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A 3D DISCRETE DUALITY FINITE VOLUME METHOD FOR

NONLINEAR ELLIPTIC EQUATIONS∗

YVES COUDIÈRE† AND FLORENCE HUBERT‡

Abstract. Discrete Duality Finite Volume (DDFV) schemes have recently been developed in
2D to approximate on general meshes nonlinear diffusion problems. We propose in this paper a 3D
extension of such schemes. The construction of this scheme is investigated. The main properties of
the scheme, as well-posedness, error estimates, are also stated.
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1. Introduction.

1.1. Nonlinear elliptic equations. In this paper, we are interested in the
study of a finite volume approximation of solutions to the nonlinear diffusion problem:

− div (ϕ(z,∇u(z))) = f(z), in Ω, u = 0, on ∂Ω, (1.1)

where Ω is a bounded polyhedral domain in R
3. Consider p ∈]1,∞[ and p′ = p

p−1 .

The flux ϕ : Ω×R
3 → R

3 in equation (1.1) is supposed to be a Caratheodory function
which is strictly monotonic with respect to ξ ∈ R

3:

(ϕ(z, ξ) − ϕ(z, η), ξ − η) > 0, for all ξ 6= η, for a.e. z ∈ Ω . (1.2)

We also assume that there exist C1, C2 > 0, b1 ∈ L1(Ω), b2 ∈ Lp′

(Ω) such that

(ϕ(z, ξ), ξ) ≥ C1|ξ|
p − b1(z), for all ξ ∈ R

3, a.e. z ∈ Ω, (1.3)

|ϕ(z, ξ)| ≤ C2|ξ|
p−1 + b2(z), for all ξ ∈ R

3, a.e. z ∈ Ω. (1.4)

These assumptions ensure that u 7→ − div(ϕ( · ,∇u)) is a Leray-Lions operator, and
in particular the mapping G ∈ (Lp(Ω))3 7→ ϕ(·, G(·)) ∈ (Lp′

(Ω))3 is continuous and
Leray Lions [?] proved that

Theorem 1.1. Under assumptions (1.2), (1.3) and (1.4), for any source term

f ∈ W−1,p′

(Ω), the problem (1.1) has a unique solution u ∈ W
1,p
0 (Ω).

The homogeneous Dirichlet equation is addressed here for sake of simplicity in
the exposition of the scheme. The non homogeneous case can be treated similarly.

1.2. The discrete duality finite volume approaches in 3D. The 2D DDFV
method relies on the diamond formula to compute gradients of the unknown u from
finite differences in two independent directions, involving four values of u (See [?, ?,
?]). Hence, two finite volumes meshes are needed. They intersect through diamond
cells, on which the gradient vectors are computed. Naturally the diamond cells are
quadrilateral.
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Three different methods have been proposed in the linear case ϕ(z, ξ) = G(z)ξ
(G(x) a symmetric uniformly elliptic matrix). In any case, an additional mesh of dual
control volumes is built around the vertexes of the primal mesh and the gradient is
piecewise constant on some diamond cells that recover the faces of both the primal
and dual control volumes. This approximate gradient yields a natural numerical flux
on the faces of the control volumes. The scheme is obtained by integrating eq. (1.1)
on both the primal and dual control volumes.

In [?, ?, ?], each diamond cell is composed of a pair of pyramids having as base
an interface of the primal mesh and vertexes the two neighboring centers. In [?, ?] a
gradient is built from the vertex values of each diamond cell under the condition that
the interfaces of the primal mesh are either triangles or quadrangles. This includes
locally refined meshes. In [?] the construction is restricted to the case where the
primal mesh is a tetraedrization of Ω and verifies an orthogonality constrain. The
construction of the dual control volumes is specific to each method. Unlike in the 2D
version, the primal and the dual meshes play a different role: in [?] the domain Ω is
recovered twice by the dual mesh and in [?] the orthogonality condition means that
the dual mesh is the Voronöı mesh associated to the vertexes of the primal mesh.

In [?], diamond cells are constructed in a different way: choosing a point in each
face of the mesh, the diamond cell is made of two tetrahedral cells that have a common
triangular base with vertexes the endpoints of one edge of the face and the center
of the face; and the two neighboring centers as additional vertexes. Two auxiliary
unknowns, at the centers of the face and of the edge, are introduced to reconstruct
the gradient. With this two additional points, the diamond cell now has 6 vertexes,
defining 3 independent directions: between the two new points, between the two
neighboring centers and between the to endpoints of the edge. It can be constructed
a gradient from the 3 finite differences in these directions. But it remains the auxiliary
unknowns to eliminate. F. Hermeline suggests several possibilities to eliminate them.
The derived schemes are in general non symmetric. Their convergence seems to be
difficult to prove.

