
HAL Id: hal-00357118
https://hal.science/hal-00357118

Preprint submitted on 29 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On computing invariants for predicate abstraction by
SAT-solving
David Monniaux

To cite this version:
David Monniaux. On computing invariants for predicate abstraction by SAT-solving. 2009. �hal-
00357118�

https://hal.science/hal-00357118
https://hal.archives-ouvertes.fr

On computing invariants for predicate

abstraction by SAT-solving

David Monniaux
CNRS/VERIMAG

January 29, 2009

Abstract

We propose a method for computing invariants in disjunctive predicate
abstraction domains using satisfiability modulo theory (SMT) testing.

1 Introduction

Traditionally, in abstract interpretation, most analyzes compute inductive in-
variants by iteration: one gets safe overapproximations of reachable states after
1, 2, 3, . . . , iterations of the loop. If the domain in which the approximations are
computed has finite height, then these iterations terminate on an inductive in-
variant. If it has infinite height, then possibly one should use so-called widening
operators [Cousot and Cousot, 1992]. Widenings introduce extra overapproxi-
mation, and long iteration sequences may result in long analysis times. As a
result, there has been considerable interest recently in finding alternate methods
for computing inductive invariants.

Predicate abstraction [Graf and Säıdi, 1997] is a kind of abstract interpre-
tation where, at the simplest, program states are abstracted to the vector of
their Boolean values over a finite set of predicates. In this article, we consider
disjunctive abstractions: one abstracts a set of program states by a formula
in disjunctive normal form, where the literals are taken from the finite set of
predicates. If one limits the size of the disjunction, this abstract domain is finite
and could find inductive invariants in it by the iteration method. Gulwani et al.
[2009] have however shown how to reduce the problem of computing such an
invariant to propositional satisfiability problems amenable to efficient solving
by modern SAT implementations. In this article, we show how to make this
reduction more simply.

2 Templates for predicate abstraction

We look for invariants of the form I
△

=
∨k

i=1
Ci where the Ci are conjunctions

whose conjuncts are taken from a finite set P = {π1, . . . , π|P |} of predicates over
a theory T , referring to program state variables q1, . . . (which can be Boolean
or theory-specific). Such an invariant can be characterized by a k × |P | matrix

1

of Booleans ai,j , meaning that predicate πj is present in disjunct number i:

I
△

=
k

∨

i=1

|P |
∧

j=1

(ai,j ⇒ πj) (1)

In other words, the concretization of Booleans (ai,j)1≤i≤k,1≤j≤|P | is

γ((ai,j)1≤i≤k,1≤j≤|P |) =

k
⋃

i=1

|P |
⋂

j=1

γ(πj) (2)

Let C be a precondition predicate (over variables q1, . . . , qnq
), let T be a

“next state” transition predicate (over variables q1, . . . , qnq
for previous state,

variables q′
1
, . . . , q′nq

for next state). The correctness condition for I being an
invariant is:

G
△

= ∀q1 . . .∀qnq
∀q′

1
. . . ∀q′nq

(C ⇒ I) ∧ (I ∧ T ⇒ I[q′
1
/q1, . . . , q

′
nq

/qnq
]) (3)

Note that the pointwise ordering on the (ai,j)1≤i≤k,1≤j≤|P | implies the in-
verse of the concretization ordering (the ordering induced by γ and ⊆). In
order to obtain strong invariants, one should look for acceptable values of
(ai,j)1≤i≤k,1≤j≤|P | with a large amount of true variables.

3 Finding solutions

Formula G, as defined in Eq. 3, is of the following form:

G
△

= ∀q1 . . .∀qnq
F (4)

where F is a quantifier-free formula in a certain theory T , and the only free
variable of G are propositional variables {p1. . . . , pnp

}. We want solutions for
(p1. . . . , pnp

), preferably with many “true” values.
In this section, for a variable v, we shall note ṽ some “current solution” value

for v. We shall show how to reduce computing solutions for G to propositional
SAT-solving and to SAT-solving modulo the theory T .

3.1 Eager constraint generation

Since G is a quantified formula where the only free variables are propositional
variables, performing quantifier elimination should yield a purely propositional
formula. The problem is then reduced to finding a satisfying assignment to a
propositional problem (SAT), with a preference for “true” values in the assign-
ment, a task performed by SAT-solvers.

