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Abstract

We report experimental and theoretical evidence of a non-Rydberg molecular
doubly excited state of Ca2 involving excited molecular orbitals mixing 4p and 3d
characters. The excitation spectrum of Ca2, carried by helium or argon clusters,
is recorded experimentally in the range 25600-27800 cm−1, displaying a bimodal
structure. The latter is interpreted from ab initio calculation and analysis of the
adiabatic states of Ca2 up to doubly excited asymptotes Ca(4p3d 1D)+Ca(4s2 1S)
and Ca(4s3d 3D)+Ca(4s4p 3P), and the relevant dipole transition moments. The
bimodal structure is assigned as resulting from the avoided crossing between adia-
batic states 31Πu and 41Πu, reflecting the mixing of doubly excited configurations
and absorbing singly excited configurations.
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1 Introduction

An impressively large amount of spectroscopic data concern the photoexcitation and

the photodissociation of diatomic molecules. This provides an important body of infor-

mation on the electronic and spectral properties of molecules in addition to ab initio

calculations which become more and more efficient. Cross-comparison constitutes a

stringent way to interpret and assign the nature of the states, which is especially

useful for high-lying states. Most experimental studies document states, whose main

configuration is singly excited with respect to the ground state [1, 2]. Besides of al-

kali dimers, which can be considered as two-electron systems and which can receive

almost exact valence treatment, accurate theoretical prediction of the energy of dou-

bly excited molecular states is still delicate in ab initio calculations. Getting accurate

spectroscopic information on these states is therefore especially important, but difficult

to obtain. Doubly excited states are indeed vanishingly coupled to the ground state by

single photon transitions, hence making spectroscopic investigations difficult. A way to

circumvent this difficulty is to take advantage of the coupling between a doubly excited

state and spectroscopically accessible states. Spin-orbit coupling may sometimes pro-

vide favorable cases. For instance valence double excitations involving fine structure

within a given molecular configuration have been reported for most halogen pairs, such

as for instance the I∗(2P1/2) − I∗(2P1/2) contact pair emission observed by Apkarian

and coll. [3]. If we now consider actual electron configuration double excitations (not

involving fine structure), a number of examples reported so far were concerned with

quite large double excitation energies and the coupling used for spectroscopic purposes

involved an autoionization channel. For instance, doubly excited states of molecules

H2, N2 and CO show up as resonances in their photoionization spectra [4, 5, 6]. In

the context of ultracold collisions, doubly excited states of the Na2 molecule link the

association reaction between two Na(3p 2P) atoms to the associative ionization forming

Na+
2 [7, 8].

A very different situation exists with metal atom dimers when the metal has an
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energetically low lying, high spin state, whose energy is less than half the ionization en-

ergy. When associating two such metal atoms, one (or several) bonded doubly excited

state(s) may exist, whose energy is lower than that of the molecular ion. This situa-

tion is expected to be quite common with transition metals and lanthanides [9, 10, 11],

often characterized as mixed valence compounds especially challenging from the elec-

tronic structure point of view and their magnetic properties. A similar situation also

occurs in alkaline-earth metals. In such case, investigations using the above mentioned

spectroscopic studies are not possible, since no autoionization channel is opened. Such

doubly excited states are spectroscopically almost ”invisible” and can be observed only

through configuration mixing with singly excited states of same symmetry, acquiring

non-vanishing dipole transition moments. This type of situation has been predicted

theoretically for Ba2, but not yet observed [12].

The present work is both experimental and theoretical. It reports the investigation

of low lying doubly excited states, taking another alkaline earth dimer, Ca2, as an

example. Calcium is very favorable for this purpose. The energy of its lower triplet

state, Ca(4s4p 3P), is 15263 cm−1, whereas the ionization energy of Ca is more than

a factor 3 larger (49306 cm−1). The next triplet state, Ca(4s3d 3D) lies at quite low

energy also (20357 cm−1) [9]. Doubly excited states of Ca2 correlating asymptotically

with Ca(4s4p 3P) + Ca(4s4p 3P) or with Ca(4s4p 3P) + Ca(4s3d 3D) are thus expected

to show interactions in the short range region with states correlating asymptotically

with the singly excited neutral pair at 23652 cm−1, Ca(4s4p 1P) + Ca(4s2 1S).