Our 3D generalization of the DDFV approach is based on the idea that three
finite differences in independent directions are needed to construct a gradient. The
diamond mesh constructed in [?] gives naturally these three independent directions.
According to our method, the additional unknowns are computed by integrating the
equation on a third family of control volumes associated to the new unknowns at the
faces and at the edges of the primal mesh. Like in the 2D case, the three meshes play
a symmetric role, resulting in a scheme that is quite simple to implement.

Hence, our innovative scheme is based on a three meshes finite volume formula-
tion. The diamond cells have 6 vertexes organized in 3 pairs, defining 3 independent
directions in R

3. The approximate gradient is easily obtained by the 3 corresponding
finite differences. The scheme is naturally symmetric and easy to implement.

This paper specifies the construction of this 3D DDFV scheme for a nonlinear
elliptic equation and states the main properties of this scheme, including some error
estimates.

1.3. Outline. The meshes involved in the construction of the scheme are de-
scribed in section 2. Some discrete divergence divT and gradient ∇T operators are
defined in section 3, that are proved to verify a discrete duality property similar to
the Green formula. The approximation scheme for nonlinear elliptic equation (1.1)
reads

−divT (ϕd(∇T uT )) = fT .
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The main properties of our scheme, well-posedness, a priori estimates and some error
estimates, are inherited from the discrete duality property and assumptions (1.2),
(1.3) and (1.4), as exposed in section 4.

2. Construction of the Meshes. Consider a usual finite volume mesh M
called the primary mesh. We construct two additional finite volumes meshes, with
control volumes respectively around the vertexes and the faces and edges of the pri-
mary mesh. They are denoted by N and FE . The diamond cells d are defined in
order to contain exactly one interface of each of the three finite volumes meshes, so
that three finite differences are available inside d to construct the discrete gradient of
u.

The mesh T is the triple (M,N ,FE) of meshes on Ω, defined below (see Figures
2.1 and 2.2). We refer as c ∈ T for any of the volumes in M∪N ∪FE .

2.1. The primary mesh. The mesh M is a set of open disjoint polyhedral
control volumes k ⊂ Ω such that ∪k̄ = Ω. The interfaces k̄ ∩ l̄ of these control
volumes1 are denoted by f = k̄ ∩ l̄ as well as the remaining boundary faces k =
∂k ∩ ∂Ω. Theses faces are polygons; they are called the faces of M. The vertexes of
theses faces f are denoted by a and called the vertexes of M, while the edges of these
faces are called the edges of M and denoted by e.

We associate to each cell k a point xk ∈ k, to each face f a point xf ∈ f and
finally to each edge e a point xe ∈ e. They are for example the isobarycenters of the
k, f, e.

For each face f ⊂ ∂Ω, we introduce a degenerate boundary control volume k
reduced to the face F , with center xk = xf. The set of boundary control volume is
denoted by ∂M.

Definition 2.1. We defined the relation ≺ between respectively vertexes and

edges, edges and faces, faces and control volumes as “belongs to the boundary to”. In

other words

a ≺ e ≺ f ≺ k means a ⊂ ∂e, e ⊂ ∂f, f ⊂ ∂k.

This relation is useful to describe for instance the subset of the edges that are con-
nected to a given node, or the subset of the edges that are boundaries of a face,
etc.

2.2. The node mesh. A control volume denoted by Pa is associated to each
vertex a of M located inside the domain Ω. It is uniquely defined by its boundary
∂Pa and by a ∈ Pa. The node mesh N is the set of all these control volumes :

N =

{

Pa such that ∂Pa = ∪
a≺e≺f≺k

xexfxk, a vertex of M, a ∈ Ω

}

.

We set ∂N the set of control volumes around the vertexes a ∈ ∂Ω. The specific
description of these volumes is not needed here since only homogeneous Dirichlet
boundary condition is considered.

