∣

∣

(

δRG̃n,r,+
)

τσ
(1, . . . , n)

∣

∣

∣

2
≤ Cd(σ, τ)2nα. (5.18)
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Also, considering the series truncated to order k > 0 instead,

sup
σ,τ∈C

E

∣

∣

∣

(

δ kRG̃n,r,+
)

τσ
(1, . . . , n)

∣

∣

∣

2
≤ C ′(d(σ, τ)k1−nα)2. (5.19)

Proof. Consider the restricted sum in the above formula (5.9). By
definition of Z

n,+
reg , the denominator is larger than a constant times |kn|n,

while ak1 . . . akn
. |kn|n(1/2−α). Note also that the exponent of z, namely,

k1 + . . .+kn, differs from kn by a multiplicative factor which is bounded and
bounded away from 0 (namely, Creg|kn| < |k1 + . . . + kn| ≤ n|kn|). Hence

RG̃n,r,+
z (1, . . . , n) =

∑

K∈Z

CKzK , (5.20)

where

VarCK . Card
{

(k1, . . . , kn) ∈ Z
n,+
reg | k1 + . . . + kn = K

}

. K−n(2α+1) . K−1−2nα.
(5.21)

Hence (by Lemma 2.1 and Lemma 2.2) the conclusion of the Lemma holds.
2

Lemma 5.5 (Rate of convergence for the regularized increment term)
Let α < 1/n. Then there exists a constant C such that

E

∣

∣

∣RG̃n,r1,+
z (1, . . . , n) −RG̃n,r2,+

z (1, . . . , n)
∣

∣

∣

2
≤ C|r1 − r2|2nα. (5.22)

Proof.
Let Xn,r1,r2,+

z := RG̃n,r1,+
z (1, . . . , n) −RG̃n,r2,+

z (1, . . . , n): then

Xn,r1,r2,+
z =

n
∑

i=1

∑

(k1,...,kn)∈Z
n,+
reg

r
|k1|+...+|ki−1|
2 r

|ki+1|+...+|kn|
1

∏

j 6=i

[

akj
ξ̃kj

(j)
]

∏

j 6=i((kj + 1) + . . . + kn)

z
P

j 6=i kj
aki

ki + . . . + kn
ξ̃ki

(i)
{

r
|ki|
1 zki − r

|ki|
2 zki

}

.

(5.23)

The variance of the coefficient of r
|ki|
1 is

ski
.

∑

|kn|≥|ki|

∑

|kj |≤|kn|,j=1,...,n−1,j 6=i

(|kn|−1−2α)n .
∑

|kn|≥|ki|

|kn|−2−2nα . |ki|−1−2nα

(5.24)
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if i 6= n, and

skn
.

∑

|k1|,...,|kn−1|≤|kn|

(|kn|−1−2α)n . |kn|−1−2nα. (5.25)

Hence (by Lemma 2.1) E|Xn,r1,r2,+
z |2 ≤ C|r1z − r2z|2nα = C|r1 − r2|2nα.

2

5.3 Estimates for the boundary terms

Lemma 5.6 Let α < 1/n. The regularized boundary term RB̃n,r
τσ (1, . . . , n)(∂)

satisfies:

E

∣

∣

∣RB̃n,r
τσ (1, . . . , n)(∂)

∣

∣

∣

2
≤ Cd(σ, τ)2nα (5.26)

for a certain constant C.

Proof.

First step.

Take distinct indices i0 6= . . . 6= in and let k ∈ Z. Let RH̃n,r,+
z [k](i0; i1, . . . , in)

be the sum of the terms in the series R kG̃
n+1,r,+
z (i0, i1, . . . , in) such that

k0 = k. Then

RH̃n,r,+
z [k](i0; i1, . . . , in)

= r|k|ak ξ̃k(i0)
∑

(k1,...,kn)∈Z
n,+
reg ;|k1|≥|k|,|k+k1+...+kn|≥Creg|kn|

r|k1|+...+|kn|

ak1 . . . akn
ξ̃k1(i1) . . . ξ̃kn

(in)

∫ z

ζk
0

dζ0

ζ0

∫ ζ0

ζk1
1

dζ1

ζ1
. . .

∫ ζn−1

ζkn
n

dζn

ζn
.

(5.27)

Then the variance of R H̃n,r,+
z [k](i0; i1, . . . , in) is bounded uniformly in

z (up to a constant) by

|k|−1−2α
n
∏

j=1

∑

|kj |≥|k|

|kj |−1−2α . |k|−1−2α(n+1). (5.28)

Second step.

Apply repeatedly Definition 5.2: RB̃n,r,+
τσ (1, . . . , n)(∂) may be written

as a sum of terms of the form Aτσ := P+(δRG̃n1,r,+(1, . . . , n1))τσBσ, where

Bσ := P+RG̃n2−n1,r,+
σ (n1 + 1, . . . , n2) . . .RG̃

np−np−1,r,+
σ (np−1 + 1, . . . , np).

. RG̃
n−np,r,+
σ (np + 1, . . . , n). (5.29)
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Write Aτσ =
∑

K∈Z
C ′

K(σ)(τK − σK) by expanding RG̃n1,r,+(1, . . . , n1)

into series. By definition of Z
n1,+
reg , |K| . |kn1 | . |K|. Let Bσ[k] be the

expression obtained by keeping all terms in the series decomposition of Bσ

such that kn1+1 = k: a simple generalization of Step 1 (by induction on p)
leads to Var Bσ[k] . |k|−1−2α(n−n1). Then

VarC ′
K(σ) . VarCK

∑

|k|≥|K|

Var Bσ[k] (5.30)

where CK is the coefficient of zK in the series RG̃n1,r,+(1, . . . , n1). By the
proof of lemma 5.4, VarCK . |K|−1−2n1α, hence VarC ′

K(σ) . |K|−1−2nα

uniformly in σ. This implies E|Aτσ|2 . d(σ, τ)2nα by Lemma 2.1.
2

Lemma 5.7 (rate of convergence) Let α < 1/n. There exists a constant
C such that, for every 1

2 < r1, r2 < 1 and σ, τ ∈ C,

E

∣

∣

∣
RB̃n,r1,+

τσ (∂)(1, . . . , n) −RB̃n,r2,+
τσ (∂)(1, . . . , n)

∣

∣

∣

2
≤ C|r1 − r2|2α. (5.31)

Proof. The difference Xn,r1,r2
τσ := RB̃n,r1,+

τ,σ (1, . . . , n)(∂)−RB̃n,r2,+
τ,σ (1, . . . , n)(∂)

writes (see Definition 5.2)

−P+
∑

n1+n2=n

(

RB̃n1,r1,+
τσ (1, . . . , n1) −RB̃n1,r2,+

τσ (1, . . . , n1)
)

RG̃n2,r1,+
σ (n1 + 1, . . . , n)

−P+
∑

n1+n2=n

RB̃n1,r2,+
τσ (1, . . . , n1)

(

RG̃n2,r1,+
σ (n1 + 1, . . . , n) −RG̃n2,r2,+

σ (n1 + 1, . . . , n)
)

.

(5.32)

The result follows now from the estimates of subsection 5.2 by induction
on n. 2

6 Iterated integrals of superior order: case of dis-

tinct indices

6.1 General setting

We keep in this section (with an index shift which will prove later on to be
convenient) the hypothesis i0 6= . . . 6= in−1 and set i0 = 0, . . . , in−1 = n − 1,

36



but consider this time indices (k0, . . . , kn−1) in the domain

Z
n
ε := {(k0, . . . , kn−1) ∈ Z

n | |kε(0)| ≤ . . . ≤ |kε(n−1)|} (6.1)

for some fixed (non-trivial) permutation ε : {0, . . . , n − 1} → {0, . . . , n −
1}. We propose to introduce an appropriate regularization of the part of

B̃n,r
τσ (0, . . . , n − 1) =

∫ τ
σ dB̃r

ζ1
(0)
∫ ζ1
σ dB̃r

ζ1
(1) . . .

∫ ζn−1

σ dB̃r
ζn−1

(n − 1) corre-
sponding to this subset of indices.

Permuting the order of integration according to the permutation ε, an
arbitrary iterated integral

∫ τ

σ

dζ0

ζ0

∫ ζ0

σ

dζ1

ζ1
. . .

∫ ζn−1

σ

dζn−1

ζn−1
f(ζ0, . . . , ζn−1)

writes
∫ τ0

σ0

dζε(0)

ζε(0)
. . .

∫ τn−1

σn−1

dζε(n−1)

ζε(n−1)
f(ζε(0), . . . , ζε(n−1))

for some intervals [σ0, τ0] = [σ, τ ], [σ1, τ1], . . . , [σn−1, τn−1]. Writing

(

τj

σj

)

as the j-th row of a 2 × n-matrix, and choosing as labels of the rows the
component indices ij = j, leads more generally to the next definition.

Definition 6.1 1. Let T = (T(i, j))1≤i≤2,0≤j≤n−1 be a matrix with 2
lines and n rows, with coefficients in the set V := {0, . . . , n−1}∪{σ, τ},
and ℓ(T, j) ∈ N, j = 0, . . . , n − 1 be some integer labels. It may
be seen as an oriented graph with set of vertices V and set of edges
E = {(v,w) ∈ {0, . . . , n − 1} × V |v → w}, where by definition
i → w (i ∈ {0, . . . , n − 1}, w ∈ V ), read: i connects directly to

w, if w = T(1, i) or T(2, i). Write T.j for the row

(

T(1, j)
T(2, j)

)

. We

call T an integration graph if:

(i) (i, j) ∈ E, i, j ∈ {0, . . . , n − 1} ⇒ j < i;

(ii) T.0 =

(

τ
σ

)

or

(

σ
τ

)

.

We identify two integration graphs T and T
′ if some permutation of the

vertices ε : {0, . . . , n − 1} → {0, . . . , n − 1} such that (i, j) ∈ E(T) ⇔
(ε(i), ε(j)) ∈ E(T′) and ℓ(T′, ε(j)) = ℓ(T, j) transforms T into T

′.
This defines equivalence classes of integration graphs.
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2. Let T be an integration graph. We call T an integration tree (or simply
a tree) if

T =

(

τ i1 i2 . . . in−1

σ σ σ . . . σ

)

(6.2)

with ij ∈ {0, . . . , j − 1}. It may be seen as a decorated rooted tree with
vertices j = 0 (root), 1, . . . , n − 1 wearing the label ℓ(T, j).