A first strategy is to perform quantifier elimination on G by finding suc-
cessive solutions to ¬G and projecting them out, as proposed by Monniaux
[2008]. Because we eliminate all non-propositional variables, the algorithm can
be simplified into:

O := true

H := ¬F

2

while H is satisfiable do

Pick a model (p̃1, . . . , p̃np
, q̃1, . . . , q̃nq

) |= H
S := {1, . . . , np}
for all i ∈ {1, . . . , np} do

if ¬H [p̃j/pj , j ∈ S \ {i}, q̃1/q1, . . . , q̃nq
/qnq

] is not satisfiable then

S := S \ {i}
end if

end for

{
(

∧

i∈S|p̃i=true pi

)

∧
(

∧

i∈S|p̃i=false ¬pi

)

⇒ H [q̃1/q1, . . . , q̃nq
/qnq

]}

{
(

∧

i∈S|p̃i=true pi

)

∧
(

∧

i∈S|p̃i=false ¬pi

)

⇒ ∃b1 . . . ∃bnb
∃q1 . . .∃qnq

H}

{
(

∀b1 . . . ∀bnb
∀q1 . . . ∀qnq

F
)

⇒
(

∨

i∈S|p̃i=true ¬pi

)

∨
(

∨

i∈S|p̃i=false pi

)

}

H := H ∧
((

∨

i∈S|p̃i=true ¬pi

)

∨
(

∨

i∈S|p̃i=false pi

))

O := O ∧
((

∨

i∈S|p̃i=true ¬pi

)

∨
(

∨

i∈S|p̃i=false pi

))

end while

Conditions are accumulated into O by adding constraints to the SMT-solver.
The final result is that O is a CNF propositional formula (canonical SAT input)
equivalent to G.

3.2 Lazy constraint generation

It seems like a waste to generate the full CNF whereas, perhaps, a few constraints
suffice to constrain the search space sufficiently to find a solution. We therefore
suggest an algorithm that would generate these clauses on demand.1

O := true

while O is satisfiable do

Pick a model (p̃1, . . . , p̃np
) of O (preferably with a large number of “true”

variables).
if ¬F [p̃1/p1, . . . , p̃np

/pnp
] is unsatisfiable then

return (p̃1, . . . , p̃np
), a model of G

else

Pick a model (q̃1, . . . , q̃nq
) of ¬F [p̃1/p1, . . . , p̃np

/pnp
]

S := {1, . . . , np}
for all i ∈ {1, . . . , np} do

if F [p̃j/pj , j ∈ S \ {i}, q̃1/q1, . . . , q̃nq
/qnq

] is unsatisfiable then

S := S \ {i}
end if

end for

{
(

∀b1 . . . ∀bnb
∀q1 . . . ∀qnq

F
)

⇒
(

∨

i∈S|p̃i=true ¬pi

)

∨
(

∨

i∈S|p̃i=false pi

)

}

O := O ∧
((

∨

i∈S|p̃i=true ¬pi

)

∨
(

∨

i∈S|p̃i=false pi

))

end if

end while

1 This is the same idea as for SMT solving: instead of generating the full theory for the
atomic predicates appearing in our formulas (that is, all the unsatisfiable conjunctions of these
predicates), we generate only those actually needed, lazily.

3

4 Related works and conclusion

Monniaux [2009] reduced finding postconditions, inductive invariants, strongest
postconditions and strongest inductive invariants in certain numerical template
domains to quantifier elimination.

References

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. of
Logic and Computation, pages 511–547, August 1992.

Susanne Graf and Hassan Säıdi. Construction of abstract state graphs with PVS.
In Orna Grumberg, editor, Computer-Aided Verification (CAV), number 1254
in Lecture Notes in Computer Science, pages 72–83. Springer Verlag, 1997.

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan.
Constraint-based invariant inference over predicate abstraction. In Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI), volume 5403
of Lecture Notes in Computer Science, pages 120–135. Springer Verlag, 2009.
ISBN 978-3-540-93899-6. doi: 10.1007/978-3-540-93900-9 13.

David Monniaux. A quantifier elimination algorithm for linear real arithmetic.
In LPAR (Logic for Programming Artificial Intelligence and Reasoning), vol-
ume 5330 of Lecture Notes in Computer Science, pages 243–257. Springer
Verlag, 2008. doi: 10.1007/978-3-540-89439-1 18.

David Monniaux. Automatic modular abstractions for linear constraints. In
POPL (Principles of programming languages). ACM, 2009.

4

http://dx.doi.org/10.1007/978-3-540-93900-9_13
http://dx.doi.org/10.1007/978-3-540-89439-1_18

	Introduction
	Templates for predicate abstraction
	Finding solutions
	Eager constraint generation
	Lazy constraint generation

	Related works and conclusion