2.3. The face mesh. A control volume is associated to each center xf of the
faces F ⊂ Ω of M and to each center xe of the edges e ⊂ Ω of M, respectively
denoted by Pf and Pe and such that xf ∈ Pf and xe ∈ Pe. The face mesh FE is the

1when they have a non zero d − 1 dimensional measure
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Figure 2.1. Example mesh with hexahedrons.
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Figure 2.2. Example mesh with tetrahedrons.

set of all these control volumes. It is split into the sets F and E of the control volumes
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associated to the faces and edges defined by:

F =

{

Pf such that ∂Pf = ∪
a≺e≺f≺k

axefxk, f face of M, f ⊂ Ω

}

,

E =

{

Pe such that ∂Pe = ∪
a≺e≺f≺k

axefxk, e edge of M, e ⊂ Ω

}

with

xef = θxe + (1 − θ)xf for some fixed θ ∈]0, 1[. (2.1)

The set ∂FE of control volumes around the faces f ⊂ ∂Ω and edges e ⊂ ∂Ω is used
to impose the homogeneous Dirichlet boundary condition.

2.4. The diamond cells. Consider an edge e of a face f: e ≺ f. The edge e
has two endpoints a,b that are vertexes of M and is consequently associated to two
control volumes in N∪∂N , while the face f is an interface between two control volumes
k and l in M∪ ∂M. They are exactly defined by the relation a,b ≺ e ≺ f ≺ k, l.
Finally the control volumes Pe and Pf in FE ∪ ∂FE also have an interface for e ≺ f.
Consequently, for e ≺ f the diamond d associated to (e, f) is the polyhedron defined
by:

d = d(e, f) = hull(a, xe,b, xk) ∪ hull(a, xe,b, xl)

where hull(·) denotes the convex hull of a set of points. The set of diamond cells,
called the diamond mesh D, is also defined by

D =

{

d such that ∂d = ∪
a≺e≺f≺k

axfxk, e ≺ f

}

.

We associate to each diamond cell a point xd ∈ d called “center”.
A diamond cell d = d(e, f) is uniquely defined by the data of (e, f) such that

e ≺ f. Unless specified explicitly, the diamond cell associated to e ≺ f is simply
denoted by d, and its vertexes by xk, xl, a,b and xe, xf, supposed to be order in such
a way that

∆ef := det(b − a, xf − xe, xl − xk) > 0.

With this orientation the measure of d is |d| = 1
6∆ef and the subsets of the interfaces

between pairs control volumes of the three meshes M,N ,FE included in the diamond
cell d are as follows:

• The intersection k̄ ∩ l̄ ∩ d is composed of the two triangles (a, xe, xf) and
(b, xe, xf) and the vector Nkl = 1

2 (b − a) × (xf − xe) =
∫

k̄∩l̄∩d
nk,l ds where

nk,l stands for the unit normal to k̄ ∩ l̄ ∩ d oriented from k to l;
• The intersection P̄a ∩ P̄b ∩d is composed of the two triangles (xf, xe, xk) and

(xf, xe, xl) and the vector Nab = 1
2 (xf − xe) × (xl − xk) =

∫

P̄a∩P̄b∩d
na,b ds

where na,b stands for the unit normal to P̄a ∩ P̄b ∩ d oriented from a to b;
• The intersection P̄e ∩ P̄f ∩ d is composed of the four triangles (xk,a, xef),

(xk,b, xef), (xl,b, xef) and (xl,a, xef) and the vector Nef = 1
2 (xl − xk) ×

(b−a) =
∫

P̄e∩P̄f∩d
ne,f ds where ne,f stands for the unit normal to P̄e∩ P̄f∩d

oriented from e to f.
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Note that

Nkl · (xl − xk) = Nab · (b − a) = Nef · (xf − xe) =
1

2
∆ef = 3|d|. (2.2)

Remark that xef defined in eq. (2.1) is a natural choice for the center xd of the
diamond cell d.

3. The discrete spaces and operators.

3.1. The discrete spaces. Consider the data (uM, uN , uFE) of three functions
piecewise constant respectively on the k ∈ M, Pa ∈ N and Pe/f ∈ FE :

uM =
∑

k∈M

ukχk, uN =
∑

A∈N

uaχA, uFE =
∑

f∈F

ufχPf +
∑

e∈E

uχPe .

The sets of functions piecewise constant on the K ∈ M, Pa ∈ N and Pe/f ∈ FE are
respectively denoted by XM, XN and XFE . The finite volume unknown is generally
a element of the space X = XM × XN × XFE .