More generally, if ij1 , . . . , ijJ
= τ for some j1, . . . , jJ = 1, . . . , n − 1,

then T is called an integration forest (or simply a forest) and may be
seen as a decorated forest (i.e. a disjoint union of decorated rooted
trees) with roots 0, j1, . . . , jJ .

3. Let T = (T(i, j))1≤i≤2,0≤j≤n−1 be a matrix with coefficients in the set
V ∪ ∅. Then T is called a truncated integration graph if condition (i)

is satisfied and T.j 6=
(

∅
∅

)

for every j.

4. If i1 → i2 → . . . → ij−1 → w for some indices i1, . . . , ij−1 ∈ {0, . . . , n−
1} and w ∈ V , then we shall write i1 ։ w, and say that i1 connects
to w.

5. If a, b are some symbols (in practice, a, b ∈ {σ, τ, u} only), then [T]ba
is the graph obtained by replacing all occurrences of the symbol σ, resp.
τ , by a, resp. b.

Trees T grow up starting from their root, but (by convention) arrows go
down, so that v is ’below’ w if w → v (see figures in subsection 6.2 below).
The ’boundary vertices’ σ, τ and the arrows leading to them are never
considered when looking at the tree structure, which is really T \ {σ, τ}. By
a slight abuse of notation, we shall write T both for the underlying graph
structure and for the underlying tree structure.

Definition 6.2 (operations on integration graphs) 1. Assume T =
(T(i, j))1≤i≤2,0≤j≤n−1 is some (possibly truncated) integration graph.
Then −T is the graph obtained from T by permuting the entries of the
row number j for some j = 0, . . . , n − 1.

2. Let T1, T2 be some (possibly truncated) integration graphs of dimension
n with the same labels, such that the rows of T1 and T2 are identical,
save for row number j for some j = 0, . . . , n − 1, and furthermore,
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T1(1, j) = T2(2, j), resp. T1(2, j) = T2(1, j). Then T := T1 + T2 is
the integration graph of dimension n defined by

T.k = T1.k = T2.k (k 6= j),
(

T(1, j)
T(2, j)

)

=

(

T2(1, j)
T1(2, j)

)

, resp.

(

T1(1, j)
T2(2, j)

)

. (6.3)

Operations 1 and 2 may be represented simply as operations on the

row number j, namely,

(

a
c

)

+

(

c
b

)

=

(

a
b

)

.

3. Let T1, resp. T2 be a (possibly truncated) integration graph of dimen-
sion n1, resp. n2. Then T1.T2 =

(

T1

∣

∣ T2

)

is the integration graph of
dimension n1 + n2 obtained by keeping the same labels and moving T2

to the right of T1, i.e. such that

(T1.T2).j = T1.j (0 ≤ j ≤ n1 − 1) (6.4)

and (T1.T2)(i, n1 + j) = T2(i, j) if T2(i, j) = σ or τ , T2(i, j) + n1

otherwise (0 ≤ j ≤ n2 − 1).

Conversely, if T is some (possibly truncated) integration graph, then

’cutting’ it along every row of the form

(

τ
σ

)

yields a decomposition

of T into a product of indecomposable graphs. In particular, if T is a
forest, then T decomposes into a product of trees.

The objects we consider live actually in the free commutative algebra
over Z generated by truncated integration graphs, quotiented out by the
above rules. Restricting to (non-truncated) forests, the relevant structure is
that of the Hopf algebra T of decorated rooted trees, generated by trees (or
rather forests) and with coproduct structure given in subsection 6.2 below.
By Lemma 6.7, integration graphs may be seen as linear combinations of
forests, so we are really working in T . The relation between labeled rooted
trees and iterated integrals has been known for a long time, see for instance
[3, 4]. It has recently received some interest because of the introduction of
the Hopf algebra of decorated rooted trees by A. Connes, D. Kreimer [6, 7, 8],
see also the papers by C. Brouder, A. Frabetti and L. Foissy [1, 2, 12] in
the context of Feynmann graphs in quantum field theory. The notion of
integration graphs and the representation by matrices is only a by-product
of this, but it is also convenient. The algebraic structure is best seen on
trees, but matrices are sometimes more visual and also useful when studying
iterated integrals with varying boundaries σ, τ, u.
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Definition 6.3 (integration along a tree) Let T be a (possibly truncated)
integration graph with distinct labels {ℓ0 := ℓ(T, 0), . . . , ℓn−1 := ℓ(T, n −
1)} := Vℓ, and f : CVℓ := {(ζv)v∈Vℓ

} → C be a Laurent series, f(ζℓ0, . . . , ζℓn−1) =
∑

fkℓ0
,...,kℓn−1

ζ
kℓ0
ℓ0

. . . ζ
kℓn−1

ℓn−1
. Then we let (assuming the expression below

converges)

[IT(f)]zw :=

∫

T(1,0)

T(2,0)

dζℓ0

ζℓ0

∫

T(1,1)

T(2,1)

dζℓ1

ζℓ1

. . .

∫

T(1,n−1)

T(2,n−1)

dζℓn−1

ζℓn−1

f(ζℓ0, . . . , ζℓn−1),

(6.5)
where all occurrences of τ , resp. σ have been replaced by z, resp. w.

If τ does not occur in T, we shall simply write [ITf ]w, meaning that all
occurrences of σ should be replaced by w.

This definition extends immediately by linearity to formal linear combi-
nations of graphs.

Remark. If T is a truncated graph, then
∫ τ

ζk dζ
ζ , resp.

∫

σ ζk dζ
ζ (as

in subsection 5.1) is defined as τk

k (k 6= 0), resp. −σk

k . For general trun-
cated graphs, some extra conditions on f (which are always satisfied in our
computations) are needed to ensure that no logarithmic terms appear.

Lemma 6.4 Let T be a (possibly truncated) integration graph with distinct
labels {ℓ0 := ℓ(T, 0), . . . , ℓn−1 := ℓ(T, n − 1)} := Vℓ. Assume T = T1.T2.

1. Let f = fℓ0 ⊗ . . . ⊗ fℓn−1 : CVℓ → C, then

[IT(f)]τσ = [IT1(f
∣

∣

ℓ(V (T1))
)]τσ[IT2(f

∣

∣

ℓ(V (T2))
)]τσ, (6.6)

where, given a subset W = {i1, . . . , ij} ⊂ ℓ(V (T)), f
∣

∣

W
:= fi1 ⊗ . . . ⊗

fij .

2. (multilinear extension of 1.) Let f =
∑

fkℓ0
,...,kℓn−1

ζ
kℓ0
ℓ0

⊗ . . . ⊗ ζ
kℓn−1

ℓn−1

be a converging Laurent series, then

[IT(f)]τσ = [IT1 ]τσ . [IT2 ]τσ(f), (6.7)

where by definition

[IT1 ]τσ . [IT2 ]τσ(f) =
∑

fkℓ0
,...,kℓn−1

[

IT1

(

⊗l∈ℓ(V (T1))ζ
kl

l

)]

τσ

[

IT2

(

⊗l∈ℓ(V (T2))ζ
kl

l

)]

τσ
.

(6.8)
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Proof. Immediate. 2

Recall ε : {0, . . . , n − 1} → {0, . . . , n − 1} is an arbitrary permutation.

Definition 6.5 (permutation integration graphs) Let T
ε be the inte-

gration graph given by

ε(T(1, j)) = max{i′ = ε(1), . . . , ε(j − 1) | i′ < ε(j)}, (6.9)

resp. τ if this set is empty, and

ε(T(2, j)) = min{i′ = ε(1), . . . , ε(j − 1) | i′ > ε(j)}, (6.10)

resp. σ if this set is empty, with labels ℓ(Tε, j) = j.

Note our choice of labels, which is identical for all T
ε, ε ∈ Σn.

In particular, T
Idn =

(

τ 0 1 . . . n − 2
σ σ σ σ σ

)

.

It is easy to check that an integration graph T is a permutation graph (up
to the sign, see Definition 6.2) if and only if, for every j, T(1, j) → T(2, j)
or T(2, j) → T(1, j). For if this is the case, then ε may be retrieved step
by step by inserting ε(j) inside the set {τ, ε(1), . . . , ε(j − 1), σ} between the
neighbouring positions ε(T(1, j)) and ε(T(2, j)).

The motivation for introducing these permutation graphs comes from
the following.

Lemma 6.6 Let, for any Laurent series f : Cn → C such that the integrals
converge,

In
τσ(f) :=

∫ τ

σ

dζ0

ζ0

∫ ζ0

σ

dζ1

ζ1
. . .

∫ ζn−2

σ

dζn−1

ζn−1
f(ζ0, . . . , ζn−1). (6.11)

Then, for every permutation ε,

In
τσ(f) = ITε(f ◦ ε) (6.12)

where by definition, f ◦ ε(ζ0, . . . , ζn−1) := f(ζε(0), . . . , ζε(n−1)).

Proof. Elementary. 2
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Lemma 6.7 (decomposition of an integration graph) Let T be a (non-
truncated) integration graph. Split each row of index j, j ≥ 1, in the follow-
ing way:

(

i1
i2

)

→
(

i1
σ

)

−
(

i2
σ

)

,

(

τ
i

)

→
(

τ
σ

)

−
(

i
σ

)

(6.13)

and decompose each forest thus obtained into a product of trees. Then T

writes
T =

∑

l

±Tl,1 . . . Tl,L(l) (6.14)

where each Tl,m is an integration tree.

