
HAL Id: hal-00356881
https://hal.science/hal-00356881

Submitted on 28 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safety properties verification of ladder diagram
programs

Jean-Marc Roussel, Bruno Denis

To cite this version:
Jean-Marc Roussel, Bruno Denis. Safety properties verification of ladder diagram programs. Journal
Européen des Systèmes Automatisés (JESA), 2002, 36 (7), pp. 905-917. �hal-00356881�

https://hal.science/hal-00356881
https://hal.archives-ouvertes.fr

Safety Properties Verification
of Ladder Diagram Programs

Jean-Marc Roussel — Bruno Denis

LURPA-ENS de Cachan
61 Avenue du Pt Wilson
94235 Cachan Cedex France

{Jean-Marc.Roussel,Bruno.Denis}@lurpa.ens-cachan.fr

ABSTRACT. Programmable Logic Controllers ensure the control of many reactive systems. These
controllers are most of the time programmed with the languages defined in the IEC 61131–
3 standard. Our goal is the verification of safety properties of programs written in one of
these languages: the Ladder Diagram. The main approaches in this field are based on Model-
Checking. We propose in this article a Theorem-Proving method by defining a formal framework
to express and handle the Ladder Diagram programs with a specific algebra. Firstly, we trans-
late the specific statements of the language into this algebra and we give some general theorems.
Then, we present on an example an analysis leading to the verification of safety properties.

RÉSUMÉ. Les automates programmables industriels assurent le contrôle-commande d’un grand
nombre de systèmes réactifs. Leur programmation se fait le plus souvent avec des langages
définis dans la norme IEC 61131–3. Notre objectif est la vérification de propriétés de sûreté
dans les programmes écrits dans l’un de ces langages : le “Ladder Diagram”. Les principales
approches dans le domaine abordent le problème par “Model-Checking”. Pour notre part, nous
nous proposons d’explorer la voie du “Theorem-Proving” en définissant un cadre formel pour
exprimer et manipuler les programmes “Ladder Diagram” dans une algèbre adaptée. Après
avoir traduit les primitives de ce langage dans cette algèbre et donné des théorèmes généraux,
nous présentons sur un exemple une analyse conduisant à la vérification de propriétés de sûreté.

KEYWORDS: Properties Proof, Boolean Algebra, Safety, Programmable Logical Controllers.

MOTS-CLÉS : Preuve de propriétés, Algèbre de Boole, Sûreté de Fonctionnement, Automates Pro-
grammables Industriels.

APII - JESA – 36/2002. Reactive Systems, pages 905 to 917

906 APII - JESA – 36/2002. Reactive Systems

1. Introduction

The control of industrial systems is very often carried out by Programmable Logic
Controllers (PLC) programmed with one or several of the five languages described in
the IEC 61131-3 standard: SFC (Sequential Function Chart), IL (Instruction List), ST
(Structured Text), LD (Ladder Diagram) and FBD (Function Block Diagram). Two
approaches can be used to check that a PLC program behaves safely. The first one is
the well-known simulation method whose main drawback is not to be exhaustive. The
second solution is the use of formal validation methods [LAM 99] [FRE 00].

Most of the works on formal validation methods of Ladder Diagram programs
employ Model-Checking techniques. They are generally limited to simple programs,
without function blocks as in [RAU 98]. Some works explicitly take into account the
temporal aspects of programs as in [ROS 00] which introduces a semantics associated
with function blocks or as in [DIE 98] which gives a semantics associated with the
cyclic evaluation of programs within PLC. Few works deal with LD programs using
Theorem-Proving. [SU 97] which detects relay-races or constant wires in a program
can be quoted. However this work does not take into account the safety aspects.

The works presented in this article are based on an algebra called �� firsly intro-
duced in [ROU 93]. This algebra provides a formal framework to represent and ma-
nipulate Boolean variables states, Boolean events and physical delays between events.
The present paper introduces new operations on this algebra allowing to give a se-
mantics for LD language primitives. The benefit of this work is to obtain a theoretical
background to develop theorem-proving techniques enabling to verify, on LD pro-
grams, safety properties including temporal aspects.

