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INNER-OUTER FACTORIZATION FOR RAYLEIGH FADING CHANNEL MODELING

The paper first deals with the design of Rayleigh fading channel simulators based on a Moving Average (MA) model. We present a new approach to estimate the model parameters based on the inner-outer factorization. The core of the approach consists of assimilating an infinite-order MA model to the outer spectral factor of the channel power spectral density (PSD). This outer factor, which leads to a causal minimum-phase filter, is first evaluated inside the unit disk of the z-plane. Then, we propose to compute the Taylor expansion coefficients of the outer factor since they coincide with the model parameters. This has two advantages: unlike other simulation techniques, the first p parameters remain unchanged when one increases the model order from p to p+1; in addition, our approach offers the possibility of selecting an appropriate model order for a given mean error bound. Then, we extend this approach to ARMA models to weaken the oscillatory deviations from the theoretical PSD in the case of AR models, or low peaks at the Doppler frequencies for MA models. A comparative study with existing channel simulation approaches points out the relevance of our ARMA model-based method.

1.

INTRODUCTION

When designing communication systems based for instance on CDMA techniques or when conceiving new receivers and studying their performances, channel simulation is one of the steps to be carried out. In an environment with no direct line-of-sight between transmitter and receiver, the marginal distributions of the phase and of the amplitude of the channel process are uniform and Rayleigh respectively. In addition, the theoretical power spectral density (PSD) of the real and imaginary parts of the fading channel samples is U-shaped and has two infinite peaks at the normalized maximum Doppler frequency ± d f :
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while the corresponding normalized discrete-time autocorrelation function is given by the zero-order Bessel function of the first kind:
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Given these assumptions, various families of channel simulators have been proposed. For instance, Jakes' fading model [START_REF] Jakes | Microwave mobile communications[END_REF] based on a sum of sinusoids (SOS) makes it possible to generate timecorrelated waveforms. In [START_REF] Patzold | Statistical properties of Jakes' fading channel simulator[END_REF], Patzold et al. compare the statistical properties of this simulator with those of the underlying stochastic reference model. They conclude that sufficient results can be expected with 10 or more sinusoids. However, as independent channels cannot be easily simulated with this kind of model, Dent et al. [START_REF] Dent | Jakes' fading model revisited[END_REF] propose to weight the sinusoids by orthogonal random codes such as Hadamard ones. As an alternative, filtering-based approaches can be considered: On the one hand, the filter can be designed in the frequency-domain. Thus, in [START_REF] Smith | A computer generated multipath fading simulation for mobile radio[END_REF], the authors combine a filtering step and an inverse discrete Fourier transform (IDFT). Although Young et al. [START_REF] Young | The generation of correlated Rayleigh random variates by inverse Fourier transform[END_REF] manage to reduce the computational cost of this approach, all samples have to be generated by using a single fast Fourier transform. Due to the IDFT, this off-line simulation requires a large memory storage. On the other hand, the filtering can be carried out in the time-domain. This is the case of simulators based on ARMA, AutoRegressive (AR) or Moving Average (MA) models. This approach may be a priori questionable. Indeed, as the PSD of the real and imaginary parts is bandlimited, the channel process should be deterministic, according to the Kolmogorov-Szegö formula 1 . However, unlike the SOS methods, the linear stochastic models are quite simple and few parameters have to be estimated, making these approaches very popular both for channel simulator design and Kalman-filter based receiver design in mobile communication system. Thus, in [START_REF] Loo | Computer models for fading channels with applications to digital transmission[END_REF], the transfer function associated to the ARMA model corresponds to a 3 rd order Butterworth low-pass filter. Nevertheless, choosing this filter leads to a poor approximation of the channel properties. In the method proposed in [START_REF] Schafhuber | Simulation of wideband mobile radio channels using subsampled ARMA models and multistage interpolation[END_REF], a sub-sampled ARMA process
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denotes the PSD of the process ) (n s and 2 σ is the error variance of the optimal predictor of ) (n s .