Proof. Elementary. 2

We shall be interested for application to fBm in the following function:

Definition 6.8 (defining function for iterated integrals) 1. Let, for
any multi-index i = {i0, . . . , in−1},

fn,r,ε
i (ζ0, . . . , ζn−1) :=

∑

|kε(0)|≤...≤|kε(n−1)|

ρ(k0, . . . , kn−1)

r|k0|+...+|kn−1|ak0 . . . akn−1 ξ̃k0(i0) . . . ξ̃kn−1(in−1) . ζk0
0 . . . ζ

kn−1

n−1

(6.15)

where ρ(k0, . . . , kn−1) = 1
|Σk |

and Σk is the ’index-fixing’ subgroup of

permutations ε′ : {0, . . . , n−1} → {0, . . . , n−1} such that (k0, . . . , kn−1) =
(kε′(0), . . . , kε′(n−1)), and

B̃n,r,ε
τσ (i0, . . . , in−1) := In

τσ(fn,r,ε
i ). (6.16)

2. Let, for V = {v0, . . . , vj−1} ⊂ {0, . . . , n − 1},

fn,r,ε
i

∣

∣

V
(ζv0 , . . . , ζvj−1) :=

∑

(kv0 ,...,kvj−1)∈S

ρV (kv0 , . . . , kvj−1)

r|kv0 |+...+|kvj−1 |akv0
. . . akvj−1

ξ̃kv0
(iv0) . . . ξ̃kvj−1

(ivj−1) . ζ
kv0
v0 . . . ζ

kvj−1
vj−1

(6.17)

where S = {(kv0 , . . . , kvj−1) ∈ Z
j | ε−1(vi) ≤ ε−1(vj) ⇒ |kvi

| ≤ |kvj
|}

and ρV (kv0 , . . . , kvj−1) = 1
|Σ(kv0 ,...,kvj−1

)|
.

If i = {0, . . . , n − 1} or if no confusion is possible, we shall drop the
lower index i and write simply fn,r,ε or fn,r,ε

∣

∣

V
.
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By definition,

B̃n,r
τσ =

∑

ε∈Σn

B̃n,r,ε
τσ . (6.18)

Note that the coefficient ρ is generically 1, so that we may essentially forget
about it. Seeing B̃n,r,ε as ITε(fn,r,ε ◦ ε) will allows us to define its regular-
ization in the next subsection.

Definition 6.9 (well-labeled tree) Let T be a decorated rooted tree with
distinct labels. We shall say that T is well-labeled if ℓ(v) < ℓ(w) whenever
v,w ∈ T and w ։ v.

Then ℓ induces a total ordering on V (T), compatible with the tree partial
ordering given by ։. By a slight abuse of notation, we shall index the
vertices by their label and write v < w if ℓ(v) < ℓ(w).

The above definition extends naturally to forests. Those appearing in
the decomposition of T

ε (see Definition 6.5 and Lemma 6.7) are naturally
well-labeled. As we shall see, Hölder estimates hold when one integrates an
appropriate regularization of fn,r,ε ◦ ε along well-labeled trees.

6.2 Tree multiplicative property

Definition 6.10 (admissible cuts) 1. Let T be a tree, with set of ver-
tices V (T) and root denoted by 0. If v = (v1, . . . , vJ ) is any totally
disconnected subset of V (T) \ {0}, i.e. vi 6։ vj for all i, j = 1, . . . , J ,
then we shall say that v is an admissible cut of T, and write v |= V (T).
We let RvT be the sub-forest (or sub-tree if J = 1) obtained by keeping
only the vertices above v, i.e. V (RvT) = v ∪ {w ∈ V (T) : ∃j =
1, . . . , J, w ։ vj}, and LvT be the sub-tree obtained by keeping all
other vertices.

2. Let T = T1 . . . Tl be a forest, together with its decomposition into trees.
Then an admissible cut of T is a disjoint union v1 ∪ . . .∪ vl, vi ⊂ Ti,
where vi is either ∅, {0i} (root of Ti) or an admissible cut of Ti. By
definition, we let LvT = Lv1T1 . . . Lvl

Tl, RvT = Rv1T1 . . . Rvl
Tl (if

vi = ∅, resp. {0i}, then (Lvi
Ti, Rvi

Ti) := (Ti, ∅), resp. (∅, Ti)).

We exclude by convention the two trivial cuts ∅ ∪ . . . ∪ ∅ and {01} ∪
. . . ∪ {0l}.

See Fig. 1 and 2.
Let us give two explicit examples (the notation Sk (skeleton) is defined

in Definition 6.12 below):
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0

vu
vd

w

w’

Figure 1: Admissible cut (notations refer to the proof of Lemma 6.11).

0

w

w’

Figure 2: Non-admissible cut.

Example 1. T = T
Idn =

(

τ 0 1 . . . n − 2
σ σ σ . . . σ

)

. Then the tree T

is simply a trunk (see Fig. 3), so admissible cuts are made of just one cut
at height n1 = 1, . . . , n − 1. Then Ln1T = T

Idn1 , Rn1T = T
Idn−n1 , while

[SkT]σ = −
(

∅ 0 1 . . . n − 2
σ ∅ ∅ . . . ∅

)

.

0

1

n−1

Figure 3: Trunk tree. Vertices are always indexed by their labels.

Example 2 (see Fig. 4).

Let ε : (0, 1, 2) → (1, 2, 0). Then Tε =

(

τ 0 τ
σ σ 0

)

=

(

τ 0
σ σ

)

.

(

τ
σ

)

−
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0

1 2

0

2

1 0
1 2

Figure 4: From left to right: T′; L{1}T
′ ⊗ R{1}T

′; L{1,2}T
′ ⊗ R{1,2}T

′.

T
′ where

T
′ =

(

τ 0 0
σ σ σ

)

.

Consider T
′. Then v = {1}, {2} or {1, 2} and

L{1}T
′ =

(

τ . 0
σ . σ

)

, R{1}T
′ =

(

τ
σ

)

, SkR{1}T
′ = −

(

∅
σ

)

;

(6.19)

L{2}T
′ =

(

τ 0 .
σ σ .

)

, R{2}T
′ =

(

τ
σ

)

; (6.20)

L{1,2}T
′ =

(

τ
σ

)

, R{1,2}T
′ =

(

. τ τ

. σ σ

)

=

(

τ
σ

)(

τ
σ

)

,

Sk(R{1,2}T
′) =

(

∅
σ

)(

∅
σ

)

. (6.21)

Lemma 6.11 (tree multiplicative property) (see [17]) Let T be a for-
est. Then

([δT])τuσ := [T]τσ − [T]τu − [T]uσ =
∑

v|=V (T)

[LvT]τu[RvT]uσ. (6.22)

Proof.
Assume first that T is a tree. We shall prove this relation by induction

on the number of vertices. Let T
′ be the tree obtained by adding to T a

vertex w′ such that w′ → w ∈ T.
Let v |= V (T). There are two cases (see Fig. 1):

(i) (’down’ case) either there is some vd ∈ v such that vd = w or w ։ vd. Then vd

is necessarily unique and v = {vd} ∪ vu, vu = {v1, . . . , vJ} totally
disconnected, such that vj 6։ vd and vd 6։ vj for j = 1, . . . , J ;

45



(ii) (’up’ case) or v = vu with vu = {v1, . . . , vJ} totally disconnected such that vj 6=
w and w 6։ vj for j = 1, . . . , J .

Note that an admissible cut of T is ipso facto also an admissible cut of
T
′. If v = {vd} ∪ vu (down case), then v ∪ {w′} is not an admissible cut

of T
′. On the contrary (up case), v′ := v ∪ {w′} is admissible. Finally, the

single cut {w′} is also an admissible cut of T
′.

Assume property (6.22) is true for T. Then

[T′]τσ − [T′]uσ − [T′]τu =

(

[T]τσ

∣

∣

w
σ

)

−
(

[T]uσ

∣

∣

w
σ

)

−
(

[T]τu

∣

∣

w
u

)

=

(

[T]τσ − [T]uσ − [T]τu

∣

∣

w
σ

)

+

(

[T]τu

∣

∣

u
σ

)

=

(

[T]τu

∣

∣

u
σ

)

+
∑

v|=V (T)

Av (6.23)

where

Av =

(

[LvT]τu[RvT]uσ

∣

∣

w
σ

)

. (6.24)

(i) (down case) Assume v = {vd} ∪ vu. Then LvT
′ = LvT, [RvT

′]uσ =

(

RvT
∣

∣

w
σ

)

hence [LvT
′]τu[RvT

′]uσ = Av.

(ii) (up case) Assume v = vu and let as before v′ = vu ∪ {w′}. Then

[LvT
′]τu =

(

[LvT]τu

∣

∣

w
u

)

, RvT
′ = RvT; (6.25)

[Lv′T
′] = LvT, [Rv′T

′]uσ =

(

[RvT]uσ

∣

∣

u
σ

)

(6.26)

hence [LvT
′]τu[RvT

′]uσ + [Lv′T
′]τu[Rv′T

′]uσ = Av.

(iii) Assume v = {w′}. Then [L{w′}T
′]τu[R{w′}T

′]uσ =

(

[T]τu

∣

∣

u
σ

)

.

If now T = T1 . . . Tl, l ≥ 1 is a forest, then (as a straightforward compu-
tation proves)

[δ(T.Tl+1)]τuσ = ([T]τu + [T]uσ + [δT]τuσ)([Tl+1]τu + [Tl+1]uσ + [δTl+1]τuσ)

−[T]τu[Tl+1]τu − [T]uσ[Tl+1]uσ

(6.27)
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hence (by induction on l)

[δT]τuσ =

l
∏

j=1

([Tj ]τu + [Tj]uσ + [δTj ]τuσ) −
l
∏

j=1

[Tj]τu −
l
∏

j=1

[Tj]uσ, (6.28)

hence the result (the last two terms corresponding to the two forbidden
trivial cuts, see Definition 6.10).

2

Definition 6.12 (skeleton of a graph) 1. Let T be a tree. Then the
skeleton of T is the truncated graph [Sk(T)]σ obtained by replacing all
occurrences of the vertex σ in T by ∅, except for the first row which we

set equal to Sk(T).0 = −
(

∅
σ

)

.

2. If T = T1 . . . Td is a forest together with its tree decomposition, then
define SkT = Sk(T1) . . . Sk(Td).

See Examples 1 and 2 above.

Lemma 6.13 (skeleton decomposition) Let T be a tree. Then

[T]τσ = [δSk(T)]τσ −
∑

v|=V (T)

[LvT]τσ[Sk(RvT)]σ (6.29)

where [δ(SkT)]τσ := [SkT]τ − [SkT]σ.