In section 2, an example of a reactive system is presented with the corresponding
LD program and the safety properties which to have to be checked. The section 3
presents the formal framework we have developped to express and handle LD pro-
grams. The translation of two kinds of function blocks illustrates this section: stan-
dard timer function blocks (as TON) and standard bistable function blocks (as RS)
illustrates this section.The last section is devoted to the exhaustive treatment of the
example described in section 2.

2. Example

The size of the selected example allows us to study it entirely in this article. It
is based on a water distribution plant. This example consists of a water tank, two
pumping lines, an output valve and a backflow valve (see figure 1). Each pumping
line is composed of a pump placed between two valves (upstream and downstream
valves).

The safety properties required for this installation are stated below.

Verification of Ladder Diagram Programs 907

Line 2

Line 1

Backflow
valve

Output
valve

Tank Symbol:

ValvePump

Figure 1. The controlled system

Properties Formulation in natural language
P1 If a pump is on then its upstream valve has been opened for more than

5 seconds.
P2 The two pumping lines shall never work at the same time.
P3 In the case of a distribution stoppage, no actuator must be activated.
P4 In the case of pump failure, no actuator of the corresponding pumping

line must be activated.

The control program of this plant is implemented into a PLC with the following
input/output:

L_flow operator request for a water distribution with a low flow-rate
H_flow operator request for a water distribution with a high flow-rate
Line_swap operator request for swapping the priority between the pumping lines
Li_fail failure information from pump i
SP_fail distribution stoppage information
Li_pump activation order for the pump of pumping line i
Li_up opening order for the upstream pump of pumping line i
Li_down opening order for the downstream pump of pumping line i
Out_valve opening order for output valve
Bf_valve opening order for backflow valve

The control system (PLC with the control program) must respect the four here-
above mentioned properties. Each property describes a part of the expected behavior
of the control system. For example, P1 gives a relationship between the control system
outputs, and P3 gives a causality relationship between the inputs and the outputs.

The outputs values are obtained from the inputs values and from the values of the
internal variables according to the control program given on figure 2. Written Ladder
Diagram language, this control program consists of 10 rungs labelled from L01 to
L10. After the inputs scan, the PLC evaluates the rungs from top to bottom as they
appear in the LD program (for instance, in the studied example, rungs are evaluated
from L01 to L10), and then updated simultaneously all its outputs.

The language LD as been designed to describe the behavior of the outputs of a
logical system according to its inputs and its internal variables. This graphic language

908 APII - JESA – 36/2002. Reactive Systems

| Line_swap L1_prio Act_L1 | | L1_Prod L1_up |
L01+------|P|--------+----|/|------()---+--+ L05+-----| |-----------------------()------+

	L1_prio Act_L2			
+----		------()---+		TON_L1
		L1_Prod +---------+ L1_pump		
RS_prio	L06+-----		----	IN TON Q
+------+		#5sec-	PT ET	-
Act_L1	RS	L1_prio		+---------+ +----()----+

L02+------| |--------|S Q1|-------()-----+ | |
| Act_L2 | | | | L2_Prod L2_up |
+------| |--------|R1 | | L07+-----| |-----------------------()------+
+------+		
		TON_L2
RS_L1		L2_Prod +---------+ L2_pump
+------+	L08+-----	
L1_prio L2_Prod	RS	L1_Prod

L03+-+-| |-----|/|-+-|S Q1|-------()-----+ | +---------+ +----()----+ |
| | L2_failure | | | | | |
| +----| |------+ | | | | L1_Prod Out_valve |
| H_flow L_flow | | | L09+--+---| |----+-----------------()------+
+-+-|/|-----|/|-+-|R1 | | | | L2_Prod | |
	L1_fail	+------+		+---		----+
+----		------+				
	SP_fail			L1_pump H_flow Bf_valve		
+----		------+	L10+--+---		----+----	/
			L2_pump			
RS_L2		+---		----+		
+------+						
L1_prio	RS	L2_Prod	VAR_INPUT			