Besides of the intrinsic motivation for investigating doubly excited electronic states,

an accurate knowledge of the spectroscopy of Ca2 is of interest since the Ca(4s4p 1P)+

Ca(4s2 1S) collision has been proposed as a likely candidate for a photoassociation

reaction in order to generate ultracold Ca2 molecules [13, 14, 15].

The present experimental investigation of the calcium dimer spectroscopy is per-

formed using a setup allowing for generation of molecules trapped both on argon clus-

ters and on helium droplets. Such a setup can be used to investigate molecule-cluster
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interaction and cluster properties, but it is also a practical tool for molecular spec-

troscopy itself, especially when used with helium droplets, which is a goal in the present

work. The pick up technique indeed favors molecule formation and even clustering on

the cold, inert host cluster. It is complementary to isolated molecules studies. The

set up is presented in section 2, together with the excitation spectrum in the range

25600-27800 cm−1. The relevant potential curves and dipole moments are calculated

in section 3. The interpretation of the experimental data via the calculated absorption

spectrum is given in section 4.

2 Experimental : set up and excitation spectrum

in the region 25600-27800 cm−1

The Ca2 molecules are carried either by argon clusters or by helium droplets, using

the Cluster Isolated Chemical Reaction technique [16, 17]. We chose this technique

because of its flexibility, although direct supersonic expansion could be used to generate

the Ca2 molecules. The experiments are performed in the same spirit as those on the

reaction dynamics of barium clusters [18] and on the spectroscopy of low lying electronic

states of Ca2 dimers [19]. Their principle is resolved in five steps: i) large argon

clusters or helium droplets are generated in a supersonic expansion; ii) a controlled

average number N of calcium atoms is deposited per cluster using the collisional pick-

up technique; iii) given the low temperature of the clusters (T=0.4 K for helium

droplets [20], 32 K for argon clusters [21]), the calcium atoms associate together and

form an aggregate; iv) the desired process, here the photodissociation of Ca2 producing

the luminescent Ca(4s4p1P) atom, is induced; v) the light emission of Ca(4s4p1P) is

studied as a function of the wavelength of the laser that photodissociates Ca2, hence

providing the action spectrum of the desired photodissociation process

Ca2

hν
−−−−→ Ca(4s2 1S) + Ca(4s4p 1P). (1)

The argon clusters are produced in a molecular beam source of the Campargue-

type [22]. The supersonic expansion proceeds from a 20 bar stagnation pressure at
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room temperature through a 0.2 mm nozzle. It generates clusters with an average

size of ≈ 2000 [23]. The source used to generate the helium droplets is a modi-

fied Campargue-type supersonic beam [22, 24]. Helium with a stagnation pressure of

7.5 bars is expanded through a 0.005 mm nozzle that is refrigerated down to 10 K. The

size of the clusters is estimated to a few thousands [25]. After a double extraction by

a 1 mm skimmer and a 3 mm collimator, the cluster beam enters the pick-up zone, a

30 mm long heated cell (T ≃ 520◦C), where the calcium atoms are captured. Varying

the cell temperature allows the calcium vapor pressure to be adjusted, hence making

the average number of Ca atoms deposited per cluster adjustable [16]. Afterwards,

the beam crosses a region where both laser excitation and fluorescence detection are

performed. The beam is illuminated there by the light of a cw Titanium:Sapphire laser

doubled by an extra cavity doubler. The fluorescence light that is emitted at the same

place is collected, dispersed by a scanning grating monochromator and detected by a

cooled photomultiplier tube using the photon counting technique.