Proof.
The proof is similar to that of the preceding lemma and we shall use the

same notations. One has by induction hypothesis:

[T′]τσ =

(

[T]τσ

∣

∣

w
σ

)

=

(

[δSk(T)]τσ

∣

∣

w
σ

)

−
∑

v|=V (T)

Av, (6.30)

where

Av =

(

[LvT]τσ[Sk(RvT)]σ
∣

∣

w
σ

)

. (6.31)

Note that

[δSk(T′)]τσ =

(

[δSk(T)]τσ

∣

∣

w
∅

)

. (6.32)
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(i) (down case) Then LvT
′ = LvT, [Sk(RvT

′)]σ =

(

[Sk(RvT)]σ
∣

∣

w
∅

)

.

(ii) (up case) Then

[LvT
′]τσ =

(

[LvT]τσ

∣

∣

w
σ

)

, Sk(RvT
′) = Sk(RvT)

Lv′T
′ = LvT, [Sk(Rv′T

′)]σ = −
(

[Sk(RvT)]σ
∣

∣

∅
σ

)

.(6.33)

(iii) Let v = {w′},

[L{w′}T
′]τσ = [T]τσ = [δSkT]τσ−

∑

v|=V (T)

[LvT]τσ[Sk(RvT)]σ, [Sk(R{w′}T
′)]σ = −

(

∅
σ

)

.

(6.34)

Recombining all these identities gives

[T′]τσ = [δSk(T′)]τσ −
∑

v|=V (T′)

[LvT
′]τσ[Sk(RvT

′)]σ . (6.35)

2

Consider now f = fn,r,ε as defined in Definition 6.8, and assume (as
in subsection 5.1) some regularization procedure ISkT(fn,r,ε ◦ ε

∣

∣

V (T)
) →

RISkT(fn,r,ε ◦ ε
∣

∣

V (T)
), commuting with the projection onto the Fourier com-

ponents, has been defined for any well-labeled tree T (see Definition 6.9),
such that

[δRISkT(fn,r,ε ◦ ε
∣

∣

V (T)
)]τσ = [δISkT(fn,r,ε ◦ ε

∣

∣

V (T)
)]τσ = δBr

τσ(ε(v)) (6.36)

if T = {v} is the trivial tree with one vertex, v.

Lemma 6.14 (regularization) Let T = T1 . . . Tl be a well-labeled forest,
together with its tree decomposition. Define by induction the regularized
integral [RIT]τσ by

l
∏

j=1







[

δRISkTj

]

τσ
−

∑

v|=V (Tj )

[

RILvTj

]

τσ

[

RISkRvTj

]

σ







(6.37)

where the argument f = fn,r,ε ◦ ε has been omitted (see Lemma 6.4 (2)),
and where ISkT′ → RISkT′ is any regularization procedure commuting with
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the projections onto the Fourier components such that eq. (6.36) is satisfied.
Then [RIT]τσ satisfies the following tree multiplicative property:

[δRIT]τuσ =
∑

v|=V (T)

[RILv T]τu . [RIRv T]uσ . (6.38)

By analogy with section 5, [RITj
(δ)]τσ :=

[

δRISkTj

]

τσ
, resp. [RITj

(∂)]τσ :=

−∑v|=V (Tj )

[

RILv Tj

]

τσ

[

RISkRvTj

]

σ
will be called the increment, resp. bound-

ary term associated to the tree Tj.

Remarks.

• If ε = Idn, and T = T
Idn is the trunk tree, then eq. (6.37) coincides

with eq. (5.10), and the tree multiplicative property (6.38) is identical
to the multiplicative property (5.14).

• Mind that [RILvT]τu[RIRv T]uσ(f) is a bilinear expression, not a prod-
uct. However, projecting f = fn,r,ε ◦ ε onto any of its Fourier com-
ponents transforms the expressions (6.37) and (6.38) into products
and the ’projected’ multiplicative property (5.14) into the usual mul-
tiplicative property (ii) of the Introduction. Identities (5.14) and (6.38)
may be seen as ’tensorized’ (or also ’projected’) versions of the ordi-
nary/tree multiplicative property which hold for functions f which are
of the product form f0 ⊗ . . . ⊗ fn−1 (see Lemma 6.4, (1) and (2)).

Proof. If the multiplicative property (6.38) holds for trees, then it holds
automatically for forests since [RIT1...Tl

]τσ is the product
∏l

j=1[RITj
]τσ.

Hence we may assume that T is a tree, say, with n vertices. Suppose (by
induction) that the above multiplicative property (6.38) holds for all trees
with ≤ n − 1 vertices. Then

[δRIT]τuσ =
∑

v|=V (T)

(

− [δRILv T]τuσ

[

RISk(Rv T)

]

σ
+ [RILvT]τu

[

δRISk(Rv T)

]

uσ

)

=
∑

v|=V (T)

∑

w|=V (Lv T)

(

−
[

RILw◦Lv (T)

]

τu

[

RIRw◦Lv (T)

]

uσ
[RISkRv T]σ

+ [RILvT]τu

[

δRISk(Rv T)

]

uσ

)

.

(6.39)

Let x = v ∐ w := v ∪ w \ {i ∈ v ∪ w | ∃j ∈ v ∪ w | i ։ j}. Then
one easily proves that Lw ◦ Lv(T) = Lx(T), Rv(T) = Rv ◦ Rx(T) and
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Rw ◦ Lv(T) = Lv ◦ Rx(T). Hence

[δRIT]τuσ =
∑

x|=V (T)

[RILxT]τu



−
∑

v|=V (RxT)

[RILv (RxT)]uσ[RISkRv (RxT)]σ + [δRISk(RxT)]uσ





=
∑

x|=V (T)

[RILxT]τu[RIRxT]uσ. (6.40)

2

We shall now prove that property (6.38) implies (after summing over all
permutations ε) the usual multiplicative property (ii) of the Introduction
for RB̃n,r. Since R commutes with the projections onto the Fourier compo-
nents, it is enough to prove this for any Fourier component of RB̃n,r. The
following Lemma proves that the non-tensorized versions of the usual/tree
multiplicative properties are equivalent.

Lemma 6.15 (tree versus usual multiplicative property) Let ε ∈ Σn

and TN be the set of well-labeled forests with ≤ N vertices. Assume the
tree functional (Xε

τσ(T))T∈TN
satisfies the (non-tensorized) tree multiplica-

tive property, namely,

[δXε
τσ(T)]τuσ =

∑

v|=V (T)

Xε
τu(LvT) . Xε

uσ(RvT), (6.41)

and that Xε
τσ(T) = Xε

τσ(T1) . . . Xε
τσ(TL) if T = T1 . . . TL is a forest.

Let i = (i1, . . . , il) ∈ {0, . . . , n − 1}, i1 6= . . . 6= il. Denote by εi the
restriction of ε to (i1, . . . , il); one may see εi as an element of Σl by renum-
bering (i1, . . . , il) and (ε(i1), . . . , ε(il)) as (0, . . . , l−1) without changing their
ordering. Decompose the graph T

εi as a sum
∑

l ±Tl,1 . . . Tl,L of well-labeled
forests as in Lemma 6.7, and define

Xl
τσ(i1, . . . , il) :=

∑

l

±Xε
τσ(Tl,1) . . . Xε

τσ(Tl,L). (6.42)

Then (X1
τσ, . . . ,XN

τσ) satisfies the usual multiplicative property (ii) of the
Introduction.

Proof. Let ε ∈ Σn and ε′ := τε(i),ε(i+1) ◦ ε where τε(i),ε(i+1) is the
transposition of the neighbours ε(i) and ε(i + 1). Let T

ε =
∑

l ±Tl, Tl =
Tl,1 . . . Tl,L be the tree decomposition of T

ε as in Lemma 6.7. Fix some
index l. Then the vertices ε(i), ε(i + 1) may:

50



(i) either belong to two unconnected branches of Tl,j for some j;

(ii) or be successive vertices on the same branch of Tl,j for some j;

(iii) or belong to two different tree components Tl,j, Tl,j′ of Tl.

If ε(i) ∈ Tl,j, we let ε(i)↑ = {ε(i)}∪{v ∈ Tl,j | v ։ ε(i), v 6= ε(i+1), v 6։
ε(i + 1)} be the set of vertices lying ’above’ ε(i) but not on or above the
branch containing both ε(i) and ε(i+1), and ε(i)− be the vertex below ε(i),
i.e. ε(i) → ε(i)− (unless ε(i) is the root of Tl,j). Let also Ťl,j = Tl,j \ ε(i)↑

be the tree obtained from Tl,j by ’skipping’ ε(i)↑ while going down Tl,j.
Now T

ε′ may be gotten from T
ε by transforming each Tl in the following

way:
– if ε(i), ε(i + 1) belong to different trees or to unconnected branches of

the same tree (cases (i), (iii)), do nothing;
– if ε(i), ε(i + 1) ∈ Tl,j for some j and, say, ε(i + 1) → ε(i) (case (ii))

then split Tl,j into T
+
l,j −T

−
l,j, where T

+
l,j, resp. T

−
l,j is obtained from Ťl,j by

grafting the branch ε(i)↑ at ε(i)−, resp. ε(i + 1). See Fig. 5 and 6.

0

v

w

ε( i)

ε(

0

ε (i)

v

w

ε

0

w
v

ε (i+1)

ε
i+1)

(i+1)

(i)

Figure 5: T := Tl,j , T+ and T−. In this case ε(i)↑ = {ε(i), v} and ε(i)− = 0.

v

w

w v w
v

ε (i)

ε (i+1)

ε ε (i) ε

ε (i)

(i+1) (i+1)

Figure 6: RvT, (RvT)+ = (RvT\ε(i)↑) . ε(i)↑, and (RvT)− = Gr
ε(i+1)

ε(i)↑
(RvT\ε(i)↑)

with v = {ε(i)}.

In the special case when ε(i) is the root of Tl,j, then we set T
+
l,j =

Ťl,j . ε(i)↑ (T+
l,j is then a forest).

These transformations are simply the tree counterpart of the following
identities obtained by exchanging the integrations with respect to ζε(i) and
ζε(i+1):
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. . .

∫ ζ
ε(i)−

σ
dζε(i)

∫ ζε(i)

σ
dζε(i+1) . . . = . . .

∫ ζ
ε(i)−

σ
dζε(i+1)

∫ ζ
ε(i)−

ζε(i+1)

dζε(i) . . .