L04+-+----|/|------+-|S Q1|-------()-----+ H_flow, L_flow, L1_fail : BOOL;
| | L1_failure | | | | L2_fail, Line_swap, SP_fail : BOOL;
| +----| |------+ | | | END_VAR
| H_flow L_flow | | | VAR_OUTPUT
+-+-|/|-----|/|-+-|R1 | | Bf_valve, L1_down : BOOL;
| | L2_fail | +------+ | L1_pump, L1_up, L2_down : BOOL;
| +----| |------+ | L2_pump, L2_up, Out_valve : BOOL;
| | SP_fail | | END_VAR
| +----| |------+ | VAR
| | L1_Prod | | Act_L1, Act_L2, L1_prio : BOOL;
| +----| |------+ | L1_Prod, L2_Prod : BOOL;

RS_prio, RS_L1, RS_L2 : RS;
TON_L1, TON_L2 : TON

END_VAR

Figure 2. Control program in Ladder Diagram language

includes two basic operations: contacts and coils. The contacts test the value of a
variable (1:-| |-, 0:-|/|-). The coils -()- assign a value to a variable according
to the logical value of the left side located expression.

When more complex behaviors are required, the user can use specific function
blocks. In our example, two standardized function blocks are used: the RS block to
memorize a Boolean information and the TON block to wait for a given time delay
(see table 1).

3. Formal framework: a Boolean algebra for binary signals

3.1. Binary signals modelling

As mentioned in the introduction, the �� algebra shall provide a formal framework
to represent and manipulate Boolean variables states, Boolean events and physical
delays between events. The main idea for the definition of this algebra has been to
consider binary signals, i.e. variables describing the evolution during time of Boolean
values.

Verification of Ladder Diagram Programs 909

Bistable Function Block (Set dominant)
Graphical form Function Block body

+-----+
| SR |

BOOL--|S1 Q1|--BOOL
BOOL--|R |

+-----+

+-----+
S1---------------| >=1 |---Q1

+---+ | |
R------O| & |----| |
Q1------| | | |

+---+ +-----+
Bistable Function Block (Reset dominant)

Graphical form Function Block body
+-----+
| RS |

BOOL--|S Q1|--BOOL
BOOL--|R1 |

+-----+

+---+
R1----------------O| & |---Q1

+-----+ | |
S-------| >=1 |----| |
Q1------| | | |

+-----+ +---+
ON-delay Timing (TON)

Graphical form Timing diagram

+-------+
| TON |

BOOL-|IN Q|-BOOL
TIME-|PT ET|-TIME

+-------+

+--------+ +---+ +--------+
IN | | | | | |

--+ +------+ +---+ +--
t0 t1 t2 t3 t4 t5

+---+ +---+
Q | | | |

-------+ +-------------------+ +--
t0+PT t1 t4+PT t5

OFf-delay Timing (TOF)
Graphical form Timing diagram

+-------+
| TOF |

BOOL-|IN Q|-BOOL
TIME-|PT ET|-TIME

+-------+

+-----+ +---+ +------+
IN | | | | | |

--+ +--------+ +---+ +-
t0 t1 t2 t3 t4 t5
+----------+ +-------------------+

Q | | | |
--+ +---+ +-

t0 t1+PT t2 t5+PT

Table 1. IEC 61131-3 standard definitions for SR, RS, TON, TOF function blocks

These evolutions are usually represented by timing diagrams. This representation
is quite useful for control engineers but is not at all based on a sound formalism. In
order to provide a formal framework for binary signals, we propose to represent them
as piecewise-continuous functions from ���� to �� � ��� ��. The elements of �� are
consequently formally defined in the following way:

�� �

�
� � ���� � �� �

�� � ���� �
�
��� � � � ������ ��� � ��� ���

�
� ���� ��� � ���� ����

� �

910 APII - JESA – 36/2002. Reactive Systems

The figure 3 shows an example of a function element of �� . Attention shall be paid
to the right-continuity used for the edges (at the dates �� and ��) and to the double-
discontinuity (for the dates �� and ��), mandatory to model events. A more detailed
presentation is given in [THI 00].