The finite volume unknown is supplemented with boundary values

δuT = ((uk)k∈∂M, (ua)a∈∂Ω, (uf)f⊂∂Ω, (ue)e⊂∂Ω)

that define a linear space ∂X. For homogeneous Dirichlet boundary conditions, it is
set δuT = 0 and the construction of the scheme and proofs are carried out simply in
X.

Remark 1. For non homogeneous Dirichlet conditions, δuT 6= 0, the unknown

belongs to an affine subspace of X × ∂X, the inner product and subsequent properties

are handled in X × ∂X, while the discrete problem is posed in X. The proofs and

scheme becomes more technical while the difficulties are the same as the one encoun-

tered for homogeneous conditions.

For Neumann boundary conditions, it must be defined the control volumes asso-

ciated to boundary nodes, edges and faces, which is again an additional technicality.

The space X is supplied with the natural inner product

(uT , vT )X =
1

3

(
∫

Ω

uMvM +

∫

Ω

uN vN +

∫

Ω

uFEvFE

)

=
1

3

(

∑

k∈M

ukvk|K| +
∑

Pa∈N

uava|Pa| +
∑

Pe∈E

ueve|Pe| +
∑

Pf∈F

ufvf|Pf|

)

. (3.1)

A linear space of vector fields will be associated to the finite volumes gradient. It
is the space Q of functions piecewise constant on the d ∈ D with value in R

3:

ξD ∈ Q ⇔ ξD =
∑

d∈D

ξdχd, ∀d ∈ D, ξd ∈ R
3.

Like for elements uT ∈ X, an element ξD ∈ Q may also be denoted by the sequence
of its degrees of freedom: ξD = (ξd)d∈D. It is endowed with the natural inner product

(ξD, ηD)Q =

∫

Ω

ξD · ηD =
∑

d∈D

ξd · ηd|d|. (3.2)
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3.2. The discrete gradient. Given uT = (uM, uN , uFE) ∈ X, its gradient is
the element ∇T uT = (∇duT )d∈D in Q defined by

∀d ∈ D, ∇duT =
1

3|d|
((ul − uk)Nkl + (ub − ua)Nab + (uf − ue)Nef) . (3.3)

Unlike the discrete unknown, the discrete gradient is defined up to the boundary
with this relation, assuming that the Dirichlet condition is imposed on the boundary:
uf = ul = 0 if f ⊂ ∂Ω, ua = 0 (resp. ub = 0) if a ∈ ∂Ω (resp. b ∈ ∂Ω) and
ue = ua = ub = 0 if e ⊂ ∂Ω.

By construction, for each d ∈ D, the vector ∇duT is the unique vector of R
3 such

that

∇duT ·(xl − xk) = ul − uk, ∇duT ·(b− a) = ub − ua, ∇duT ·(xf − xe) = uf − ue,

because of the relation (2.2).

3.3. The discrete divergence. Given ξD ∈ XD, its discrete divergence is the
element divT ξD = (divM ξD,divN ξD,divFE ξD) in X defined by

divM ξD = (divk ξD)k∈M, divN ξD = (diva ξD)a∈N ,

divFE ξD =
{

(dive ξD)e∈E , (divf ξD)f∈F

}

with, for any k,a,e, f

|K|divk ξD =
∑

d∈dk

ξdNkl, |Pa|diva ξD =
∑

d∈da

ξdNab, (3.4)

|Pe|dive ξD =
∑

d∈de

ξdNef, |Pf|divf ξD =
∑

d∈df

ξd (−Nef) , (3.5)

where the subsets of D are defined by dk = {d(e, f) : e ≺ f ≺ k}, da = {d(e, f) :
a ≺ e ≺ f}, de = {d(e, f) : e ≺ f} and df = {d(e, f) : e ≺ f}. Remark that we
have for all c ∈ T

|c|divc ξD =

∫

∂c

ξD(x)nc(x)dσ(x), (3.6)

where nc is the unit normal to ∂c outward of c.

4. The Discrete Duality Formula and other Basic Properties.

4.1. The Discrete Duality Relationship. We first state a discrete version of
the Green formula:

〈div q, u〉Lp′ ,Lp + 〈q,∇u〉(Lp′ )3,(Lp)3 = 0, ∀u ∈ W
1,p
0 (Ω), ∀q ∈

(

W 1,p′

(Ω)
)3

.

