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We provide two certificates of convexity for arbitrary basic closed semi-algebraic sets of R n . The first one is based on a necessary and sufficient condition whereas the second one is based on a sufficient (but simpler) condition only. Both certificates are obtained from any feasible solution of a related semidefinite program and so in principle, can be obtained numerically (however, up to machine precision).

Introduction

With R[x] being the ring of real polynomials in the variables x 1 , . . . , x n , consider the basic closed semi-algebraic set K ⊂ R n defined by: (1.1) K := {x ∈ R n : g j (x) ≥ 0, j = 1, . . . , m} for some given polynomials g j ∈ R[x], j = 1, . . . , m. By definition, K ⊂ R n is convex if and only if

(1.2) x, y ∈ K ⇒ λ x + (1 -λ) y ∈ K ∀λ ∈ [0, 1].
The above geometric condition does not depend on the representation of K but requires uncountably many tests and so cannot be checked in general.

Of course concavity of g j for every j = 1, . . . , m, provides a certificate of convexity for K but not every convex set K in (1.1) is defined by concave polynomials. Hence an important issue is to analyze whether there exists a necessary and sufficient condition of convexity in terms of the representation (1.1) of K because after all, very often (1.1) is the only information available about K. Moreover, a highly desirable feature would be that such a condition can be checked, at least numerically.

In a recent work [START_REF] Lasserre | Convexity in semi-algebraic geometry and polynomial optimization[END_REF], the author has provided an algorithm to obtain a numerical certificate of convexity for K in (1.1) by using the condition:

(1.3) ∇g j (y), xy ≥ 0, ∀x, y ∈ K with g j (y) = 0, which is equivalent to (1.2) provided that Slater 1 condition holds and the nondegeneracy condition ∇g j (y) = 0 holds whenever y ∈ K and g j (y) = 0. This certificate consists of an integer p j and two polynomials θ j 1 , θ j 2 ∈ R[x, y] for each j = 1, . . . , m, and their characterization obviously implies that (1.3) holds true and so K is convex (whence the name certificate); see Lasserre [START_REF] Lasserre | Convexity in semi-algebraic geometry and polynomial optimization[END_REF]Corollary 4.4]. More precisely, for every j = 1, . . . , m, define the 2m + 1 polynomials h ℓ ∈ R[x, y] by h ℓ (x, y) = g ℓ (x), h m+ℓ (x, y) = g ℓ (y) for every l = 1, . . . , m, and h 2m+1 (x, y) = -g j (y). The preordering P j ⊂ R[x, y] generated by the polynomials (h ℓ ) ⊂ R[x, y] is defined by: (1.4) (1.5) θ j 1 (x, y) ∇g j (y), xy = ( ∇g j (y), xy ) 2pj + θ j 2 (x, y), for some integer p j and some polynomials θ j 1 , θ j 2 ∈ P j . In addition, bounds (p, d) are available for the integer p j and the degrees of the s.o.s. polynomials σ J appearing in the definition (1.4) of polynomials θ j 1 , θ j 2 ∈ P j , respectively. Observe that in (1.5) one may replace p j with the fixed bound p (multiply each side with ( ∇g j (y), xy ) 2(p-pj ) ) and take d := d + p. Next, recall that s.o.s. polynomials of bounded degree can be obtained from feasible solutions of an appropriate semidefinite program 2 (see e.g. [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]). Hence, in principle, checking whether (1.5) has a feasible solution (θ j 1 , θ j 2 ) reduces to checking whether a single semidefinite program has a feasible solution.

P j =    J⊆{1,...,2m+1} σ J (x, y) ℓ∈J h ℓ (x, y) : σ J ∈ Σ[x, y]    , where Σ[x, y] ⊂ R[x,
And so, when both Slater and the nondegeneracy condition hold, checking whether K is convex reduces to checking if each of the semidefinite programs associated with (1.5), j = 1, . . . , m, has a feasible solution. When K is convex, the 2m polynomials θ j 1 , θ j 2 ∈ R[x, y], j = 1, . . . , m, provide the desired certificate of convexity through (1.3); see [START_REF] Lasserre | Convexity in semi-algebraic geometry and polynomial optimization[END_REF]Corollary 4.4]. However, it is only a numerical certificate because it comes from the output of a numerical algorithm, and so subject to anavoidable numerical inaccuracies. Moreover, the size of each semidefinite program equivalent to (1.5) is out of reach for practical computation, and in practice, one will solve a semidefinite program associated with (1.5) but for reasonable bounds (p ′ , d ′ ) ≪ (p, d), hoping to obtain a solution when K is convex. An alternative and more tractable certificate of convexity using quadratic modules rather than preorderings is also provided in [START_REF] Lasserre | Convexity in semi-algebraic geometry and polynomial optimization[END_REF]Assumption 4.6], but it only provides a sufficient condition of convexity (almost necessary when K is compact and satisfies some technical condition).