�

�
��� �� �� ��

� ����� � �
� ����� � �����

� �

�

�

�

�

�

�

�

Figure 3. Example of a function element of ��

To distinguish the operations on the elements of �� from the operations on the
booleans, we use different notations. We note “�” the logical AND operation between
two booleans, “	” the logical OR operation between two booleans, “
” the NOT
operation on a boolean. The notations “�”, “�” and “�” will be used for operations
on �� . Furthermore, we have carefully distinguished the function from the boolean,
i.e. the value taken at a given time by this function. For instance, � , 	,
 are three
functions elements of �� and ����, 	���,
��� are three booleans.

�� contains two special elements �� (the one element) and �� (the zero element)
defined as follows:

�� � ���� � �� �� � ���� � ��
����� �� 1 ����� �� 0

3.2. Structure of Boolean Algebra

To compose the elements of �� , we have defined three closed operations:

The AND operation The OR operation The NOT operation
��� � ��

��� 	� �� ���	�
��� � ��

��� 	� �� �� � 	�
�� � ��

� �� �
with �� � �����

���	���� � ���� � 	��� �� � 	���� � ���� 	 	��� ���� �
����

���� � � � � �� ��� ��� is a Boolean algebra [GRI 99] because the following condi-
tions are satisfied for all �� 	�
 � �� :

��	 � 	�� � � 	 � 	 � � Commutative Laws
���	 �
� � ���	� � ���
�
� � �	�
� � �� � 	���� �
�

Distributive Laws

���� � � � � �� � � Identity Laws
��� � �� � � � � �� Inverse Laws
�� �� ��

As ���� � � � � �� ��� ��� is a Boolean algebra, the properties hereafter are satisfied:

Verification of Ladder Diagram Programs 911

��� � � � � � � � Idempotent Laws
���� � �� � � �� � �� Dominance Laws
���� � 	� � � � � ���	� � � Absorption Laws
���	�
� � ���	��
 � � �	 �
� � �� � 	� �
 Associative Laws

� � �
Law of the Double
Complement

��	 � � � 	 � � 	 � ��	 DeMorgan’s Laws

A partial order between the elements of �� can be introduced by the subset relation
“implication”. This relation is defined as follows:

�
��

 	 if and only if, �� � ���� � ����

��

 	���

where
��

 is the implication operation on ��.

This relation between elements of �� is very useful for expressing and checking
properties as shown in the last part. For all �� 	 � �� , the six following relations are
equivalent:

�
��

 	 � � 	 � �� ��	 � �� 	

��

 � ��	 � � � � 	 � 	

Once the algebra defined, it is possible to obtain a formal description of the func-
tion blocks of the IEC 61131-3 standard. In this article we will deal only with boolean
memories and timers.

3.3. Memory operations

The bistable function blocks are defined in the IEC 61131-3 standard as shown in
the table 1. Two operations on �� have been defined for giving an algebraic semantics
to bistable function blocks:

The �� operation The �� operation
��� � ��

��� �� �� ����� ��
��� � ��

��� �� �� ����� ��

with �� � �����
����� ����� � ���� 	 ����
 � � ������ � �� � ��� � ���� ��� ���� � ���
����� ����� � ����� � �����

	 ����
 � � ������ � �� � ��� � 	��� ��� ���� � ���

The value of the ����� �� (respectively ����� ��) function is thus determined at
each instant � as the logical OR between two booleans. The first boolean is the value
of the function � (respectively ���) at �. The second boolean is the value of a predicate
at the same date. The truthfulness of the predicate depends on the existence of a
former date ��, such as ����� (respectively �������) was � and since which the value of
the function � has remained always equal to 0. Figure 4 shows 2 functions � and � of
�� and the functions resulting from �� and �� operations.