= . . .

∫ ζ
ε(i)−

σ
dζε(i+1)

(∫ ζ
ε(i)−

σ
dζε(i) −

∫ ζε(i+1)

σ
dζε(i)

)

. . . (6.43)

and similarly (if ε(i) is a root)

. . .

∫ τ

σ
dζε(i)

∫ ζε(i)

σ
dζε(i+1) . . . = . . .

∫ τ

σ
dζε(i+1)

(∫ τ

σ
dζε(i) −

∫ ζε(i+1)

σ
dζε(i)

)

. . .

(6.44)
Since every permutation ε may be written as a product of transpositions

between neighbours, and the lemma is trivially true for ε = 1, all we need
to prove is that (assuming we are in case (ii) and, say, ε(i + 1) → ε(i))

[δXε(Tl,j)]τuσ = [δXε′(T+
l,j)]τuσ − [δXε′(T−

l,j)]τuσ . (6.45)

Consider v |= V (Tl,j) as in the proof of Lemma 6.11. There are three
cases:

(i) ε(i), ε(i + 1) 6∈ v: then both ε(i) and ε(i + 1) are on the same side
of the cut, i.e. ε(i), ε(i + 1) ∈ LvTl,j or ε(i), ε(i + 1) ∈ RvTl,j, hence
(applying the same rules as for the transformation T

ε → T
ε′ either to

LvTl,j or to RvTl,j) Xε
τu(LvTl,j)X

ε
uσ(RvTl,j) is equal to its right hand-

side counterpart
{

Xε′
τu(Lv(T+

l,j)) − Xε′
τu(Lv(T−

l,j))
}

Xε
uσ(Rv(Tl,j)) or

Xε
τu(Lv(Tl,j))

{

Xε′
uσ(Rv(T+

l,j)) − Xε′
uσ(Rv(T−

l,j))
}

.

(ii) ε(i) ∈ v (hence ε(i + 1) 6∈ v): then the corresponding cut on the right
hand-side gives no contribution, since (Lv(T+

l,j), Rv(T+
l,j)) = (Lv(T−

l,j), Rv(T−
l,j))

(namely, grafting ε(i)↑ at ε(i)− and then stripping it is equivalent to
grafting it at ε(i + 1) and stripping it). As for the left hand-side, it
writes

[Xε(LvTl,j)]τu[Xε(RvTl,j)]uσ = [Xε′(LvTl,j)]τu
{

[Xε′(RvTl,j \ ε(i)↑)]uσ [Xε′(ε(i)↑)]uσ − [Xε′(Gr
ε(i+1)

ε(i)↑
(RvTl,j \ ε(i)↑))]uσ

}

=: A1 + A2

(6.46)

where RvTl,j \ ε(i)↑, resp. Gr
ε(i+1)

ε(i)↑
(RvTl,j \ ε(i)↑) is obtained from

RvTl,j by skipping the branch ε(i)↑, resp. by grafting it at ε(i + 1).

52



(iii) ε(i + 1) ∈ v (hence ε(i) 6∈ v): then the contribution to δXε(Tl,j) and
δXε′(T+

l,j) are the same, while the contribution to δXε′(T−
l,j) is equal

to A2.

Finally, adding ε(i + 1) to the cut v of case (ii) yields an admissible cut
of T

+
l,j and leads to a contribution in the right hand-side which is equal to

A1.
2

6.3 Definition and estimates of the regularized increment

term

Recall (see Lemma 6.7) that T
ε is a finite sum

∑

l ±Tl,1 . . . Tl,L(l). Let
T = Tl,j be any of the trees appearing in this decomposition (for the sake of
brevity, we shall simply write T ⊂ T

ε). The estimates of RIT we obtain in
the present and the next subsection imply in a straightforward way Theorem
0.1 in the Introduction. We shall now prove estimates for the regularized
increment term RIT(δ) = δRISkT. Recall (see Definition 6.9) that the ver-
tices of T are indexed by – and totally ordered according to – their labels;
by definition also, if (k0, . . . , kn−1) is a multi-index in the defining function
fn,r,ε ◦ ε, then v < w ⇒ |kv| ≤ |kw|.

Definition 6.16 Fix Creg ∈ (0, 1). Let, for T ⊂ T
ε with set of vertices

V (T) = {v1 < . . . < vj},

Z
T

reg :=
{

(kv1 , . . . , kvj
) ∈ Z

j | |kv1 | ≤ . . . ≤ |kvj
| and

∀v ∈ V (T), |kv +
∑

w։v

kw| > Creg max{|kw|; w ։ v}
}

. (6.47)

Let RISkT(fn,r,ε ◦ ε
∣

∣

V (SkT)
) := ISkT(fn,r,ε

reg ◦ ε
∣

∣

V (SkT)
) where the regularized

defining function fn,r,ε
reg is defined as follows:

fn,r,ε
reg ◦ ε

∣

∣

V (SkT)
(ζv1 , . . . , ζvj

) =
∑

(kv1 ,...,kvj
)∈ZT

reg

r|kv1 |+...+|kvj
|akv1

. . . akvj
ξ̃kv1

(ε(v1)) . . . ξ̃kvj
(ε(vj))ζ

kv1
v1 . . . ζ

kvj
vj .

(6.48)

Remark 6.17 Since T is well-labeled, by definition, |kv| ≤ |kw| whenever
v,w ∈ T and w ։ v; in other words, the multi-index (|kv |, v ∈ V (T))
is increasing with respect to the partial ordering ։. It is actually totally
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ordered with respect to the label ordering (and we shall use this fact in the
course of the proofs), but any total ordering compatible with the tree partial
ordering would give the same results. Hence the only essential property is
the fact that T is well-labeled.

Lemma 6.18 (Hölder estimate and rate of convergence) Let T ⊂ T
ε

and α < 1/n.

1. The skeleton term RISkT := RISkT(fn,r,ε ◦ ε
∣

∣

V (T)
) writes

[RISkT]z =
∑

(kv1 ,...,kvj
)∈ZT

reg

r|kv1 |+...+|kvj
|
akv1

. . . akvj
ξ̃kv1

(ε(v1)) . . . ξ̃kvj
(ε(vj))z

kv1+...+kvj

∏

v∈V (T)

[

kv +
∑

w։v kw

] .

(6.49)

2. It satisfies the required Hölder estimate:

E |[δRISkT]τσ|2 ≤ Cd(σ, τ)2α|V (T)|. (6.50)

3. (rate of convergence) : there exists a constant C > 0 such that, for
every 1

2 < r1, r2 < 1 and σ, τ ∈ C,

E

∣

∣

∣
[δRISkT(fn,r1,ε ◦ ε

∣

∣

V (T)
)]τσ − [δRISkT(fn,r2,ε ◦ ε

∣

∣

V (T)
)]τσ

∣

∣

∣

2
≤ C|r1−r2|2α.

(6.51)

Proof.

1. Easy computation (generalization of eq. (5.9)).

2. (Hölder estimate)

Let V (T) = {v1 < . . . < vj}, so that |kv1 | ≤ . . . ≤ |kvj
| (see preceding

Remark). Since every vertex v ∈ V (T) \ {v1} connects to the root v1,
one has j|kvj

| ≥ |kv1 + . . . + kvj
| > Creg|kvj

|, so the exponent of z in
eq. (6.49) is comparable to kvj

, i.e. belongs to [C−1kvj
, Ckvj

] if C is
some large enough positive constant. Write RISkT =

∑

K∈Z
CKzK .

Vertices at which 2 or more branches join are called nodes, and vertices
to which no vertex is connected are called leaves (see Fig. 7).

The set Br(v1 ։ v2) of vertices from a leaf or a node v1 to a node
v2 (or to the root) is called a branch if it does not contain any other
node. By convention, Br(v1 ։ v2) includes v1 and excludes v2.
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0

1

2

3 4 6

5

Figure 7: 3,4,6 are leaves; 1, 2 and 5 are nodes, 2 and 5 are uppermost; branches
are e.g. Br(2 ։ 1) or Br(6 ։ 1).

Consider an uppermost node n, i.e. a node to which no other node is
connected, together with the set of leaves {w1 < . . . < wJ} above n.

Let pj = |V (Br(wj ։ n))|. Note that
∣

∣

∣

akn

kn+
P

w։n kw

∣

∣

∣

2
. k−1−2α

wJ
. Now

we proceed to estimate VarCK . On the branch number j,

∑

|kv|≤|kwj
|,v∈Br(wj։n)\{wj}





∏

v∈Br(wj։n)

r|kv|akv

kv +
∑

w։v kw





2

. |kwj
|pj−1|kwj

|−pj(1+2α) = |kwj
|−1−2αpj (6.52)

and (summing over kw1 , . . . , kwJ−1
and over kn)

|kwJ
|−1−2α

∑

|kwJ−1
|≤|kwJ

|

|kwJ
|−1−2αpJ



. . .





∑

|kw1 |≤|kw2 |

|kw2 |−1−2αp2





∑

|kn|≤|kw1 |

|kw1 |−1−2αp1







 . . .





. |kwJ
|−1−2α|kwJ

|−2α(p1+...+pJ) = |kwJ
|−1−2αW (n), (6.53)

where W (n) = p1 + . . . + pJ + 1 = |{v : v ։ n}|+ 1 is the weight of n.

One may then consider the reduced tree Tn obtained by shrinking all
vertices above n (including n) to one vertex with weight W (n) and
perform the same operations on Tn. Repeat this inductively until T is
shrunk to one point. In the end, one gets VarCK . |kvj

|−1−2α|V (T)| .

K−1−2α|V (T)|. Now apply Lemma 2.1.

3. (rate of convergence)

Let Xn,r1,r2,+
z := RISkT(fn,r1,ε ◦ ε

∣

∣

V (SkT)
) − RISkT(fn,r2,ε ◦ ε

∣

∣

V (SkT)
).

Proceeding as in the proof of Lemma 5.5 gives Xn,r1,r2,+
z as a sum,
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Xn,r1,r2,+
z =

∑

v∈V (T) Xn,r1,r2,+
z (v), where Xn,r1,r2,+

z (v) =
∑

kv∈Z
C ′

kv
(z)(r

|kv|
1 zkv−

r
|kv|
2 zkv ) is obtained from RISkT(fn,r,ε◦ε

∣

∣

V (SkT)
) by replacing r|kv| with

r
|kv|
1 − r

|kv|
2 , and r|kw|, w 6= v either by r

|kw|
1 or by r

|kw|
2 . We want to

estimate VarC ′
kv

(z) uniformly in z.