The present contribution is to provide a certificate of convexity for arbitrary basic closed semi-algebraic sets (1.1), i.e., with no assumption on K. This time, by certificate we mean an obvious guarantee that the geometric condition (1.2) holds true (instead of (1.3) in [START_REF] Lasserre | Convexity in semi-algebraic geometry and polynomial optimization[END_REF]). To the best of our knowledge, and despite the result is almost straightforward, it is the first of this type for arbitrary basic closed semi-algebraic sets. As in [START_REF] Lasserre | Convexity in semi-algebraic geometry and polynomial optimization[END_REF] our certificate also consists of two polynomials of R[x, y] and is also based on the powerful Stengle's Positivstellensatz in real algebraic geometry. In addition, a numerical certificate can also be obtained as the output of a semidefinite program (hence valid only up to machine precision). We 2 A semidefinite program is a convex optimization problem with the nice property that it can be solved efficiently. More precisely, up to arbitrary fixed precision, it can be solved in time polynomial in its input size. For more details on semidefinite programming and its applications, the interested reader is referred to e.g. [START_REF] Vandenberghe | Semidefinite programming[END_REF]. also provide another certificate based on a simpler characterization which now uses only a sufficient condition for a polynomial to be nonnegative on K; so in this case, even if K is convex, there is no guarantee to obtain the required certificate. Finally, we also provide a sufficient condition that permits to obtain a numerical certificate of non convexity of K in the form of points x, y ∈ K which violate (1.2).

Main result

Observe that in fact, (1.2) is equivalent to the simpler condition (2.1)

x, y ∈ K ⇒ (x + y)/2 ∈ K.

Indeed if K is convex then of course (2.1) holds. Conversely, if K is not convex then there exists x, y ∈ K and 0 < λ < 1 such that z := x + λ(yx) is not in K. As K is closed, moving on the line segment [x, y] from x to y, there necessarily exist x ∈ K (the first exit point of K) and ỹ ∈ K (the first re-entry point in K), with x = ỹ. Thus, as x and ỹ are the only points of [x, ỹ] contained in K, the mid-point z := (x + ỹ)/2 is not contained in K.

Given the basic closed semi-algebraic set K defined in (1.1), let K := K × K ⊂ R n × R n be the associated basic closed semi-algebraic set defined by: (2.2) K := {(x, y) : ĝj (x, y) ≥ 0, j = 1, . . . , 2m }, where:

(x, y) → ĝj (x, y) := g j (x), j = 1, . . . , m (2.3) (x, y) → ĝj (x, y) := g m-j (y), j = m + 1, . . . , 2m, (2.4) 
and let P (ĝ) ⊂ R[x, y] be the preordering associated with the polynomials (ĝ j ) that define K in (2.2), i.e., Theorem 2.1. Let K ⊂ R n be the basic closed semi-algebraic set defined in (1.1). Then K is convex if and only if for every j = 1, . . . , m, there exist polynomials σ j , h j ∈ P (ĝ) and an integer p j ∈ N such that:

(2.6) σ j (x, y) g j ((x + y)/2) = g j ((x + y)/2) 2pj + h j (x, y), ∀ x, y ∈ R n .

Proof. The polynomials σ j , h j ∈ P (ĝ), j = 1, . . . , m, obtained in (2.6) indeed provide an obvious certificate of convexity for K. This is because if (2.6) holds then for every x, y ∈ K one has σ j (x, y) ≥ 0 and h j (x, y) ≥ 0 because σ j , h j ∈ P (ĝ); and so σ j (x, y)g j ((x + y)/2) ≥ 0. Therefore if σ j (x, y) > 0 then g j ((x + y)/2) ≥ 0 whereas if σ j (x, y) = 0 then g j ((x + y)/2) 2pj = 0 which in turn implies g j ((x + y)/2) = 0.

