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Abstract

This article presents a verification based on a specific
Boolean algebra, called �� , and symbolic reasoning on
equations defined in this algebra. The formal definition of
this algebra enables to model binary signals that include
variables states, events, as well as physical delays between
events. The behavior of the generic function blocks of the
IEC 61131 standard as well as of PLC programs using these
function blocks can be described in this algebra. Proper-
ties proof on PLC programs is performed by demonstrating,
from the program, the formulas that express in the �� alge-
bra the properties to be proved.

1. Introduction

Programmable Logic Controllers (PLC) perform numer-
ous control tasks in manufacturing systems, transport sys-
tems, power systems. In order to ensure safety of these sys-
tems, PLC programs formal verification is therefore a major
industrial concern. Program verification does not aim sim-
ply at checking the intrinsic properties of the program, e.g.
no infinite loop, no locking point, ... , regardless of the ap-
plication, but also at checking that the program behaviour
complies with the application requirements. In this article
we will mainly focus on this last kind of properties: the
compliance of a given program with the properties required
for the application.

A lot of methods have been developed to formally verify
PLC programs written in IEC 61131-3 languages [5]. They
have often used or adapted to Control Engineering methods
issued from Computer Science such as model-checking [1],
translation into synchronous languages [6]. A good survey
as well as a relevant classification can be found in [3].

Our laboratory has contributed to this issue by achiev-
ing several works in model-checking since ten years. The
first works used a specific model-checking tool [10], devel-
oped for properties checking on Sequential Function Charts

(SFC); the last ones [9], [7] take benefit of the SMV sym-
bolic model-checker [8].

The results of these works are of interest because they
have enabled to formally verify properties of industrial PLC
programs written in several languages of the IEC 61131-3
standard. Nevertheless these researches have pointed out
clearly that in some cases the model-checker is unable to
provide a solution because of combinatory explosion. This
drawback of model-checking has led us to undertake works
aiming at providing an other complementary verification
method.

To tackle the combinatory explosion problem implies to
consider the underlying theory of model-checking tools. All
these software are developed from DES theory and there-
fore consider a program as a state automaton. Even if sym-
bolic model-checking is employed, the size of this automa-
ton can be so huge that combinatory explosion occurs when
dealing with some industrial programs. We have conse-
quently searched for a verification method based on a more
compact representation and have chosen an algebraic rep-
resentation. With this approach the program shall be rep-
resented by a set of equations and verification shall be per-
formed by symbolic reasoning on this set. The properties to
be proved (the application requirements) shall therefore be
also represented in the same algebraic form. Once the alge-
braic approach chosen, a problem arises: which algebra is
to be used ? As the purpose is to represent the variables and
the instructions of PLC standard languages, such as edge
detectors, timer function blocks, Boolean memories, an al-
gebra only dealing with states of Boolean variables is not
suitable. We need to represent states, events and physical
delays with the same formalism. It is the reason why we
have decided to develop a new algebra providing this pos-
sibility. This algebra has been called �� because its aim is
to represent at one and the same time, states, events and
delays; it is therefore an Integrating framework.

This article is structured in the following way. The first
section gives an overview of the verification method. Then
we present the elements of the �� algebra as well as the way



in which we express the behavior of basic function blocks
of PLC standard languages into this algebra. This enables to
establish generic properties of these function blocks useful
when demonstrating the required properties. An example
of formal verification of a safety-related program is given
in the last part.

2 Verification method overview

PLC programs are developed by control engineers which
use their skills and their experience to elaborate these pro-
grams from the requirements, with or without a develop-
ment method specific to the application field considered or
imposed by the customer or by the system supplier. The
verification method shall be independent of the chosen de-
velopment method. On the other hand the languages of the
IEC 61131-3 standard are widely used for PLC program-
ming and we will only consider programs written in these
languages.