912 APII - JESA – 36/2002. Reactive Systems

�

�
����

��� �� �� �� ��� ���

� �

�

�

�

�

�

�

�

�

�

�

�

�
����

��� �� �� �� �	

� �

�

�

�

�

�

�

�

�

�

�
����� �����

��� �� �� �	 ��� ���

� �

�

�

�

�

�

�

�

�

�

�

�

�
����� �����

��� �� �� �� �� �	

� �

�

�

�

�

�

�

�

�

�

�

�

Figure 4. Timing diagrams of functions s, r, ��(s,r) and ��(s,r)

With these definitions, we have estabished the following theorems:

�
��

 ����� �� ����� �� � � ����� ���� � ��� ����� �� � ������� ��

�
��

 ����� �� ����� �� � � ����� ���� � ��� ����� �� � ��

����� ��� � � ������ �� � �� ������ �� � �� ����� ���� �� � ����� ��
����� ��� � �� ������ �� � � ������ �� � ��

����� �� � ��� � ����� ��������� ��� ����� � ��� �� � ������ �� � ������ ��
����� �� � ��� � ����� ��������� ��� ����� � ��� �� � ������ �� � ������ ��

3.4. Timing operations

The timer function blocks are defined in the standard as shown in the table 1. The
algebraic semantics of these function blocks is the following:

The TON operation The TOF operation
�� � ��
� �� ���

�� � ��
� �� ���

with �� � �����

�������� �

�
� ��
 �
���� � ��� �� ��� ����� � �� �� � �

�������� �

�
���� � ��� ��� ����� � �� ��
 �
���� � ��� �� ��� ����� � �� �� � �

The TON and TOF operations transform a � function into two new functions ���
and ���. For each date �, the value of these new functions depends on the value of a
predicate that checks the value of the � function on a period of time ����� ��. Figure 5
shows a � function of �� and the functions resulting from TON and TOF operations.

Theses definitions enable to establish the following theorems:

Verification of Ladder Diagram Programs 913

�
�� �� �� ��

���� �� ��

�
����

�� �� �� �� �
� �

�

�

�

�

�

�

�

�
���������

����� � ��� ��� � ��� �� �
� �

�

�

�

�

�

�

�

�
���������

�� ����� � ��� ��� � ��� �
� �

�

�

�

�

�

�

�

Figure 5. TON and TOF operations for a function � of ��

���
��

 � �

��

 ���

�����	� � ����� � ���	� �� � 	��� � ����� � �	���
������ � ������ � ������� ����� ������ � ������ � ��������� ���
������ � ������ � ������� ����� ������ � ������ � ��������� ���
��������� � ������� ����� ��������� � ��������� ���

�� � �� ��� � ��� �� � �� ��� � ���

4. Application to Ladder Diagram programs verification

4.1. Expression of properties

Defined to represent binary signals, the Boolean algebra �� allows to us to express
simply many relations between these binary signals. For a system with inputs � � and
outputs ��, it is possible to express for instance the following relations:

Properties given in natural language Properties written on ��

if �� is true, then �� is true. ��
��

 ��

�� and �� are never simultaneously true. �� � �� � ��

The binary signal �� is never true more than 3 seconds.
���� � ��

Safety properties given in section 2 shall be written on �� as shown in table 2.

4.2. Modelling of the Ladder Diagram program behavior

Only the temporal aspects of the process will be considered in this paper. The
temporal aspects inherent in the PLC technology will be neglected compared to those
of the process. Thus, the model retained for the PLC monitor is an infinitely reactive
model i.e. with a delay response time equal to zero. With the algebraic semantics
given to LD operations, the LD program behavior is a set of expressions defined on �� .