Hence for every j = 1, . . . , m, g j ((x + y)/2) ≥ 0 for every x, y ∈ K, that is, (2.1) holds and so K is convex.

A numerical certificate of convexity. Again, as (2.6) is coming from Stengle's Positivstellensatz, bounds (p, d) are available for the integer p j and the degrees of the s.o.s. polynomials φ J appearing in the definition (2.5) of polynomials σ j , h j ∈ P (ĝ), respectively. Hence, with same arguments as in the discussion just after (1.5), checking whether (2.6) holds reduces to check whether some (single) approriately defined semidefinite program has a feasible solution.

Hence checking convexity of the basic closed semi-algebraic set K reduces to checking whether each semidefinite program associated with (2.6), j = 1, . . . , m, has a feasible solution, and any feasible solution σ j , h j ∈ P (ĝ) of (2.6), j = 1, . . . , m, provides a certificate of convexity for K. However the certificate is only "numerical" as the coefficients of the polynomials σ j , h j are obtained numerically and are subject to anavoidable numerical inaccuracies. Moreover, the bounds (p, d) being out of reach, in practice one will solve a semidefinite program associated with (2.6) but for reasonable bounds (p ′ , d ′ ) ≪ (p, d), hoping to obtain a solution when K is convex.

2.1. An easier sufficient condition for convexity. While Theorem 2.1 provides a necessary and sufficient condition for convexity, it is very expensive to check because for each j = 1, . . . , m, the certificate of convexity σ j , h j ∈ P (ĝ) in (2.6) involves computing 2 × 2 2m = 2 2m+1 s.o.s. polynomials φ J in the definition (2.5) of σ j and h j . However, one also has the following sufficient condition: Theorem 2.2. Let K ⊂ R n be the basic semi-algebraic set defined in (1.1). Then K is convex if for every j = 1, . . . , m:

(2.8) g j ((x + y)/2) = σ 0 (x, y) + m k=1 σ j k (x, y)g k (x) + ψ j k (x, y) g k (y), ∀x, y ∈ R n ,
for some s.o.s. polynomials σ j k , ψ j k ∈ Σ[x, y]. Proof. Observe that if (2.8) holds then g j ((x + y)/2) ≥ 0 for every j = 1, . . . , m and all (x, y) ∈ K; and so K is convex because (2.1) holds.

Again, checking whether (2.8) holds with an apriori bound 2d on the degrees of the s.o.s. polynomials σ j k , ψ j k , reduces to solving a semidefinite program. But it now only involves 2m + 1 unknown s.o.s. polynomials (to be compared with 2 2m+1 previously). On the other hand, Theorem 2.2 only provides a sufficient condition, that is, even if K is convex it may happen that (2.8) does not hold.

However, when K is compact, convex, and if for some M > 0 the quadratic polynomial x → Mx 2 can be written

(2.9) M -x 2 = σ 0 (x) + m k=1 σ k (x) g j (x),
for some s.o.s. polynomials (σ k ) ⊂ Σ[x], then (2.8) is almost necessary because for every ǫ > 0:

(2.10) g j ((x + y)/2) + ǫ = σ j 0ǫ (x, y) + m k=1 σ j kǫ (x, y)g k (x) + ψ j kǫ (x, y) g k (y), for some s.o.s. polynomials σ j kǫ , ψ j kǫ ∈ Σ[x, y]. Indeed, consider the quadratic polynomial (x, y) → ∆(x, y) := 2Mx 2y 2 .

From (2.9), ∆ belongs to the quadratic module Q(ĝ) ⊂ R[x, y] generated by the polynomials ĝk that define K, that is, the set

Q(ĝ) := σ 0 (x, y) + m k=1 σ k (x, y) g k (x) + ψ k (x, y) g k (y) : σ k , ψ k ∈ Σ[x, y] .
In addition, its level set {(x, y) : ∆(x, y) ≥ 0} is compact, which implies that Q(ĝ) is Archimedean (see e.g. [START_REF] Schweighofer | Optimization of polynomials on compact semialgebraic sets[END_REF]). Therefore, as g j ((x + y)/2) + ǫ > 0 on K, (2.10) follows from Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF].

2.2.