The first step of the verification method (Figure 1) pro-
vides a formal representation in �� of the program behaviour.
In the same way, properties required for the application have
to be formalised with algebraic formulas. The last step
is merely symbolic reasoning on the first set of formulas
(those obtained from the program) in order to obtain the
formulas expressing the required properties.

Program in
IEC 61131-3

languages

Properties
to

prove

Program
modelled by

equations on ��

Properties
modelled by

equations on ��

Reasoning
in ��

Properties
proved
(or not)

Figure 1. The differents steps of the verifica-
tion method

3 A Boolean algebra for binary signals

3.1 Binary signals modelling

As mentioned in the introduction, the �� algebra shall
provide a formal framework to represent and manipulate
Boolean variables states, Boolean events and physical de-
lays between events. The main idea for the definition of this
algebra has been to consider binary signals, i.e. variables
describing the evolution during time of Boolean values.

These evolutions are usually represented by timing dia-
grams. This representation is quite useful for control engi-
neers but is not at all based on a sound formalism. In order
to provide a formal framework for binary signals, we pro-
pose to represent them as piecewise-continuous functions
from ���� to �� � ��� ��. The elements of �� are conse-
quently formally defined in the following way :

�� �

��
�
� � ���� � �� �

�� � ���� � ���� � � � ������ ��� � ��� ���
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�

The figure 2 shows an example of a function element
of �� . Attention shall be paid to the right-continuity used
for the edges (at the dates �� and ��) and to the double-
discontinuity (for the dates �� and ��), mandatory to model
events. A more detailed presentation is given in [11].
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Figure 2. Example of function element of ��

To distinguish the operations on the elements of �� from
the operations on the booleans, different notations are used:

� � , �, 	 refer to elements of �� ,

� ����, ����, 	��� refer to booleans, values of � , �, 	 at a
given instant �,

� “	”, “
”, “�” mean respectively logical AND, OR,
NOT,

� “
”, “�”, “�” are used for operations of �� .

�� contains two special elements �� (the one element) and
�� (the zero element) defined as follows:

�� � ���� � �� �� � ���� � ��
����� �� 1 ����� �� 0



3.2 Structure of Boolean Algebra

To compose the elements of �� , three closed operations
have been defined:

The AND operation The OR operation
��� � ��

��� �� �� ��
��
��� � ��

��� �� �� �� � ��

The NOT operation with �� � �����

�� � ��

��� �� �� �

��
����� � ���� 	 ����
�� � ����� � ���� 
 ����

���� � �����

���� 
 � � � �� ��� ��� is a Boolean algebra [4] because
the following conditions are satisfied for all �� �� 	 � �� :
�
� � �
� � � � � � � � Commutative Laws
�
�� � 	� � ��
�� � ��
	�
� � ��
	� � �� � ��
�� � 	�

Distributive Laws

�
�� � � � � �� � � Identity Laws
�
� � �� � � � � �� Inverse Laws
�� 
� ��

As ���� 
 � � � �� ��� ��� is a Boolean algebra, the properties
hereafter are satisfied [4]:
�
� � � � � � � � Idempotent Laws
�
�� � �� � � �� � �� Dominance Laws
�
�� � �� � �
� � ��
�� � �

Absorption Laws�
�
� � �
	

�
� � �
	
� � � 	�

� � � � � � 	

� � � � � � 	
� � � 	

Cancellation Laws

�
��
	� � ��
��
	
� � �� � 	� � �� � �� � 	

Associative Laws

� � �
Law of the Double
Complement

�
� � � � � � � � � �
� DeMorgan’s Laws

A partial order between elements of �� can be introduced
by the subset relation “implication”. This relation is defined
as follows:

�
��
� � if and only if, �� � ���� � ����

��
� ����

where
��
� is the implication operation on ��.