914 APII - JESA – 36/2002. Reactive Systems

Properties Formulation on ��

P1

�
��_����

��

 �����_��

��_����
��

 �����_��

P2
���_��� ��_����� ��_����� �

���_��� ��_����� ��_����� � ��

P3 ��_����
��

 ��_���� � ��_�� � ��_���� � ��_����

� ��_�� � ��_���� � ���_���� � ��_����

P4

�
��_����

��

 ��_���� � ��_�� � ��_����

��_����
��

 ��_���� � ��_�� � ��_����

Table 2. Formulation on �� of safety properties

From a theoretical point of view, the sequential program written in LD can be seen
as a machine which processes input binary signals to produce ouput binary signals.
Each input and ouput can be model with a �� function. Then each output signal can be
model as an algebraic function of �� � in �� (where n is the number of input signals). In
other words the transfer function of PLC can be expressed algebraically in �� . For our
example, the model would be:�������

������

��_���� � �� �!_����� �_����� ��_�����
��_����� ��� _����� ��_�����

...
���_���� � �� �!_����� �_����� ��_�����

��_����� ��� _����� ��_�����

From a practical point of view, it is not necessary to know explicitly this transfer
function to check most of safety properties. The knowledge of some properties of
this transfer function is often sufficient. Using the structure of the program LD, a
certain number of these properties are simple to express because control programs of
industrial applications are always written with strict methodological rules in order to
facilitate the program maintenance. Popular rules are the following: modular design of
program, assignment of the variables at only one place, restricted (or even prohibited)
use of the operation modifying the order of rung execution.

The LD program proposed in section 2 was designed in a modular manner. Its
structure is presented on the figure 6.

The behavior model retained for this LD program is a set of algebraic equations
which represent either a part of the transfer function of the LD program, or relations
between variables. For instance, for the module including the rungs from L05 to L10,
the transfer functions are as follows (from 	�� to 	
�).

��_�� � ��_���� [1]

Verification of Ladder Diagram Programs 915

Line_swap�

SP_fail �
L1_fail �
L2_fail �
L_flow �
H_flow �

�

L01

L02

L1_prio� L03

L04

L1_prod�

L2_prod�

L05

L06

L07

L08

L09

L10

L1_up�
L1_pump�
L1_down�
L2_up�
L2_pump�
L2_down�
Out_valve�
Bf_valve�

Figure 6. Modular structure of the LD program

��_���� � �����_���� [2]

��_���� � �����_���� [3]

��_�� � ��_���� [4]

��_���� � �����_���� [5]

��_���� � �����_���� [6]

���_���� � ��_���� � ��_���� [7]

��_���� � ������_���� � �����_����� � !_���� [8]

On the opposite side, it is not possible to express the transfer function of the mod-
ule including the rungs L03 and L04 with the only operations described in section
3. These transfer functions will be replaced by relations derived from the transfer
function. These properties are expressed using implications in �� .

!_������_���� � ��_����� ��_����
��

 ��_���� [9]

!_������_���� � ��_����� ��_����� ��_����
��

 ��_���� [10]

4.3. Verification of the LD program properties

The proof of properties is obtained by applying a succession of theorems on �� .

To prove P1, it is necessary to establish the two relations: “��_����
��

 �����_��”

and “��_����
��

 �����_��”. The first relation is demonstrated in figure 7. The

demonstration of the second relation is similar.
The property P2 is proved in figure 8.
The properties P3 and P4 are proved in the same way. To prove theses properties, it is

necessary to establish each elementary relation such as “��_����
��

 ��_���� ”.

The demonstration of “��_����
��

 ��_���� ” is made in figure 9.

Finally, the four safety properties expected for the system are obtained for the given
LD program.

916 APII - JESA – 36/2002. Reactive Systems

Reasons
��_�� � ��_���� using [1]
��_���� � �����_���� � �����_�� using [2]

��_����
��

 �����_�� consequently

Figure 7. Demonstration of “��_����
��

 �����_��”

Reasons
���_��� ��_����� ��_����� �

��_���� � �����_����
using [1], [2], [3]

��_���� � �����_���� � ��_���� using theorem ����
��

 �

���_��� ��_����� ��_����� � ��_���� using precedent results
���_��� ��_����� ��_����� � ��_���� result obtained in the same way
���_��� ��_����� ��_������

���_��� ��_����� ��_�����
� ��_���� � ��_����

using precedent results

��_����
��

 ��_���� using [10]

���_��� ��_����� ��_������
���_��� ��_����� ��_�����

� ���_���� � ��_����� � ��_���� � ��
Consequently

Figure 8. Demonstration of property P2

5. Conclusion and perspectives

The �� algebra provides a formal framework to represent Boolean variables states,
events and physical delays and has permitted to develop the verification method pre-
sented in this article. This method has been tested in several cases with success. It
is particularly well-suited for structured programs as industrial ones. We have devel-
opped under Mathematica R� a solver enabling automatic verification. With this solver,
the four properties of the example have been automatically proved.