Fix the value of kv in the computations in the above proof for the
Hölder estimate. Let wJ be the maximal leaf above v, and n ։ v be
the node just above v. Summing over all nodes above v and taking
the variance leads to an expression bounded by |kwJ

|−1−2αW (n), where
W (n) is the weight of n. Consider now the corresponding shrunk
tree Tn. Sum over all vertices w ∈ Tn such that w ։ v or v ։

w. These make up a trunk tree, which allows us to apply the same
arguments as in the proof of Lemma 5.5 and get a variance bounded
by |kv |−1−2α|W̄ (v)|, where W̄ (v) = {w ∈ T : w ։ v or v ։ w} ∪ {v}.
Removing the vertices belonging to W̄ (v) from T leads to a forest
which gives a finite contribution to the variance. Hence (by Lemma
2.1) E|Xn,r1,r2,+

z (v)|2 . |r1 − r2|2α|W̄ (v)|.

2

The notion of weight W (v) of a vertex v introduced in this proof will be
used again in subsection 7.1.

6.4 Estimates for boundary terms

Let T ⊂ T
ε as in subsection 6.3. We shall now prove estimates for the

boundary term RIT(∂) associated to T (see Lemma 6.14).

Lemma 6.19 Let T ⊂ T
ε.

1. (Hölder estimate) The regularized boundary term RIT(∂) := RIT(fn,r,ε◦
ε
∣

∣

V (T)
)(∂) satisfies:

E |[RIT(∂)]τσ |2 ≤ Cd(σ, τ)2α|V (T)| (6.54)

for a certain constant C.

2. (rate of convergence) There exists a positive constant C such that, for
every 1

2 < r1, r2 < 1,

E|[RIT(fn,r1,ε◦ε
∣

∣

V (T)
)(∂)]τσ−[RIT(fn,r2,ε◦ε

∣

∣

V (T)
)(∂)]τσ |2 ≤ C|r1−r2|2α.

(6.55)
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Proof.

1. Apply repeatedly Lemma 6.14 to T: in the end, [RIT(∂)]τσ appears
as a sum of ’skeleton-type’ terms of the form (see Figure 8)

Aτσ := [δRISkLT]τσ .

[RISkRv1T
]σ [RISkRv2◦Lv1 (T)]σ . . . [RISkRvl

◦Lvl−1
◦...◦Lv1(T)]σ(fn,r,ε ◦ ε

∣

∣

V (T)
),

(6.56)

where v1 = (v1,1 < . . . < v1,J1) |= T, v2 |= Lv1T, . . ., vl = (vl,1, . . . , vl,Jl
) |=

Lvl−1
◦ . . . ◦Lv1(T) and LT := Lvl

◦ . . . ◦Lv1(T). In eq. (6.56) the tree
T has been split into a number of subtrees, LT ∪ ∪J

j=1Tj; we call this
splitting the splitting associated to Aτσ for further reference. Note
Aτσ may also be written as [δRISkLT]τσ

∏J
j=1[RISkTj

]σ .

First step.

Fix k = (kv1,1 , . . . , kv1,J1
) such that |kv1,1 | ≤ . . . ≤ |kv1,J1

|, and let
[RISkRv1T[k]]z be the expression obtained by keeping all terms in
the series RISkRv1T such that k = (kv1,1 , . . . , kv1,J1

) (with |kv1,1 | ≤
. . . |kv1,j

|) is fixed. (Note that the regularized integral RISkRv1T[k]

plays the same role as RH̃[k] in the proof of Lemma 5.6.) Then

Var[RISkRv1T[k]]σ .
∏

v∈v1



|kv|−1−2α
∑

|kw|≥|kv|,w∈RvT\{v}

|kw|−1−2α



 ,

(6.57)
hence

Var[RISkRv1T[k]]σ .
∏

v∈v1

|kv |−2|V (RvT)|α−1. (6.58)

Second step.

More generally, let Bσ[k] be the expression obtained by keeping all
terms in the series [RISkRv1T

]σ[RISkRv2◦Lv1 (T)]σ . . . [RISkRvl
◦Lvl−1

◦...◦Lv1 (T)]σ

with fixed value of the indices k = (kvl,1
, . . . , kvl,Jl

). Then

Var(Bσ[k]) .
∏

v∈vl

|kv|−2|V (RvT)|α−1 (6.59)

(proof by induction on l).

Third step.

57



Let V (LT) = {w1 < . . . < wmax}. By definition, Aτσ =
∑

K∈Z
CK(σ)(τK−

σK), with

CK(σ) =
∑

k=(kvl,1
,...,kvl,Jl

)

∑

((kw)w∈V (LT))∈Sk

∏

w∈V (LT) r|kw|akw
ξ̃kw

(ε(kw))
∏

w∈V (LT)(kw +
∑

w′։w,w′∈V (LT) kw′)
Bσ[k]

(6.60)
where indices in Sk satisfy in particular the following conditions:

• |kw +
∑

w′։w,w′∈V (LT) kw′ | > Creg max{|kw′ | : w′ ։ w,w′ ∈
V (LT)}; in particular,

∣

∣

∣

akw

kw+
P

w′։w kw′

∣

∣

∣

2
. |kw|−1−2α;

• ∑w∈V (LT) kw = K;

• for every w ∈ V (LT), |kw| ≤ |kwmax | and |kw| ≤ |kv| for every
v ∈ R(w) := {v = vl,1, . . . , vl,Jl

| v → w} (note that R(w) may
be empty). See Fig. 8.

0

1

2

4

v2,1

v1,1
v2,2

Figure 8: Here V (LT) = {0, 1, 2, 4}, R(0) = R(4) = ∅, R(1) = {v2,1}, R(2) =
{v2,2}.

Note that |K| . |kwmax | . |K| since every vertex in V (LT) connects to
the root (see first lines of the proof of Lemma 6.18), hence the condition
∑

w∈V (LT) kw = K is more or less equivalent to fixing kwmax ≃ K and
letting kw, w ∈ V (LT) \ {wmax} range over [−|K|, |K|].
If w ∈ LT, split R(w) into R(w)> ∪ R(w)<, where R(w)≷ := {v ∈
R(w) | v ≷ wmax}. Summing over indices corresponding to vertices in
RT> := {v = vl,1, . . . , vl,Jl

| v > wmax} = ∪w∈LTR(w)>, one gets

∏

v∈RT>

∑

|kv|≥|K|

|kv|−2|V (RvT)|α−1 . |K|−2α
P

v∈RT>
|V (RvT)|

. (6.61)

Let w ∈ LT\{wmax} such that R(w)< 6= ∅. Let R(w)< = {vi1 < . . . <
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vij} (note that R(wmax)< = ∅). Then

|kw|−1−2α
∞
∑

|kvi1
|=|kw|

∞
∑

|kvi2
|=|kvi1

|

. . .
∞
∑

|kvij
|=|kvij−1

|

|kvi1
|−2|V (Rvi1

T)|α−1
. . . |kvij

|−2|V (Rvij
T)|α−1

. |kw|−1−2α(1+
P

v∈R(w)<
|V (RvT)|)

.

(6.62)

In other words, each vertex w ∈ LT ’behaves’ as if it had a weight
1+
∑

v∈R(w)<
|V (RvT)|. Hence (by the same method as in the proof of

Lemma 6.18) Var(CK(σ)) . |K|−1−2α(|V (LT)|+
P

v∈RT<
|V (RvT)|)

. |K|−2α
P

v∈RT>
|V (RvT)|

=
|K|−1−2α|V (T)|. Now apply Lemma 2.1.

2. Use the definition of RIT(∂) given in Lemma 6.14 and mimick the
proof of Lemma 5.7. The result follows by induction on |V (T)| using
the rate of convergence estimate for increments given in Lemma 6.18.

2

Remark. Note that [RITl,1
]τσ . . . [RITl,L(l)

]τσ(fn,r,ε◦ε) is the projection

of the product
∏L(l)

j=1[RITl,j
(fn,r,ε ◦ ε)

∣

∣

V (Tl,j)
]τσ onto the subspace of the n-

th chaos of Γ generated by {ξk0(ε(0)) ⊗ . . . ⊗ ξkn−1(ε(n − 1)) | |k0| ≤ . . . ≤
|kn−1|}. The projection decreases the L2-norm, which yields the estimates
of Theorem 0.1 for RB̃n,r(i0, . . . , in−1) with i0 6= . . . 6= in−1.

7 End of proof and final remarks

7.1 Case of coinciding indices

Our previous estimates for E|RB̃n,r
τσ (i0, . . . , in−1)|2 (Hölder estimate) and

E|RB̃n,r1
τσ (i0, . . . , in−1) − RB̃n,r2

τσ (i0, . . . , in−1)|2 (rate of convergence) with
ij = j rest on the essential independence assumption for the variables
ξ̃i(0), . . . , ξ̃i(n − 1). We claim that the same estimates also hold true for
E|RB̃n,r(i0, . . . , in−1)|2 and E|RB̃n,r1

τσ (i0, . . . , in−1) − RB̃n,r2
τσ (i0, . . . , in−1)|2

if some of the indices (i0, . . . , in−1) coincide, with the same definition of the
regularization procedure R. The key Lemma for the proof is

Lemma 7.1 (Wick’s lemma) (see [21], §5.1.2 and 9.3.4)
Let (X1, . . . ,Xn) be a centered Gaussian vector. Denote by Xi1 ⋄ . . .⋄Xik

(1 ≤ i1, . . . , ik ≤ n) or : Xi1 . . . Xik : the Wick product of Xi1 , . . . ,Xik (also
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called: normal ordering of the product Xi1 . . . Xik), i.e. the projection of the
product Xi1 . . . Xik onto the k-th chaos of the Gaussian space generated by
X1, . . . ,Xn. Then:

1.