It really matters to highlight the usefulness of this relation
for properties checking. This will be illustrated in section
5. Furthermore, for all �� � � �� , the six following relations
are equivalent:

�
��
� � � � � � �� �
� � ��

�
��
� � �
� � � � � � � �

This algebra must be distinguished from process alge-
bra that are aimed to formally represent state automata.
In our case, the underlying model of the algebra is not a
kind of state automaton, but the binary signal, piecewise-
continuous function of time.

4 Function blocks behavior and properties

Once the algebra defined, it is possible to obtain a for-
mal description of all the boolean function blocks of the
IEC 61131-3 standard. This part focuses only on boolean
memories, timers and edge detectors.

4.1 Memory operations

The bistable function blocks are defined in the standard
as follows:

Bistable Function Block (Set dominant)
Graphical form Function Block body

+-----+
| SR |

BOOL-|S1 Q1|-BOOL
BOOL-|R |

+-----+

+-----+
S1----------| >=1 |--Q1

+---+ | |
R --O| & |--| |
Q1---| | | |

+---+ +-----+

Bistable Function Block (Reset dominant)
Graphical form Function Block body

+-----+
| RS |

BOOL-|S Q1|-BOOL
BOOL-|R1 |

+-----+

+---+
R1----------O| & |---Q1

+-----+ | |
S --| >=1 |--| |
Q1--| | | |

+-----+ +---+

Two operations on �� have been defined for giving an
algebraic semantic to bistable function blocks:

The �� operation The �� operation
��� � ��

��� �� �� ����� ��
��� � ��

��� �� �� ����� ��

with �� � �����
����� ����� � ���� 
 ���� 
 � � ������ � ��

	���� � ���� ��� ����� � ���
����� ����� � ����� 	 �����


 ���� 
 � � ������ � �� 	 ���� � 	��� ��� ����� � ���

Figure 3 depicts two binary signals �, � inputs of two
�� and �� function blocks and the corresponding outputs
����� ��, ����� ��.

With these definitions, the following theorems have been
estabished:
�

��
� ����� �� ����� �� � � ����� ��
� � �
�

�
��
� ����� �� ����� �� � � ����� ��
� � �
�

����� ��� � � ������ �� � �� ������ �� � ��

����� ��� � �� ������ �� � � ������ �� � ��

����� �� � ��

����� �� � ����
�� �� ����� �
�� �� � ����� ��

����� �� � ��� � ����� ���
����� ���
����� � ��� �� � ������ �� � ������ ��
����� �� � ��� � ����� ���
����� ���
����� � ��� �� � ������ �� � ������ ��
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Figure 3. Examples of functions �, �, ����� ��
and ����� ��

4.2 Timing operations

The timer function blocks are defined in the standard as
follows:

ON-delay Timing (TON)
Graphical form Timing diagram

+-------+
| TON |

BOOL-|IN Q|-BOOL
TIME-|PT ET|-TIME

+-------+

+--------+ +---+ +--------+
IN | | | | | |

--+ +------+ +---+ +--
t0 t1 t2 t3 t4 t5

+---+ +---+
Q | | | |

-------+ +-------------------+ +--
t0+PT t1 t4+PT t5

OFf-delay Timing (TOF)
Graphical form Timing diagram

+-------+
| TOF |

BOOL-|IN Q|-BOOL
TIME-|PT ET|-TIME

+-------+

+-----+ +---+ +------+
IN | | | | | |

--+ +--------+ +---+ +-
t0 t1 t2 t3 t4 t5
+----------+ +-------------------+

Q | | | |
--+ +---+ +-

t0 t1+PT t2 t5+PT

The algebraic semantics of these function blocks is the
following:

The TON operation The TOF operation
�� � ��
� �� ���

�� � ��
� �� ���

with �� � �����

�������� �

�
� �� 
 �
���� � ��� �� ��� ����� � �� �� � �

�������� �

�
���� � ��� ��� ����� � �� �� 
 �
���� � ��� ��� ��� ����� � �� �� � �

Figure 4 depicts a binary signal � , input of the TON and
TOF function blocks and the corresponding outputs � ��� ,
����.