followed by a multistage interpolator is considered. According to the authors, this combination makes it possible to select low orders for the ARMA process. Nevertheless, only a very high down-sampling factor can lead to a PSD which is never equal to zero and hence allows the simulated channel to match the theoretical channel properties. In various papers including [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF] and [START_REF] Wu | Multiuser detectors with disjoint Kalman channel estimators for synchronous CDMA mobile[END_REF], the authors suggest using a p th order AR process because it can generate at most p resonances in the PSD [START_REF] Wu | Multiuser detectors with disjoint Kalman channel estimators for synchronous CDMA mobile[END_REF]. However, when selecting a 2 nd order AR model whose parameters are obtained by solving the Yule-Walker equations, the two peaks of the PSD are located at 2 / d f ± instead of ± d f [START_REF] Wu | Multiuser detectors with disjoint Kalman channel estimators for synchronous CDMA mobile[END_REF]. When the AR order is higher than 2, the channel autocorrelation matrix used in the Yule-Walker equations becomes illconditioned [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF]. To overcome this problem, Baddour et al. [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF] suggest adding a very small bias 2 σ in the main diagonal of the autocorrelation matrix of the channel (e.g., 2 σ =10 -7 for d f =0.01). This leads to modeling the channel by the sum of the theoretical fading process and a zeromean white process with variance 2 σ .

In [START_REF] Verdin | Generating a fading process for the simulation of land-mobile radio communications[END_REF], the authors model the channel by a finite-order Moving Average (MA) process. The MA parameter estimation consists of designing a FIR filter by means of the window method. Indeed, the impulse response coefficients, namely the MA parameters, are estimated by first taking the inverse Fourier transform of the square root of the theoretical PSD of the channel, by windowing it and then by shifting it in time. However, the first p MA parameters change when increasing the model order from p to p+1. Another solution to estimate the MA parameters is based on Durbin's method [START_REF] Durbin | Efficient estimation of parameters in moving average models[END_REF]. Since this method turns the MA parameter estimation issue into a set of two of AR parameter estimation problems, the channel autocorrelation matrix used in the Yule-Walker equations may be ill conditioned. Hence, Baddour's ad-hoc solution [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF] must be considered. In addition, like Verdin's approach [START_REF] Verdin | Generating a fading process for the simulation of land-mobile radio communications[END_REF], the selection of the model order has to be addressed. In this paper, to estimate the channel model parameters and select the model order, we propose to consider the innerouter factorization, which has been used so far in information theory, system theory, control and filter design [START_REF] Dewilde | Time-Varying Systems and Computations[END_REF]. Thus, when dealing with MA modeling, the corresponding transfer function can be expressed as the product of:

• the inner function which can be seen as an all-pass filter; • the outer function which is causal and has its zeroes in the closed unit disk in the z-plane; hence, this corresponds to a minimum-phase filter. In addition, the square absolute value of the outer function on the unit circle in the z-plane equals the theoretical PSD of the channel. Furthermore, among all functions which have the same absolute value on the unit circle in the z-plane, the outer function is the one with the largest absolute value outside the unit disk.

In the following, we suggest using an infinite-order MA model whose transfer function coincides with its outer function. This approach is then extended to the ARMA model. Since finite-order models are rather considered in practical case, the approach we propose makes it possible to tune the upper bound of the error, in absolute value, between the theoretical PSD and the simulated one. Hence, this tuning leads to criteria for the model order selection. In addition, it should be noted that with our method, the first p parameters are unchanged when increasing the model order from p to p+1.

The paper is organized as follows: section 2 deals with the estimation of the model parameters and the selection of the model order. It also describes the numerical implementation of the estimation method. Section 3 shows how the MA approach can be adapted to the ARMA models. In the last section, a comparative study illustrates the benefits of the proposed ARMA methods with respect to the methods proposed in [START_REF] Durbin | Efficient estimation of parameters in moving average models[END_REF] , [START_REF] Verdin | Generating a fading process for the simulation of land-mobile radio communications[END_REF] and [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF].