X1 . . . Xn = X1 ⋄ . . . ⋄ Xn +
∑

(i1,i2)

E[Xi1Xi2 ]X1 ⋄ . . . ⋄ X̌i1 ⋄ . . . ⋄ X̌i2 ⋄ . . . ⋄ Xn

+ . . . +
∑

(i1,i2),...,(i2k+1,i2k+2)

E[Xi1Xi2 ] . . . E[Xi2k+1
Xi2k+2

]

X1 ⋄ . . . ⋄ X̌i1 ⋄ . . . ⋄ X̌i2 ⋄ . . . ⋄ X̌i2k+1
⋄ . . . ⋄ X̌i2k+2

⋄ . . . ⋄ Xn

+ . . . , (7.1)

where the sum ranges over all partial pairings of indices (i1, i2), . . . , (i2k+1, i2k+2)
(1 ≤ k ≤ ⌊n

2 ⌋ − 1).

2. For every set of indices i0, . . . , ij−1, i
′
0, . . . , i

′
j−1,

E

[

(Xi0 ⋄ . . . ⋄ Xij−1)(Xi′0
⋄ . . . ⋄ Xi′j−1

)
]

=
∑

ε∈Σj

j−1
∏

m=0

E[XimXi′
ε(m)

].

(7.2)

In our case (considering RB̃n,r
τσ (i0, . . . , in−1)) we get a decomposition

of the product ξ̃k0(i0) . . . ξ̃kn−1(in−1) into ξ̃k0(i0) ⋄ . . . ⋄ ξkn−1(in−1), plus

the sum over all possible non-trivial pair contractions 〈ξ̃kj
(ij)ξ̃kj′

(ij′)〉 =

E[ξ̃kj
(ij)ξ̃kj′

(ij′)] = 1 with ij = ij′ , kj = −kj′.

Consider first the normal ordering of RB̃n,r
τσ (i0, . . . , in−1). As in the proof

of Lemma 5.10 in [31], let Σi be the ’index-fixing’ subgroup of Σn such that
: ε′ ∈ Σi ⇐⇒ ∀j = 0, . . . , n − 1, iε′(j) = ij . Then (by Wick’s lemma and
the Cauchy-Schwarz inequality) :

Var : RB̃n,r
τσ (i0, . . . , in−1) := E

∣

∣

∣: RB̃n,r
τσ (i0, . . . , in−1) :

∣

∣

∣

2

=
∑

ε′∈Σi

E

[

: RB̃n,r
τσ (0, . . . , n − 1) : : RB̃n,r

τσ (ε′(0), . . . , ε′(n − 1)) :
]

≤ |Σi| . E|RB̃n,r(0, . . . , n − 1)|2, (7.3)

hence the Hölder and rate estimates of sections 4, 5, 6 also hold for
: RB̃n,r(i0, . . . , in−1) :.
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One must now prove that the estimates of sections 4, 5, 6 hold true
for all possible contractions of RB̃n,r(i0, . . . , in−1). Fixing some non-trivial
contraction (j1, j2), . . . , (j2l−1, j2l), l ≥ 1, results in some expression Xτσ =:

In
τσ(f̌n−2l,r

reg ) belonging to the chaos of order n − 2l. By necessity, ij1 =
ij2 , . . . , ij2l−1

= ij2l
, but it may well be that there are other index coinci-

dences. The same reasoning as in the case of : RB̃n,r
τσ (i0, . . . , in−1) : (see

eq. (7.3)) shows that one may actually assume im 6= im′ if m 6= m′ and
{m,m′} 6= {j1, j2}, . . . , {j2l−1, j2l}. Now (as we shall presently prove) the
expression obtained after summing over kj1 , . . . , kj2l

is more or less equiva-

lent to considering X̌τσ := RB̃n−2l,r
τσ (i0, . . . , ˇij1 , . . . , ˇij2l

, . . . , in−1) (which has

same law as RB̃n−2l,r
τσ (0, . . . , n− 2l− 1)) and (following the idea introduced

in Lemma 6.18) increasing by one the weight W of some other (possibly
coinciding) indices j′1, . . . , j

′
2l 6= j1, . . . , j2l – or, in other words, ’inserting’ a

factor |kj′1
|−2α . . . |kj′2l

|−2α in the variance series –. This amounts in the end

to increasing the Hölder regularity (n − 2l)α− of X̌τσ by 2lα, which gives
the expected regularity.

Fix some permutation ε : {0, . . . , n − 1} → {0, . . . , n − 1}, and consider
the sum over the restricted index set |kε(0)| ≤ . . . ≤ |kε(n−1)| as in section 6.
Change as before the order of integration and the names of the indices so
that ξ̃kε(j)

(ij) → ξ̃kj
(iε(j)); for convenience, we shall still index the pairings

as (j1, j2), . . . , (j2l−1, j2l). If contractions operate between non-neighbouring
indices (iε(j), iε(j′)), i.e. such that |ε(j′) − ε(j)| ≥ 2, this means that the
sequence of indices (which is increasing in absolute value) is actually constant
in absolute value in-between. By using some other equivalent choice of the
permutation ε, one may then assume that these indices become neighbours,
i.e. |ε(j′) − ε(j)| = 1.

Let Tl = Tl,1 . . . Tl,L be a forest appearing in the decomposition of T
ε as

in subsection 6.3. Then (see also proof of Lemma 6.15) ε(j) and ε(j′) may

(i) either belong to two unconnected branches of Tl,j for some j;

(ii) or be successive vertices on the same branch of Tl,j for some j;

(iii) or belong to two different tree components Tl,j, Tl,j′ of Tl.

Applying repeatedly Lemma 6.14 to Tl,1 . . . Tl,L leads to a sum of product
of skeleton-type terms of the same type as Aτσ (see eq. (6.56)). Let us denote
by Aτσ = Aτσ(1) . . . Aτσ(L) one of these terms, and by LTl,1, . . . , LTl,L, T′

1, . . . , T
′
J

all subtrees appearing in the splittings associated to Aτσ(1), . . . , Aτσ(L), so
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that

Aτσ =
L
∏

j=1

[δRISkLTl,j
]τσ

J
∏

j=1

[RISkT′
j
]σ(f̌n−2l,r,ε ◦ ε). (7.4)

Let T be one of the above trees, either LTl,j or T
′
j. Reconsider the proof

of the Hölder estimate in Lemma 6.18 or Lemma 6.19. The contribution to
Xτσ of the (ε, T)-skeleton term is (some projection of) ISkT(f̌n−2l,r,ε

reg ◦ε
∣

∣

V (T)
)

for some function f̌n−2l,r,ε
reg (that we shall not need to write down explicitly),

abbreviated as RI∨SkT
. Assume for a moment that all contractions are of

type (i) or (ii). Since kj1 + kj2 = . . . = kj2l−1
+ kj2l

= 0, the exponent of z in
[RI∨SkT

]z is the same as in RISkŤ
, where Ť is the contracted tree obtained

by ’skipping’ {j1, . . . , j2l} ∩ V (T) while going down the tree T (see Fig. 9,
10, 11).

0

1

3

wj 1
w j 2

j 2j 1

0

1

3

w j 1
w j

2

Figure 9: Case (i-a). T and Ť.

0

1

wj 2

j 2

0

1

w j
2

j1
4

2 2

4

Figure 10: Case (i-b). T and Ť.

In any case (going back to arbitrary contractions) RISkŤ
makes part of

X̌τσ. Now

[RI∨SkT]z =
∑

(kv),v∈V (T),v 6=j1,...,j2l

∏

v∈V (T),v 6=j1,...,j2l

r|kv|akv
ξ̃kv

(ε(v))zkv

kv +
∑

w∈T,w։v kw
.

∑

(kjm ),jm∈V (T)

∏

jm∈V (T)

r|kjm | akjm
zkjm

kjm +
∑

w∈T,w։jm
kw

(7.5)
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0

1

0

1

j1
4

2 2

4

5

j 2

5

Figure 11: Case (i-c). T and Ť.

The sum is over the subset of indices Z
T
reg with the supplementary re-

striction kj2m−1 = −kj2m
if j2m−1, j2m ∈ V (T).

The denominator |kv +
∑

w∈T,w։v kw| for m 6= j1, . . . , j2l is larger (up
to a constant) than the denominator |kv +

∑

w∈Ť,w։v kw| obtained by con-

sidering the same term in the contracted tree integral X̌τσ (namely, |kv +
∑

w∈T,w։v kw| is of the same order as max{|kw|;w ∈ T, w ։ v} ≥ max{|kw|;w ∈
Ť, w ։ v}). Hence E|δRI∨SkT

|2 may be bounded in the same way as E|δRISkŤ
|2

in the proof of Lemma 6.18, except that each term in the sum over (kv , v ∈
V (T), v 6= j1, . . . , j2l) comes with an extra multiplicative pre-factor S =
S((kv), v ∈ V (T), v 6= kj1 , . . . , kj2l

) – due to the sum over (kjm)m – which
may be seen as an ’insertion’. The same remark also holds for the variances
considered in the proof of Lemma 6.19.

Let us estimate this prefactor. We shall assume for the sake of clarity
that there is a single contraction (j1, j2) = (j, j′) (otherwise the prefactor
should be evaluated by contracting each tree in several stages, ’skipping’
successively (j1, j2), . . . , (j2l−1, j2l) by pairs).

Case (i): (j, j′) belong to unconnected branches of T. This case splits
into three different subcases:

(i-a) neither j nor j′ is a leaf. Let w1, resp. w2 be the leaf above j,
resp. j′ of maximal index and assume (without loss of generality) that
|kw1 | ≤ |kw2 |. Then

S .





∑

|kj |≤|kw1 |

a2
kj

|kw1kw2 |





2

.





∑

|kj |≤|kw1 |

|kw1 |−1−2α





2

. |kw1 |−4α

(7.6)

which has the effect of increasing the weight W (w1) by 2.
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(i-b) j is a leaf, j′ is not. Let w2 be the leaf above j′. Then

S ≤





∑

|kj |≤|kw2 |

a2
kj

|kjkw2 |





2

.





1

|kw2 |
∑

|kj |≤|kw2 |

|kj |−2α





2

. |kw2 |−4α.

(7.7)

(i-c) both j and j′ are leaves. Let v1, resp. v2 be the vertex below j, resp.
j′, i.e. j → v1, j′ → v2. Then

S .