This definition enables to establish the following theo-
rems:
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Figure 4. TON and TOF operations for a func-
tion � of ��

����
�� � ��� 
 ���
�� � ���� � ��� � ���
������ 
 ������ � ������� �����
������ � ������ � ��������� ���
������ � ������ � ������� �����
������ 
 ������ � ��������� ���
��������� � ������� �����
��������� � ��������� ���

�� � �� ��� � ���

�� � �� ��� � ���

4.3 Edge operations

The edge detection function blocks are defined in the
standard as follows:

Rising edge detector
Graphical form Function Block body

+--------+
| R_TRIG |

BOOL-|CLK Q|-BOOL
+--------+

FUNCTION_BLOCK R_TRIG
VAR_INPUT CLK: BOOL; END_VAR
VAR_OUTPUT Q: BOOL; END_VAR
VAR M: BOOL; END_VAR
Q := CLK AND NOT M;
M := CLK;
END_FUNCTION_BLOCK

Falling edge detector
Graphical form Function Block body

+--------+
| F_TRIG |

BOOL-|CLK Q|-BOOL
+--------+

FUNCTION_BLOCK F_TRIG
VAR_INPUT CLK: BOOL; END_VAR
VAR_OUTPUT Q: BOOL; END_VAR
VAR M: BOOL; END_VAR
Q := NOT CLK AND NOT M;
M := NOT CLK;
END_FUNCTION_BLOCK

As previously, two operations on �� are defined:
The Rising Edge operation The Falling Edge operation
�� � ��
� �� � �

�� � ��
� �� � �

with �� � �����
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Figure 5 depicts a binary signal � , input of the Rising
Edge and Falling Edge function blocks and the correspond-
ing outputs � � , � � .
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Figure 5. Rising Edge and Falling Edge oper-
ations for a function � of ��

These formal definitions of edge detectors enable to
write formulas including variables states and events as
shown in the next section. Moreover, with this algebraic
definition, the following theorems have been estabished:

� �
��
� � � � �� � � �

��
� � � � �� �

� ��
�� �� �
� � �
 � � � �� � �� �� �
� � �
 � �

� �� � �� �� �
 � �� � �
�
� �� � �
�
� �

� ��
�� �� �
 � �� � �
�
� �� � �
�
� �

5 Example

The usefulness of the �� algebra for properties checking
will be demonstrated thanks to a simple safety-related pro-
gram. The aim of this program is to monitor the safe opera-
tion of the two pushbuttons used to operate presses and sim-
ilar dangerous machinery. It ensures that both hands of an
operator are kept outside the danger zone during machine
operation. Usually this safety-related function is realised
by safety relays systems tested and approved by standards
institutions. Nowadays this function is available in pro-
grammable safety systems. The behaviour of this function
is standardised [2]. The main points are:

P1 A cycle can only be initiated by pressing the two push-
buttons simultaneously (within 0.5 s).

P2 A cycle is interrupted by releasing one or both buttons
to stop the output.

P3 The output signal can only be reinitiated after both in-
puts have been released and the pushbuttons are oper-
ated again.

To obtain this behaviour, the control program depicted
in figure 6 has been designed. This program is written

Two-hand monitoring : external Interface

+---------------------+
| Two-hand monitoring |
| |

BOOL ---|B1 MVT|--- BOOL
BOOL ---|B2 |

+---------------------+

Two-hand monitoring : body

S1 RS1
+-----+ +-------+ +-----+ +-----+
| OR | | TOF | | AND | | RS |

B1 -+----| |O-+--------|IN Q|--------------| |--|S Q1|--MVT
B2 ---+--| | | T#0.5s-|PT | S2 | | | |

| | +-----+ | +-------+ +-----+ | | | |
| | | | SR | | | | |
| | +----------------------|S1 Q1|--| | | |
| | RT1 | | +-----+ | |
| | +-----+ +--------+ +-----+ | | | |
| | | AND | | R_TRIG | | AND | | | | |
| +-| |--+--|CLK Q|O-| |--|R | | |
+---| | | +--------+ | | +-----+ | |