INNER-OUTER FACTORIZATION FOR MA MODEL

Mathematical overview

Let ) (n h be an infinite-order MA process defined as follows:
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where { } 0
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are the real MA parameters and ) (n x is a zero-mean white noise sequence with unit variance. If ) (n h has its PSD equal to the channel's theoretical density th S , the corresponding transfer function
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Given ( 4), the function G is a spectral factor of th S . In the following, to use the classical inner-outer factorization setting of the Hardy spaces theory over the unit disk in the z-plane instead of its exterior, we rather deal with the function
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are real, one has:
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It is known [START_REF] Dewilde | Time-Varying Systems and Computations[END_REF] that all the functions ) (z F MA satisfying (4) are of the type:
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where U is any inner function and 0 F is the unique outer function satisfying (4), provided that th S is log-integrable; otherwise, (4) has no causal solutions as a consequence of Kolmogorov-Szegö formula.

For the sake of simplicity, we consider the particular case where 1 ) ( = z U , meaning that the spectral factor MA F is outer. Selecting any other function will only affect the argument of ) (z G . The method we propose operates in two steps:

• the outer function 0 F is evaluated in the z-plane on a circle of radius 1 < r

, by using the Poisson integral representation defined as follows:
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are obtained by using ( ) 
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can be obtained through the Cauchy formula:
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Remark 1: as suggested in [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF], the channel PSD must be slightly modified to be log-integrable. Here, it corresponds to the product of two factors defined as follows:
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and
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where the parameter ε guarantees the log-integrability condition whereas ξ allows the compensation of the offset of the frequency peaks at d f . In counterpart, it affects the decay of the PSD at d f . In the following, mod 0 F denotes the outer function computed with [START_REF] Patzold | Statistical properties of Jakes' fading channel simulator[END_REF] where the theoretical channel PSD th S is replaced by the modified PSD, namely 
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At that stage, given a prescribed error bound

) 2 1 ( 2 0 d f - > πε δ
, there is always a minimum value for the model order p that satisfies:
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In the next section, we present a way to estimate the Taylor coefficients of the outer function of the channel PSD, in practical case.

Implementation

Since the integrand in ( 7) cannot be computed analytically, we suggest estimating the values of the outer function for a finite number of points on a circle of radius 1 < r in the z-plane. For this purpose, let us introduce N values of the discrete 
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where * denotes the convolution. Thus, (13) can be implemented through a fast convolution algorithm. Moreover, the outer function flat F of flat S is expressed by:
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To calculate the Taylor coefficients, the following discrete version of eq. ( 8) is considered:
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It should be noted that (14) can be implemented as a weighted FFT of )
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Therefore, the algorithm requires ( )

N N O log
operations.

INNER-OUTER FACTORIZATION FOR ARMA MODEL

Let us now consider the ARMA process ) (n h defined by:
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The corresponding transfer function:
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We choose the denominator ) (z A to be a second-order polynomial with roots equal to
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and close to 1. Therefore, the numerator ) (z B can be defined as follows:
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To evaluate the outer function of ) (z B , th S in eq. ( 7) is replaced by the right side of eq. ( 16). Then, the parameters

{ } 0 ≥ k k b
can estimated by using the method presented in 

±

. This leads to a better fitting of the model PSD in a small neighborhood of Doppler frequencies.

COMPARATIVE STUDY

In this section, we compare the proposed simulators with:

• the AR-based simulator [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF],

• the MA-based simulator given in [START_REF] Verdin | Generating a fading process for the simulation of land-mobile radio communications[END_REF] and, • Durbin's method for MA parameter estimation [START_REF] Durbin | Efficient estimation of parameters in moving average models[END_REF].