The laser is tuned in the range 360-390 nm (25640-27780cm−1) resulting in a calcium

emission that is recorded as a function of the laser wavelength. This emission cannot

be due to a laser induced fluorescence signal of atomic calcium since the latter has no

dipole-allowed line in this energy region. Indeed, beyond the atomic resonant line to

4s4p 1P at 23652 cm−1, the closest atomic levels [9] lie 4s5s3,1S at 31539 and 33000 cm−1,

both dipole-forbidden, and the next resonant line towards 4s5P 1P lies at 37242 cm−1.

Neither the helium droplet, nor the argon clusters are believed to exert such a large shift

on the calcium levels. Hence, the observed emission is not caused by the absorption of

the laser light by atomic calcium. Instead, we shall see below that it results from the

absorption by the Ca2 molecule followed by process 1.

Two excitation spectra of this fluorescence are shown in Fig. 1. They correspond

to the helium (solid curve) and the argon (dashed curve) experiments. They are very

similar. An intense band is observed, close to a blue shifted side band. The main band

of the helium experiment peaks at 26495 ±10 cm−1. The corresponding FWHM (Full
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Width at Half the Maximum) is 300 cm−1. The side band is blue shifted by 550 cm−1

with respect to the main band and the FWHM is 50 cm−1 wider. The corresponding

bands in the argon experiment are red shifted by c.a. 150 cm−1 compared to the helium

experiment.

Two methods allow us to check that the fluorescence emission follows the absorption

of the laser light by a Ca2 molecule. First, the fluorescence intensity can be explored

as a function of N, the average number of Ca atoms per cluster. Taking advantage that

the Poisson distribution describes the statistics of the collisional pick up, the observed

signal is related to a specific order of the Poisson laws, thus telling the exact number n

of reactants responsible for the observed signal [16]. This was done in the argon cluster

experiment. The total fluorescence intensity is plotted in Fig. 2 as a function of N.

As observed in the figure, the fluorescence signal follows the second order Poisson law,

indicating that it is produced by clusters carrying two and only two calcium atoms. On

a cold cluster (T=0.4 K for helium droplets [20], 32 K for argon clusters [21]) of finite

size, such two atoms are likely to meet and combine rapidly. Hence the emission results

from the excitation of a Ca2 molecule, that has been stabilized on the cluster after the

successive deposition of two calcium atoms. Alternatively, since only information on

the dimer is desired, it is sufficient to adjust the Calcium cell temperature to keep

N at a small enough value insuring that measured signals cannot be due to larger

clusters [16]. This was done in the helium droplet experiment.

The observed emission was dispersed using the monochromator. It corresponds to

the Ca(4s4p 1P → 4s2 1S) emission. Hence, the spectra shown in Fig. 1 are the action

spectra of process 1 when the Ca2 molecule is carried either by a helium droplet or an

argon cluster.

In the helium droplet experiment, the observed emission corresponds to the Ca(4s4p 1P →

4s2 1S) transition of free calcium with no side band. This indicates that the photodis-

sociation of Ca2 ejects the electronically excited Ca atom off the droplet, with a 100%

probability. In contrast, a sidebands exist in the argon experiment. It is located to the
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red of the calcium resonance line, an indication that part of the departing Ca(4s4p 1P)

atoms stay solvated on the cluster. Hence, the desorption dynamics of Ca(4s4p 1P) is

different whether it interacts with an helium droplet or an argon cluster. This question,

is beyond the scope of the present work.