∑

|kj |≥max(|kv1 |,|kv2 |)

(

akj

kj

)2




2

. |kv1 |−4α (7.8)

which has the effect of increasing W (v1) by 2.

Case (ii): (j, j′) are successive vertices on the same branch. Assume
(without loss of generality) that j → j′. Then S = 0 if j is a leaf (since
kj′ +

∑

w։j′ kw = kj + kj′ = 0 and such indices fail to meet the condition

defining Z
T
reg), otherwise S . |kw|−4α if w is the leaf of maximal index above

j (by the same argument as in case (i-a)).
Case (iii).
This case is a variant of case (i) and splits into three subcases (iii-a),

(iii-b), (iii-c). Nothing changes compared to case (i) unless (as in the proof
of Lemma 6.18 or in the 3rd step of Lemma 6.19) one needs to compute the
variance of the coefficient CK or CK(σ) of zK for K fixed. Assume j,resp.
j′ belongs to the tree T, resp. T

′ and let w, resp. w′ be the leaf above j,
resp. j′ if j, resp. j′ is not a leaf. The presence of the extra vertices j, j′

modifies the exponent K, resp. K ′ of z, resp. z′ in [ISkT(f̌n−2l,r,ε
reg ◦ ε

∣

∣

V (T)
)]z ,

resp. [ISkT′(f̌n−2l,r,ε
reg ◦ ε

∣

∣

V (T′)
)]z′ by a factor which is bounded and bounded

away from 0 in case (iii-a), hence S . |kw|−4α as in case (i-a). In case
(iii-b), considering for instance the proof of Lemma 6.18 for simplicity, and
letting j → v, v ∈ T, one has: |kj | . |K| . |kj |. Hence the sum over kj ,
kj′ contributes an extra multiplicative pre-factor S to the variance of the
coefficient of zK(z′)K

′
of order

S .





2|K|
∑

|kj |=|K|/2

∣

∣

∣

∣

∣

a2
kj

kjkw′

∣

∣

∣

∣

∣





2

.





2|K|
∑

|kj |=|K|/2

(

akj

kj

)2




2

. |K|−4α. (7.9)

Case (iii-c) is similar and left to the reader.

This concludes the proof of Theorem 5.1 and Theorem 5.2.
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7.2 Geometric property

We shall prove in this subsection the following Lemma:

Lemma 7.2 The rough path RB̃r satisfies the geometric property (iii) in
the Introduction.

Proof. Let i = (i0, . . . , in1+n2−1) be some multi-index. As we have
seen in subsection 7.1 (see Lemma 6.14), RB̃n1+n2,r(i0, . . . , in1+n2−1) may be
written as

∑

ε∈Σn1+n2
RB̃n1+n2,r,ε(i0, . . . , in1+n2−1), and RB̃n1+n2,r,ε(i0, . . . , in1+n2−1)

as a sum of split terms of the form

Aε
τσ :=

L
∏

l=1

[δRISkLTl
]τσ

J
∏

j=1

[RISkT′
j
]σ(fn1+n2,r,ε

i ◦ ε) (7.10)

(see Definition 6.8) where ∪L
l=1V (LTl) ∪ ∪J

j=1V (T′
j) = {0, . . . , n1 + n2 − 1}.

There are two cases:
– (pure case) each tree T = LTl or T

′
j is such that either V (T) ⊂

{0, . . . , n1 − 1} or V (T) ⊂ {n1, . . . , n1 + n2 − 1};
– (mixed case) some tree T contains some vertex in {0, . . . , n1 − 1} and

some vertex in {n1, . . . , n1 + n2 − 1}.
Consider first the non-regularized iterated integrals B̃n1,r

τσ (i0, . . . , in1−1)
and B̃n2,r

τσ (in1 , . . . , in1+n2−1). Since B̃r is a smooth path, the geometric
property

B̃n1,r
τσ (i0, . . . , in1−1)B̃

n2,r
τσ (in1 , . . . , in1+n2−1) −

∑

k∈Sh((i0,...,in1−1),(in1 ,...,in1+n2−1))

B̃n1+n2,r
τσ (k0, . . . , kn1+n2−1) = 0

(7.11)

holds. Replacing B̃n1,r, B̃n2,r and B̃n1+n2,r by the R-regularized quanti-
ties in eq. (7.11) yields some extra counterterms whose sum (as we shall
presently show) vanishes.

To begin with, one easily sees that the counterterms due to the sub-
stitution B̃n1,r → RB̃n1,r and B̃n2,r → RB̃n2,r are equal to the pure case
counterterms obtained by replacing B̃n1+n2,r with RB̃n1+n2,r. So we must
prove that the sum of the mixed case counterterms vanishes.

Let ε ∈ Σn1+n2 and Aε
τσ be a mixed term. Keeping the same notations

as above, we may choose v1, v2 ∈ T such that v2 → v1 and (without loss of
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generality) v1 ∈ {0, . . . , n1 − 1}, v2 ∈ {n1, . . . , n1 + n2 − 1}. Let (as in the

proof of Lemma 6.15) v↑1 be the set of vertices lying above v1, but not on or

above the branch containing both v1 and v2, and similarly, v↑2 := {v2}∪{w ∈
T | w ։ v2}. Let T̃ be the tree obtained from T by stripping the branches

v↑1 \ {v1} and v↑2 \ {v2}, exchanging v1 and v2 and putting back the two

branches at their previous places, i.e. grafting v↑1 \ {v1} at v1 and v↑2 \ {v2}
at v2 (see Fig. 12).

0

v

w

0

v
1

v
2

v
2

v
1

v

w

Figure 12: T and T̃.

The tree T̃ shows up when splitting some forest appearing in the de-
composition of T

τv1,v2◦ε, but with the opposite sign. Hence the counterterm
coming from the regularization of ISkT with defining function fn1+n2,r,ε

i ◦ ε
is the opposite of the counterterm coming from the regularization of ISkT̃

with defining function f
n1+n2,r,τv1,v2◦ε

τv1,v2 (i) ◦ (τv1,v2 ◦ ε). 2

7.3 Real-line construction

It is tempting to try and work directly with B (or Γ) instead of B̃, and
use Fourier integrals on the real line instead of Fourier series on the unit
circle. This approach is equivalent to the former one, but presents (as we
shall presently show) some (minor) drawbacks.

The Fourier transform of the covariance kernel

K
′,−
η (s − t) := Cov(Γ′

s+iη,Γ
′
t+iη) =

α(1 − 2α)

2 cos πα
(−i(s − t) + 2η)2α−2 (7.12)

writes [11]

FK
′,−
η (k) =

1√
2π

∫

R

K
′,−
η (x)e−ixkdx = − πα

2 cos παΓ(−2α)
e−2ηkk1−2αH(k),

(7.13)
where H(k) = 1k>0 is the Heaviside function. Hence one may realize Γ′ on
Π+ as

Γ′
t+iη = cα

∫ ∞

0
e(it−η)kk1/2−αW (dk), (7.14)
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where (Wk = W 1
k + iW 2

k )k≥0 is the standard complex Brownian motion and

cα = 1
2

√

− α
cos παΓ(−2α) . Integrating and taking the real part leads to

Bt+iη = cα

∫

R

e−η|k||k| 12−α eitk − 1

ik
W (dk) (7.15)

if W is extended to R by setting W−k = −W k (k ≥ 0). In the limit η → 0,
one retrieves the well-known harmonizable representation.

The problem is now to define an analogue of the formal integral
∫ τ

ζk dζ

(see subsection 5.1). The best choice is:
∫ x

eikxdx = eikx

ik (with now an imagi-
nary ’origin’ at x = ±i∞, one might say, see discussion at the very end of sec-
tion 3, or proof of Lemma 4.2), but then

∫ t
Γ′

x+iηdx = −icα

∫∞
0 e(it−η)kk−1/2−α W (dk)

is ill-defined because of the infra-red singularity when k → 0. This problem
may be evacuated simply by constructing a rough path for the infra-red cut
regularized fBm process

Bcut
t+iη = cα

∫

|k|≥1
e−η|k||k| 12−α eitk − 1

ik
W (dk). (7.16)

The neglected part B − Bcut is C∞, which allows then to deduce very eas-
ily a rough path for the original fBm process (see Proposition 1.6). Also,
Definition 6.16 should be modified as follows:

Z
T

reg :=
{

(kv1 , . . . , kvj
) ∈ R

j | |kv1 | ≤ . . . ≤ |kvj
| and

∀v ∈ V (T), |kv +
∑

w։v

kw| > max (1, Creg max{|kw|; w ։ v})
}

(7.17)

so that the denominator |kv+
∑

w։v kw| appearing by successive integrations
is always larger than 1. Then the proof proceeds exactly in the same way.

7.4 About the two-dimensional antisymmetric fBm

Consider a one-dimensional unit-disk analytic fractional Brownian motion
Γ̃.

Definition 7.3 Let Z̃z = (Z̃z(1), Z̃z(2)) = (2Re Γ̃z, 2Im Γ̃z), z ∈ D. We
call this new process living on the unit disk the two-dimensional unit-disk
antisymmetric fBm.
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Its restriction to the unit circle is an a.s. α−-Hölder Gaussian process,
whose marginal laws Z̃(1), Z̃(2) coincide with that of the unit-disk fBm B̃
(the same observation is true for Zz = (2Re Γz, 2Im Γz) constructed out of
the original afBm process Γ, as proved in [31]). The covariance between
Z̃(1) and Z̃(2) writes

Cov(Z̃z(1), Z̃w(2)) = −iE[

(

Γ̃z +
(

Γ̃z

)

)(

Γ̃w −
(

Γ̃w

)

)

] = 2Im E[
(

Γ̃z

)

Γ̃w]

(7.18)
hence it is antisymmetric in (z,w).

As shown in [31], the covariance of the corresponding process Z =
(Z(1), Z(2)) on the real line writes

Cov(Zs(1), Zt(2)) = −tan πα

2
[−sgn(s)|s|2α +sgn(t)|t|2α−sgn(t−s)|t−s|2α].

(7.19)
Note that we never used any particular linear combination of the analytic/anti-

analytic components of B̃ in the estimates of sections 4, 5, 6. Hence these
also hold for Z̃, which gives for free a rough path over Z̃ (or also Z) satisfying
Theorem 0.1 of the Introduction.
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