For the MA and ARMA channel simulators we propose, N is set to 4096 samples. The parameter r is assigned 2 to 0.98 whereas ε and ξ are set to 0.0125 and 0.025 respectively.

These values are chosen experimentally for a compromise between the maximum Doppler frequency offset and the PSD decay. For the ARMA-based model, different values of the pole modulus, namely ρ, have been heuristically chosen in each scenario. 2 Simulations showed that when To compare the various simulators, we introduce three criteria. The first criterion is the mean error d J defined as follows:
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The second and third criteria are two quality measures, defined in [START_REF] Young | The generation of correlated Rayleigh random variates by inverse Fourier transform[END_REF], i.e. the mean power and maximum power margins mean G and max G : According to various test we carried out 3 and given in table 1 and figure 1, the proposed MA-based method and Verdin simulator provide close results and outperforms Durbinbased method. According to table 1 and figures 2 and 3, the ARMA-based approach outperforms the other solutions. More particularly, in figure 2, the PSD obtained with the ARMA(2,298) is very close to the theoretical PSD both in low frequencies and in the neighborhood of the Doppler frequency whereas Baddour's AR-based approach 4 gives important oscillations in the range ( )
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and has a maximum peak offset at Doppler frequency. 3 For MA(p) and AR(p) models the number of parameters is the order p. For ARMA(p, q) models the number of parameters is q p + . For the criteria, we the set . 4 The AR-based approach requires ) ( 2 order O operations when using Levinson recursion. 

CONCLUSIONS

In this paper, we have investigated the relevance of innerouter factorization for Rayleigh fading channel simulator.

We have proposed a new method to estimate the model pa-rameters both for MA and ARMA models. The comparative study we have carried out confirms that our ARMA-based simulator outperforms the other approaches.
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Table 1

 1 

		Evaluation of error d J and quality measures mean G	and max G	for various simulators			
						J	d										G	mean	(	) dB							G	max	(	) dB
	number of parameters	f	d	=	. 0	01	f	d	=	0	.	05	f	d	=	. 0	01		f	d	=	0	.	05	f	d	=	. 0	01		f	d	=	0	.	05
		Proposed ARMA			0.8829				0.2650				1.0971					0.5078				1.1476			0.5183
		Baddour AR [1]			0.5570				0.6317				1.5935					2.4487				1.7659			2.6832
	50	Proposed MA			0.9765				0.4271				4.0550					6.2141				4.2897			6.4728
		Verdin MA [10]			0.6040				0.3591				3.2063					3.0014				3.4206			3.1852
		Durbin MA [4]			0.9859				0.4961				4.6373				10.4704				4.8668			10.7523
		Proposed ARMA			0.4090				0.1290				0.7908					0.1765				0.8171			0.1818
		Baddour AR [1]			0.8008				0.3382				2.1303					0.7204				2.3946			0.7940
	120	Proposed MA			0.6432				0.2940				7.6300					4.0548				7.9383			4.2852
		Verdin MA [10]			0.5307				0.3428				3.0998					2.0063				3.3135			2.1541
		Durbin MA [4]			0.8234				0.3762				8.4128					9.4176				8.6786			9.7032
		Proposed ARMA			0.2364				0.0772				0.3451					0.0875				0.3796			0.0927
		Baddour AR [1]			0.5695				0.2475				0.5434					0.1830				0.7038			0.2514
	300	Proposed MA			0.4267				0.1670				5.3696					1.5923				5.6463			1.7150
		Verdin MA [10]			0.3831				0.1963				1.9042					0.9865				2.0559			1.0713
		Durbin MA [4]			0.5850				0.2489			11.8706					7.4949			12.1374			7.7233
	150																																	
	Theoretical PSD																																
	Proposed ARMA(2,298)																																
	Baddour AR(300) [1]																																
	100																																	
	50																																	
	0.034 0.036 0.038 0.04 0.042 0.044 0.046 0.048 0.05 0.052 0																									
		normalized frequencies