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We propose a method for computing invariants in disjunctive predicate abstraction domains using satisfiability modulo theory (SMT) testing.

On computing invariants for predicate abstraction by SAT-solving 1 Introduction

Traditionally, in abstract interpretation, most analyzes compute inductive invariants by iteration: one gets safe overapproximations of reachable states after 1, 2, 3, . . . , iterations of the loop. If the domain in which the approximations are computed has finite height, then these iterations terminate on an inductive invariant. If it has infinite height, then possibly one should use so-called widening operators [START_REF] Cousot | Abstract interpretation frameworks[END_REF]. Widenings introduce extra overapproximation, and long iteration sequences may result in long analysis times. As a result, there has been considerable interest recently in finding alternate methods for computing inductive invariants.

Predicate abstraction [START_REF] Graf | Construction of abstract state graphs with PVS[END_REF]] is a kind of abstract interpretation where, at the simplest, program states are abstracted to the vector of their Boolean values over a finite set of predicates. In this article, we consider disjunctive abstractions: one abstracts a set of program states by a formula in disjunctive normal form, where the literals are taken from the finite set of predicates. If one limits the size of the disjunction, this abstract domain is finite and could find inductive invariants in it by the iteration method. [START_REF] Gulwani | Constraint-based invariant inference over predicate abstraction[END_REF] have however shown how to reduce the problem of computing such an invariant to propositional satisfiability problems amenable to efficient solving by modern SAT implementations. In this article, we show how to make this reduction more simply.

Templates for predicate abstraction

We look for invariants of the form I △ = k i=1 C i where the C i are conjunctions whose conjuncts are taken from a finite set P = {π 1 , . . . , π |P | } of predicates over a theory T , referring to program state variables q 1 , . . . (which can be Boolean or theory-specific). Such an invariant can be characterized by a k × |P | matrix 1 of Booleans a i,j , meaning that predicate π j is present in disjunct number i:

I △ = k i=1 |P | j=1 (a i,j ⇒ π j ) (1) 
In other words, the concretization of Booleans (a i,j

) 1≤i≤k,1≤j≤|P | is γ((a i,j ) 1≤i≤k,1≤j≤|P | ) = k i=1 |P | j=1 γ(π j ) (2)
Let C be a precondition predicate (over variables q 1 , . . . , q nq ), let T be a "next state" transition predicate (over variables q 1 , . . . , q nq for previous state, variables q ′ 1 , . . . , q ′ nq for next state). The correctness condition for I being an invariant is:

G △ = ∀q 1 . . . ∀q nq ∀q ′ 1 . . . ∀q ′ nq (C ⇒ I) ∧ (I ∧ T ⇒ I[q ′ 1 /q 1 , . . . , q ′ nq /q nq ]) (3) 
Note that the pointwise ordering on the (a i,j ) 1≤i≤k,1≤j≤|P | implies the inverse of the concretization ordering (the ordering induced by γ and ⊆). In order to obtain strong invariants, one should look for acceptable values of (a i,j ) 1≤i≤k,1≤j≤|P | with a large amount of true variables.

Finding solutions

Formula G, as defined in Eq. 3, is of the following form:

G △ = ∀q 1 . . . ∀q nq F (4)
where F is a quantifier-free formula in a certain theory T , and the only free variable of G are propositional variables {p 1 . . . . , p np }. We want solutions for (p 1 . . . . , p np ), preferably with many "true" values. In this section, for a variable v, we shall note ṽ some "current solution" value for v. We shall show how to reduce computing solutions for G to propositional SAT-solving and to SAT-solving modulo the theory T .

Eager constraint generation

Since G is a quantified formula where the only free variables are propositional variables, performing quantifier elimination should yield a purely propositional formula. The problem is then reduced to finding a satisfying assignment to a propositional problem (SAT), with a preference for "true" values in the assignment, a task performed by SAT-solvers.

A first strategy is to perform quantifier elimination on G by finding successive solutions to ¬G and projecting them out, as proposed by [START_REF] Monniaux | A quantifier elimination algorithm for linear real arithmetic[END_REF]. Because we eliminate all non-propositional variables, the algorithm can be simplified into:

O := true H := ¬F while H is satisfiable do Pick a model (p 1 , . . . , pnp , q1 , . . . , qnq ) |= H S := {1, . . . , n p } for all i ∈ {1, . . . , n p } do if ¬H[p j /p j , j ∈ S \ {i}, q1 /q 1 , . . . , qnq /q nq ] is not satisfiable then S := S \ {i} end if end for

{ i∈S| pi=true p i ∧ i∈S| pi=false ¬p i ⇒ H[q 1 /q 1 , . . . , qnq /q nq ]} { i∈S| pi=true p i ∧ i∈S| pi=false ¬p i ⇒ ∃b 1 . . . ∃b n b ∃q 1 . . . ∃q nq H} { ∀b 1 . . . ∀b n b ∀q 1 . . . ∀q nq F ⇒ i∈S| pi=true ¬p i ∨ i∈S| pi=false p i } H := H ∧ i∈S| pi=true ¬p i ∨ i∈S| pi=false p i O := O ∧ i∈S| pi=true ¬p i ∨ i∈S| pi=false p i end while
Conditions are accumulated into O by adding constraints to the SMT-solver. The final result is that O is a CNF propositional formula (canonical SAT input) equivalent to G.

Lazy constraint generation

It seems like a waste to generate the full CNF whereas, perhaps, a few constraints suffice to constrain the search space sufficiently to find a solution. We therefore suggest an algorithm that would generate these clauses on demand. 
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1 O := true while O is satisfiable do Pick a model (p 1 , . . . , pnp ) of O (preferably with a large number of "true" variables). if ¬F [p 1 /p 1

This is the same idea as for SMT solving: instead of generating the full theory for the atomic predicates appearing in our formulas (that is, all the unsatisfiable conjunctions of these predicates), we generate only those actually needed, lazily.

4 Related works and conclusion [START_REF] Monniaux | Automatic modular abstractions for linear constraints[END_REF] reduced finding postconditions, inductive invariants, strongest postconditions and strongest inductive invariants in certain numerical template domains to quantifier elimination.