3 Theory: 1
Σ

+
u , 1

Πu potential energy curves and

transition dipole moments

In order to rationalize the absorption features recorded experimentally, molecular states

dissociating as high as the Ca(4s3d 3D) + Ca(4s4p 3P) and Ca(4p3d 1D) + Ca(4s2 1S)

asymptotical limits were calculated. This corresponds to a wider electronic spectral

range than available in previous calculations [26, 27], and was necessary, due to the

attractive character of some of those double excited states, as will be seen below. The

relevant electronic spectrum of Ca2 is investigated using ab initio calculations where

the Ca2 molecule is reduced to four active electrons via effective core pseudopotentials

and core-polarisation pseudopotentials [28] (CPP). The excited states were obtained

through the hybrid variational perturbative multi-reference MRPT2/configuration in-

teraction scheme CIPSI [29] in its quasi-degenerate perturbation theory version, in

order to treat consistently perturbative contributions in the vicinity of avoided cross-

ings [30]. A 8s8p8d4f gaussian basis set has been used on each calcium atom. The

average error on atomic transitions was found to be of the order of 250 cm−1, with

a maximal error of ∼450cm−1. The present results for the lowest molecular states of

Ca2, dissociating up to Ca(4s4P 1D) + Ca(4s2) are in general agreement with previous

calculations [27], in particular with those of Czuchaj et al. [26] realized with a similar

methodology. A detailed discussion of the calculated potential curves for all symmetry

manifolds will be given in a forthcoming publication [31].

Both 1Σ+
u and 1Πu states are dipole-allowed from the ground state. Fig. 3 shows the

1Σ+
u and and 1Πu potential energy curves in the energy range 20000-30000 cm−1. The

vertical dashed line shows the Ca-Ca equilibrium distance in the ground state molecule,
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Re = 8.1 a0. At that distance, states 21Σ+
u and 31Σ+

u lie at 19673 and 27970 cm−1

above the ground state. The latter state, dissociating into Ca(4s2 1S) + Ca(4s5s1S),

has a transition shifted significantly to the blue of the experimental action spectrum.

Moreover, its calculated dipole transition moment from the ground state remains weak

in the range R > 5 a0 (µ = 0.33 a.u. at R = 8.1 a0), much less than that corresponding

to the 2 − 31Πu states close to the avoided crossing (µ ≈ 2 a.u, see below), which

results in a factor 1/30 in the intensities with respect to the main absorption of the

latter states. Considering those data, we think that the 1Πu states only are responsable

for the present absorption, and we focus the discussion on them.

The three adiabatic states 2, 3 and 41Πu in the region between 20000 and 27000 cm−1

are directly relevant to analyze the experimental results of Fig. 1. They are discussed

below as resulting from multiple avoided crossings between mainly three diabatic

components. A first diabatic state is correlated with the singly excited asymptote

Ca(4s4p 1P) + Ca(4s2 1S). It corresponds to the adiabatic state 21Πu for R > 10 a0.

It is repulsive, and contributes to two avoided crossings, the first one at R ≈ 10 a0,

the second one at R ≈ 7.9 a0. Inspection of the electronic wavefunctions reveals that

asymptotically, it is spanned by a mixing of σu(4s) → πg(4p) and σg(4s) → πu(4p)

configurations with equal weights. At shorter distance however, the weights of config-

urations with a hole in σg(4s) decrease, while both 4p and 3d characters contribute

to the two first excited molecular orbitals in each symmetry, due to the lower lying

1D atomic asymptote. A second diabatic state correlates with the doubly excited

Ca(4s4p 3P) + Ca(4s4p 3P) asymptote. It generates two avoided crossings, the one

at R ≈ 10 a0 already mentioned and one at R ≈ 7 a0, with a third diabatic state,

characterized by a stronger and less localized coupling. The latter state has 4p3d

doubly excited character. Asymptotically, the two states Ca(4s4p 3P) + Ca(4s3d 3D)

(having simultaneous single excitations on both atoms) and Ca(4s2 1S) + Ca(4p3d 1D)

(with a double excitation on a single atom) are almost degenerate (experimentally