+-----+ | | | | |
+--------------| | | |
| +-----+ | |
| | |
+----------------------------------------O|R1 |

+-----+

Figure 6. Control program written in FBD lan-
guage according to the IEC 61131-3 standard

with the Function Block Diagram (FBD) PLC programming
language, though it could be possible to give an equiva-
lent program in Ladder Diagram (LD). Only standard func-
tions: bitwise boolean functions (AND, OR), bistable func-
tion blocks (SR, RS) and edge detection function blocks
(R_TRIG) have been used.

This program can be model in �� as follows:
�����
����

�� � � �����
�
 � ��� with
�� �

�
�� ���

	
��� ��

�� � ��



�� ��� � ��
��
� ���
���

�
�� � ��
��

The properties P1 and P2 can be easily proved from this
formal definition of the program. These properties shall be
written on �� as follows:

P1 To set “�� � ”, it is necessary to have the two
pushbuttons pressed and not to have one or both
buttons pressed from 0,5s.

��� �
��
� �� 
 �� 
 �� ������ ����

P2 If a pushbutton is released, the output “MVT”
is reset.

�� ���
��
��� �

The property P2 is merely proved as follows:
Reasons

�� ��� � ��
�� � �� DeMorgan’s Laws

��
��
� �� � Using: �

��
� ����� ��

�� ���
��
� �� � Consequently



The property P1 is proved as follows:
��� � � � ������
�� � ����

By definition of�� �

� ������
�� � ����
��
� � ����
���
���

Using: � ������ ���
��
�� ��
��

(Property not yet presented)

� ���
��
���
��
� ��
��
��

Using: � �
��
� �

��
��
��
��
� ��
��

By definition of
��
�

�� � ��
�� � ��
��

Law of the Double Complement
�� �

�
�� � ��

	
��� �� � �� ������ ����

Using: ���� � ����
�� 
 �� � �� 
 �� 
 �� ������ ����

Using precedent results

��� �
��
� �� 
 �� 
 �� ������ ����

Consequently
The P3 property involves states of the same variables at

different dates (for instance both inputs shall be at the false
level at a given date t and at the true level at another date t’,
greater than t) and therefore is not so easy to prove than the
two first ones. This property can be written in CTL temporal
logic as follows:

�� ����� ���	���� 	 ����� 	���� 	 � ��������

To verify that kind of property, we are currently develop-
ing new operations on �� that enable to analyse the past of
binary signals.

6 Conclusion and perspectives

The �� algebra provides a formal framework to represent
Boolean variables states, events and physical delays and has
permitted to develop the verification method presented in
this article. This method has been tested in several cases
with success. It is particularly well-suited for structured
programs as industrial ones. The example described in this
article is written in FBD; the same equations and reason-
ing would be obtained with a program in Ladder Diagram.
Moreover the function blocks presented are defined for all
the IEC 61113-3 languages (e.g. SFC); the results obtained
may be therefore applied to any program developed in these
languages.

To help the designer when properties checking, we
have developed during the last year a solver under
Mathematica R�. This software relies on the basic properties
of this boolean algebra as well as on the theorems related
to function blocks and is able to simplify expressions on �� .
The designer used this tool to realize symbolic calculus on

�� . For our example, the properties P1 and P2 have been
demonstrated automatically thanks to this solver.

The perspectives of these works are both formal and
methodological. As mentioned at the end of the previous
section, new operations increasing the potentiality of check-
ing in �� are under development. From a methodological
point of view, we have to consider the cooperation between
the two verification methods nowadays used in our labora-
tory: model-checking and symbolic reasoning in �� . Ratio-
nal and complementary use of these two approaches will be
of benefit for large size industrial PLC programs verifica-
tion.
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