Theorem 4.1 (Discrete duality). For any uT ∈ X and ξD ∈ Q, the gradient

∇T uT and divergence divT ξD verify the discrete duality relation

(

divT ξD, uT
)

X
+
(

ξD,∇T uT
)

Q
= 0.
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Proof. From the definitions (3.4) and (3.5) of the divergence and (3.1) of the inner
product in X, one have

(

divT ξD, uT
)

X
=

1

3

(

∑

k∈M

∑

d∈dk

ξd · Nkluk +
∑

a∈N

∑

d∈da

ξd · Nabua

+
∑

f∈F

∑

d∈df

ξd · (−Nef)uf +
∑

e∈E

∑

d∈de

ξd · Nefue

)

= −
1

3

∑

d∈D

ξd · (Nkl(ul − uk) + Nab(ub − ua) + Nef(uf − ue))

= −
∑

d∈D

|d|ξd · ∇duT = −
(

ξD,∇T uT
)

Q
,

using also eq. (3.3) and (3.2) for the discrete gradient and the inner product in Q,
and with the homogeneous Dirichlet condition.

4.2. The Inequality of Poincaré. The discrete space X is analog to W
1,p
0 (Ω)

and then it is expected that ∇T uT = 0 ⇒ uT = 0 and that a discrete inequality of
Poincaré holds.

Theorem 4.2 (Inequality of Poincaré). There exists a constant C = C(RegT )
depending only on RegT such that

∀uT ∈ X, ‖uM‖Lp + ‖uN ‖Lp + ‖uFE‖Lp ≤ C‖∇T uT ‖Lp .

Proof. The proof relies on the remark that for any diamond d ∈ D,

∣

∣∇duT
∣

∣

2
|d| =

1

9|d|
δudGdδud

T

≥ λm|d|

(

(ul − uk)2
∣

∣

∣

∣

Nkl

3|d|

∣

∣

∣

∣

2

+ (ua − ub)
2

∣

∣

∣

∣

Nab

3|d|

∣

∣

∣

∣

2

+ (ue − uf)
2

∣

∣

∣

∣

Nef

3|d|

∣

∣

∣

∣

2
)

where δud = ((ul − uk)Nkl, (ub − ua)Nab, (uf − ue)Nef) and λm > 0 is the smallest
eigenvalue of the Gram matrix

Gd =

(

Nkl

|Nkl|
,

Nab

|Nab|
,

Nef

|Nef|

) (

Nkl

|Nkl|
,

Nab

|Nab|
,

Nef

|Nef|

)T

.

This eigenvalue is naturally uniformly bounded below under the geometrical assump-
tion the diamond cells are non-degenerate.The inequality of Poincaré is derived from
the 3 usual discrete inequalities of Poincaré in the spaces XM, XN and XFE [?, ?].

5. The Finite Volume Scheme.

5.1. Formulation of the scheme. The Discrete Duality Finite Volume scheme
is obtained by integrating equation (1.1) on all the control volumes of the three meshes,
k ∈ M, Pa ∈ N , Pe ∈ E and Pf ∈ F [?, ?, ?]. The exact solution u verifies for all
c ∈ T :

−

∫

∂c

ϕ(s,∇u(s)) · ncds =

∫

c

f(x)dx. (5.1)
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For any d ∈ D, consider the spatial approximation ϕd : R
3 → R

3 of the flux ϕ defined
by

∀d ∈ D, ∀ξ ∈ R
3, ϕd(ξ) =

1

|d|

∫

d

ϕ(z, ξ) dz. (5.2)

The flux ϕ(·,∇u(·)) is approximated by the function ϕT (∇T uT ) = (ϕd(∇duT ))d∈D

in Q where ∇T uT has been defined in section 3.2. With this approximation of the
flux, and using eq. (5.1), the DDFV scheme reads

− divT
(

ϕT (∇T uT )
)

= πT f (5.3)

where the discrete divergence divT is defined in section 3.3 and the projection πT f =
{(fk)k∈M, (fa)a∈M, (fe, ff)e∈E,f∈F} ∈ X is defined by

∀k ∈ M, fk =
1

|k|

∫

k

f(x)dx, ∀a ∈ N , fa =
1

|Pa|

∫

Pa

f(x)dx,

∀e ∈ E , fe =
1

|Pe|

∫

Pe

f(x)dx, ∀f ∈ F , ff =
1

|Pf|

∫

Pf

f(x)dx.