∆E ≈ 200 cm−1). For distances less than R = 15 a0 both mix and contribute into a
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strongly bound diabatic state essentially spanned by double excitation σu(4s)2
→ σgπu

where both σg and πu orbitals mix 4p and 3d characters. This strongly bonding con-

tribution, due to emptying the antibonding σu(4s) orbital, causes this diabatic state

to undergo two crossings with lower states, and finally results into the short range

minimum of adiabatic state 21Πu at R = 5.96 a0 and Te = 20852 cm−1. The above

analysis results from the examination of the dominant configurations in the adiabatic

electronic wavefunction. The vicinity of the avoided crossing at R = 7.9 a0 is a zone

of special interest for the comparison with the experimental results. At R = 7.5 a0,

the adiabatic states 31Πu and 41Πu are dominated by configurations σ2
u → σgπu and

σu → πg(4p) respectively, whereas at R = 8.5 a0, the characters are switched into one

another.

The nature of the excited states is globally rationalized in the previous discussion

as two doubly excited diabatic states (strongly bonding), interacting with a singly ex-

cited diabatic state (repulsive) and thus yielding directly to the dissociation monitored

experimentally. The configuration mixing discussed above is illustrated further by cal-

culating the electric dipole transition moments from the ground state. It is shown in

Fig. 4. With decreasing distance, the dipole transition moment of the absorbing state

21Πu correlated with the atomic resonance line, switches with that of 31Πu and again

with that of state 41Πu. This variation of the transition dipole moments influences

certainly the shape of the absorption spectrum of the 31Πu and 41Πu states, allowing

for a comparison with the experimental spectrum.

4 Discussion

The ressemblance between the two action spectra, shown in Fig. 1 respectively for

helium and argon droplets, is striking. This seems surprising given the Ca/Ar and

Ca/He interactions are different [32, 33]. This must be related to the fact that, likely,

the molecule is carried at the surface of either the argon cluster or the helium droplet.

In former theoretical and spectroscopic investigations, we have shown that a single
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Ca atom is located at the surface of the argon cluster [19, 34], linked to the smaller

dissociation energy of Ca-Ar and larger equilibrium distance with respect to Ar-Ar. In

the case of helium droplets, early laser induced fluorescence of atomic calcium, in the

vicinity of the Ca(4s4p 1P ← 4s2 1S) resonance line, suggested a surface location for the

calcium atom [35]. This was confirmed later by photoionization spectroscopy [36]. In

helium droplets, quantum vibration dynamics must be considered in addition to com-

parison of the interactions. Recent calculations [37] using vibrational time-dependent

density functional theory with additive potentials built from high quality ground and

excited CaHe interactions, also confirmed the location of Ca in surface dimples, and

were able to reproduce the magnitudes of the shifts and widths in the resonant ab-

sorption line of Ca observed by Stienkemeier et al. Ca2 is essentially a Van der Waals

molecule, despite of its rather large bonding (De = 1016cm−1). One may similarly

expect the calcium molecule to be located at the surface of the droplet.

The theoretical absorption spectrum for states 31Πu and 41Πu was determined as

the Fourier transform of the autocorrelation function calculated by wavepacket prop-

agation on the two adiabatic potential energy curves (see ref. [38]). The vibrational

structure of the spectrum has been washed out by applying an exponential damping

function on the autocorrelation function in order to take into account in a phenomeno-

logical way both the electronic nonadiabatic couplings between the two states and the

vibrational coupling of the diatomic molecule with the cluster. The theoretical absorp-

tion spectrum is shown in Fig. 5 (shifted by 450 cm−1 to the blue) for comparison with

experimental data on helium droplets and in Fig. 3 in superimposition to the potential

energy curves. The calculated absorption spectrum exhibits a bimodal structure that

directly results from the avoided crossing between the singly and doubly excited states,

close to the Franck-Condon region. In particular, the blue side of the experimentally

recorded spectra can be assigned to the observation of a non-Rydberg doubly excited

state, mediated by the coupling with a strongly absorbing singly excited state. This

derives from the discussion above and is well illustrated in Fig. 3.
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Fig. 5 shows that both the theoretical absorption spectrum and the experimental

action spectrum for helium (where the interaction with the cluster is expected to be

the weakest) have very similar bimodal shapes. The theoretical width of the intense

red component is in excellent agreement with the experiment. Moreover, the oscillator

strength of the transitions around wavenumber 26500 cm−1 is found to be larger than

that of the blue maximum: a factor 12.5 is found in the experimental signal, a factor