A certificate on non-convexity. In this final section we provide a numerical certificate of non convexity of K when the optimal value of a certain semidefinite program is strictly negative and some moment matrix associated with an optimal solution satisfies a certain rank condition. Given a sequence z = (z αβ ) indexed in the canonical basis (x α y β ) of R[x, y], let L z : R[x, y] → R be the linear functional:

f (= α,β f αβ x α y β ) → L z (f ) = α,β f αβ z αβ ,
and as in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], the moment matrix M s (z) associated with z is the real symmetric matrix with rows and columns indexed in the the canonical basis (x α y β ) and with entries

M s (z)((α, β), (α ′ , β ′ )) = z (α+α ′ )(β+β ′ )
for every (α, β), (α ′ , β ′ ) ∈ N 2n s , where N n s := {α ∈ N n : i α i ≤ s}. Similarly, with a polynomial (x, y) → θ(x, y) = α,β θ αβ x α y β , the localizing matrix M s (θ z) associated with θ and z, is the real symmetric matrix with rows and columns indexed in the the canonical basis (x α y β ) and with entries

M s (θ z)((α, β), (α ′ , β ′ )) = α",β" θ α"β" z (α+α ′ +α")(β+β ′ +β") ,
for every (α, β), (α ′ , β ′ ) ∈ N 2n s . Let v k := ⌈(deg ĝk )/2⌉, k = 1, . . . , 2m, and for every j = 1, . . . , m, and s ≥ v := max k v k , consider the semidefinite program:

(2.11)

       ρ js = min z L z (g j ((x + y)/2)) s.t. M s (z) 0 M s-v k (ĝ k z) 0, k = 1, . . . , 2m z 0 = 1,
where for a real symmetric matrix A, the notation A 0 stands for A is positive semidefinite. The semidefinite program (2.11) is a convex relaxation of the global optimization problem g * j := min

x,y {g j ((x + y)/2) : (x, y) ∈ K } and so ρ js ≤ g * j for every s ≥ v. Moreover, ρ js ↑ g * j as s → ∞; for more details see e.g. [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF].

Theorem 2.3. Let K ⊂ R n be as in (1.1) and let z be an optimal solution of the semidefinite program (2.11) with optimal value ρ js . If ρ js < 0 and (2.12) rank M s (z) = rank M s-v (z) (=: t)

then the set K is not convex and one may extract t points (x(i), y(i)) ∈ K, i = 1, . . . , t, such that g j ((x(i) + y(i))/2) < 0, ∀ i = 1, . . . , t.

Hence each mid-point (x(i) + y(i))/2 ∈ K is a certificate that K is not convex.

Proof. By the flat extension theorem of Curto and Fialkow [START_REF] Curto | The truncated complex K-moment problem[END_REF] (see also Laurent [START_REF] Laurent | Revisiting two theorems of Curto and Fialkow on moment matrices[END_REF]), the rank condition (2.12) ensures that z is the moment sequence of a t-atomic probability measure µ supported on K. That is:

z αβ = K x α y β dµ, ∀ (α, β) ∈ N 2n 2s .
Let (x(i), y(i)) t i=1 ⊂ K be the support of µ which is a positive linear combination of Dirac measures δ (x(i),y(i)) with positive weights (γ i ) such that i γ i = 1. Then g * j ≥ ρ js = L z (g j ((x + y)/2)) = K g j ((x + y)/2) dµ = t i=1 γ i g j ((x(i) + y(i))/2)

≥ t i=1 γ i g * j = g * j ,
which shows that ρ js = g * j and so, g j ((x(i) + y(i))/2) = g * j for every i = 1, . . . , t. But then the result follows from ρ js < 0.

  x, y] ⊂ R[x, y] is the set of s.o.s. polynomials. Our necessary and sufficient condition of convexity is a follows.

  y] is the set of polynomials that are sums of squares (in short s.o.s.), and where by convention, ℓ∈J h ℓ (x, y) = 1 when J = ∅. Then by a direct application of Stengle's Positivstellensatz[START_REF] Bochnak | Real Algebraic Geometry[END_REF] Theor. 4.4.2, p. 92] (more precisely, a Nichtnegativstellensatz version) (1.3) holds if and only if

  The set K is convex if and only if (2.1) holds, that is, if and only if for every j = 1, . . . , m,

	(2.7)	g j ((x + y)/2) ≥ 0	∀ (x, y) ∈ K.
	But then (2.6) follows from a direct application of Stengle's Positivstellensatz [1,
	Theor. 4.4.2, p. 92] to (2.7) (in fact, a Nichtnegativstellensatz version).
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