5.2. A word on Practical Implementation. Note that the implementation
of such a scheme does not require the construction of the node mesh N and the face
mesh F . If the primal mesh is given with the format

a ≺ e ≺ f ≺ k

that is a control volume is defined by its faces, a face by its edges and an edge by its
vertexes, it is easy to construct a diamond cell structure that contains the reference
to its vertexes a,b, xk, xl, xe, xf, the values Nkl, Nab, Nef and the measures of the
8 tetrahedral cells that compose the diamond cell: (xef, xk,a, xf),(xef, xk,a, xe), ...
The system involved in the resolution of the scheme, can be easily implemented by
going through this diamond cell structure.

6. Convergence and error estimates. In this section, the nonlinear system
of equations (5.3) is proved to be well-posed; uniform a priori estimates are found on
its solutions; and finally error estimates are given.

Theorem 6.1 (A priori estimate and existence of a solution to (5.3)).
Assume that the flux ϕ satisfies assumptions (1.2), (1.3) and (1.4). For any

f ∈ Lp′

(Ω) and any mesh T on Ω, the finite volume scheme (5.3) admits a unique

solution uT ∈ X and there exists a uniform constant C > 0 depending only on C1

and RegT , such that

(
∫

Ω

|∇T uT |p
)

1

p

≤ C

(

‖f‖
1

p−1

Lp′ + ‖b1‖
1

p

L1

)

. (6.1)

Proof. The a priori estimate is a consequence of theorems 4.1 and 4.2 and of
assumption 1.3. A solution of the discrete problem is found as a Brouwer fixed point
of the mapping uT 7→ −divT (ϕT (uT ))− πT f . Uniqueness is recovered from thm 4.1
and assumption (1.2).

Remark 2. In the case where the flux ϕ derives from a convex potential Φ:

ϕ(z, ξ) = ∇ξΦ(z, ξ) ∀ξ ∈ R
2, for a.e. z ∈ Ω, and Φ(z, 0) = 0 for a.e. z ∈ Ω (6.2)
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the solution uT of the scheme (5.3) is also the unique minimizer of the discrete energy

JT associated to the scheme by JT (uT ) =
∫

Ω
Φ(z,∇T uT ) −

∫

Ω
uT πT f .

The scheme is well-posed, and the discrete solution might be proved to converge
under assumptions (1.2), (1.3) and (1.4) only. Anyway, in order to compute some
error estimates, in the case p ≥ 2, the following additional assumptions are needed:
there exists constants C3, C4, C5 > 0, b4 ∈ L

p

p−2 (Ω) and a function b5 ∈ Lp′

(Ω) such
that for all (ξ, η) ∈ R

3 × R
3 and almost every z ∈ Ω,

(ϕ(z, ξ) − ϕ(z, η), ξ − η) ≥ C3|ξ − η|p, (6.3)

|ϕ(z, ξ) − ϕ(z, η)| ≤ C4

(

b4(z) + |ξ|p−2 + |η|p−2
)

|ξ − η|, (6.4)

and for all x ∈ R
3 and almost every z ∈ Ω,

∣

∣

∣

∣

∂ϕ

∂z
(z, ξ)

∣

∣

∣

∣

≤ C5

(

b5(z) + |ξ|p−1
)

. (6.5)

Our main result is the following.
Theorem 6.2. Assume that the flux ϕ satisfies assumptions (1.3), (1.4), (6.3),

(6.4) and (6.5). For p ≥ 2 consider f ∈ Lp′

(Ω) and assume that the solution u to

(1.1) belongs to W 2,q(Ω) ∩ W
1,p
0 (Ω), with q = p for p > 2 and q > 2 for p = 2.

For any mesh T on Ω there exists a constant C > 0 depending on the norm

‖u‖W 2,p , the regularity parameter RegT , the data f, (bi)1≤i≤6 and (Ci)1≤i≤5, such

that

‖u − uM‖Lp + ‖u − uN ‖Lp + ‖u − uFE‖Lp + ‖∇u −∇T uT ‖Lp ≤ Ch
1

p−1 , (6.6)

where uT = (uM, uN , uFE) ∈ X is the solution to eq. (5.3).
Proof. The proof is long and technical. It involves the consistency of the discrete

gradient, the computation of error estimates between the discrete and exact flux inside
the diamond cells, and all the assumptions on the flux function ϕ.