The example described in this article is written in LD; the same equations and rea-
soning would be obtained with a program in Function Block Diagram (FBD). More-
over the presented function blocks (RS , TON) are defined for all the IEC 61113-3
languages (e.g. SFC) ; the results obtained can be therefore applied to any program
developed in these languages.

The perspectives of these works are both formal and methodological. New op-
erations increasing the potentiality of checking in �� are under development. They
will be usefull to express properties. From a methodological point of view, we have
to consider the cooperation between the two verification methods nowadays used in
our laboratory: model-checking and symbolic reasoning in �� . Rational and comple-

Verification of Ladder Diagram Programs 917

Reasons

��_����
��

 ��_���� using [9]

��_����
��

 ��_���� using [10]

��_����
��

 ��_���� � ��_���� using precedent results

��_���� � ��_����
��

 �����_���� � �����_���� using theorem ����

��

 �

�����_���� � �����_����
��

 ��_���� using [8]

��_����
��

 ��_���� consequently

Figure 9. Demonstration of “��_����
��

 ��_���� ”

mentary use of these two approaches will be of benefit for large size industrial PLC
programs verification.

6. References

[DIE 98] DIERKS H., FEHNKER A., MADER A., VAANDRAGER F., “Operational and Logical
Semantics for Polling Real-Time Systems”, RAVN A., RISCHEL H., Eds., Proceeding
of Fifth International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT’98), vol. 1486 of Lecture Notes in Computer Science, Lyngby, Denmark,
April 1998, Springer, p. 29–40.

[FRE 00] FREY G., LITZ L., “Formal methods in PLC programming”, Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics, Nasville, Tennessee, USA,
October 2000.

[GRI 99] GRIMALDI R. P., Discrete and Combinatorial Mathematics: An Applied Introduc-
tion, Addison-Wesley, 4th edition, 1999, ISBN 0-201-19912-2.

[LAM 99] LAMPÉRIÈRE-COUFFIN S., ROSSI O., ROUSSEL J.-M., LESAGE J.-J., “Formal
validation of PLC programs: a survey”, Proceedings of European Control Conference
1999 (ECC’99), Karlsruhe, Germany, August/September 1999.

[RAU 98] RAUSCH M., KROGH B. H., “Formal validation of PLC programs”, Proceedings
of American Control Conference, Philadelphia, PA, USA, June 1998.

[ROS 00] ROSSI O., SCHNOEBELEN P., “Formal modeling of timed function blocks for the
automatic verification of ladder diagram programs”, Proceeding of International Confer-
ence Automation of Mixed Processes (ADPM’2000), Dortmund, Germany, September 2000,
p. 177–182.

[ROU 93] ROUSSEL J.-M., LESAGE J.-J., “Une algèbre de Boole pour l’approche événemen-
tielle des systèmes logiques”, APII-AFCET/CNRS, vol. 27, nÆ 5, 1993, p. 541–560.

[SU 97] SU Z., “Automatic analysis of Relay Ladder Logic programs”, report nÆUCB/CSD-
97-969, September 1997, Computer Science Division, University of California, Berkeley,
CA, USA.

[THI 00] THIERRY C., ROUSSEL J.-M., LESAGE J.-J., “An extended boolean algebra for the
control of logical systems”, Proceedings of 16th IMACS World Congress 2000 on Scientific
Computation, Applied Mathematics and Simulation, Lausanne, Switzerland, August 2000.