6 in the calculation. Obviously, and since the anticrossing occurs at the vertical of the

initial ground state, this can be sensitive to the quality of the calculation and the accu-

rate position of the avoided crossing above the ground state. Here, we have compared

the action spectrum of the photodissociation process 1 on helium measured experimen-

tally and the absorption spectrum of the Ca2 molecule simulated theoretically. This

comparison is relevant only if exciting the molecule to either state, 31Πu or 41Πu, close

to the anticrossing at R=7.9 a0 actually fully yields to the Ca(4s2 1S) + Ca(4s4p 1P)

dissociation. The potential curves shown in Fig. 3 suggest that this should be approx-

imately the case. The two anticrossings experienced by state 31Πu with state 21Πu

are not likely to significantly quench the dissociation. Nevertheless, it is not excluded

that some flux is funneled to the lower molecular states 21Πu and 11Πu. Dissociation

quenching could also be enhanced by the presence of the helium droplet or the argon

cluster. Neglect of those processes might be an explanation for intensity discrepancies

of the blue sideband in the experimental spectrum, as compared to that of the calcu-

lated spectrum. Non-adiabatic dynamical calculations including all the states and the

interaction with the rare gas, which are beyond the scope of the present letter, should

help to confirm this hypothesis. Work is in progress towards this goal.

The present investigation shows that doubly excited states play an essential role in

the spectroscopy of Ca2 in the energy range of 19000 to 27000 cm−1. The spectrum

is complicated by the occurrence of several types of doubly excited molecular states,

either correlated with pairs of simultaneously singly excited atoms, or with one ground

state atom and another one in a doubly excited state.
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Importantly, helium clusters can also be used to accommodate reactive molecules

in addition to Ca2 molecules. The kind of electronic excitation that is performed in

the present work would enable to study the reaction dynamics of non Rydberg doubly

excited states of Ca2 in a very direct way. To our knowledge, no such information is

available yet, although investigation of reactivity within helium droplets is developing

quickly [39, 40].
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Figure 1: Excitation spectrum of the Ca(4s2 1S ← 4s4p 1P) fluorescence, i.e. action
spectrum of process (1) when Ca2 is carried on helium droplets (solid line) and argon
clusters (dashed line). The two spectra are normalized with respect to their intensity.
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Figure 2: Evolution of the Ca(4s2 1S ← 4s4p 1P) fluorescence emission as a function of
the average number of Ca atoms per argon cluster (full squares). The excitation laser
was tuned to 380 nm. The curves labeled P1 and P2 refer to the Poisson laws of first
and second order, respectively. They are normalized with respect to the maximum
intensity of the experimental signal.
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Figure 3: Ab initio potential curves of 1Πu symmetry correlating to the asymptotes
labeled in the figure. The four lowest energy 1Σu states are indicated by dotted lines.
The zero energy is taken at the bottom of the ground state well of Ca2. The vertical
dashed line shows the calculated equilibrium distance of the ground state. The theo-
retical absorption spectrum is represented in thick solid lines, with the zero-intensity
corresponding to the above mentioned dashed line.
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Figure 4: Electronic transition dipole moment of the 21Πu, 31Πu and 41Πu states
(respectively with solid, dashed and dashed-dot lines) from the electronic ground state
of Ca2. The vertical dotted line shows the calculated equilibrium distance of the
electronic ground state.
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Figure 5: Excitation spectrum of the action spectrum of process (1) in the helium
experiment (solid line) compared to the theoretical absorption spectrum (dashed line)
of Ca2. The two spectra are normalized with respect to their intensity. The theoretical
spectrum is shifted 450 cm−1 to the blue.
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