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CERTIFICATES OF CONVEXITY FOR BASIC

SEMI-ALGEBRAIC SETS

JB. LASSERRE

Abstract. We provide two certificates of convexity for arbitrary basic semi-
algebraic sets of R

n. The first one is based on a necessary and sufficient
condition whereas the second one is based on a sufficient (but simpler) condi-
tion only. Both certificates are obtained from any feasible solution of a related
semidefinite program and so can be obtained numerically (however, up to ma-
chine precision).

1. Introduction

With R[x] being the ring of real polynomials in the variables x1, . . . , xn, consider
the basic semi-algebraic set K ⊂ R

n defined by:

(1.1) K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m}

for some given polynomials gj ∈ R[x], j = 1, . . . ,m.
The classical necessary and sufficient condition for K to be convex reads

(1.2) x, y ∈ K ⇒ λx+ (1 − λ) y ∈ K ∀λ ∈ [0, 1].

This geometric condition (in fact a definition of convexity) does not depend on the
representation of K but requires uncountably many tests and cannot be checked in
general.

Of course concavity of gj for every j = 1, . . . ,m, provides a certificate of convex-
ity for K but not every convex set K in (1.1) is defined by concave polynomials.
Hence an important issue is to analyze whether there exists a necessary and suf-
ficient condition of convexity in terms of the representation (1.1) of K because
after all, very often (1.1) is the only information available about K. Moreover, a
highly desirable feature would be that such a condition can be checked, at least
numerically.

In a recent work [4], the author has provided an algorithm to obtain a numerical
certificate of convexity for K in (1.1) by using the condition:

(1.3) 〈∇gj(y), x− y〉 ≥ 0, ∀x, y ∈ K with gj(y) = 0,

which is equivalent to (1.2) provided that Slater1 condition holds and the nondegen-
eracy condition ∇gj(y) 6= 0 holds whenever y ∈ K and gj(y) = 0. This certificate
consists of two polynomials θ1, θ2 ∈ R[x, y] whose characterization obviously im-
plies that (1.3) holds true and so K is convex (whence the name certificate). When

1991 Mathematics Subject Classification. Primary 14P10; Secondary 11E25 52A20 90C22.
Key words and phrases. Computational geometry; basic semi-algebraic sets; convexity; semi-

definite programming.
This work was completed with the support of the (french) ANR grant NT05-3-41612.
1Slater condition holds if there exists x0 ∈ K such that gk(x0) > 0 for every k = 1, . . . , m.
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K is convex, the coefficients of θ1, θ2 ∈ R[x, y] are any feasible solution of what is
called a semidefinite program, that is, a convex optimization problem which (up to
given arbitrary precision) can be solved in time polynomial in the input size of the
problem. (For more details on semidefinite programming and its applications, the
interested reader is referred to e.g. [8].) Therefore a numerical certificate (θ1, θ2)
obtained by solving such a semidefinite program is only approximate because the
coefficients of θ1, θ2, output of a numerical algorithm, are subject to anavoidable
numerical inaccuracies.

The present contribution is to provide a certificate of convexity for arbitrary basic
semi-algebraic sets (1.1), i.e., with no assumption on K. This time, by certificate we
mean an obvious guarantee that the geometric condition (1.2) holds true (instead
of (1.3) in [4]). To the best of our knowledge, and despite the result is almost
straightforward, it the first of this type for arbitrary basic semi-algebraic sets. As
in [4] our certificate also consists of two polynomials (but now in R[x, y, λ] instead
of R[x, y] because one uses (1.2) rather than (1.3)) whose characterization is based
on the powerful Stengle’s Positivstellensatz in real algebraic geometry. In addition,
a numerical certificate can also be obtained as the output of a semidefinite program,
but then valid only up to machine precision. We also provide another certificate
based on a simpler characterization which now uses only a sufficient condition for
a polynomial to be nonnegative on K; so in this case, even if K is convex there is
no guarantee to obtain the required certificate. Finally, we also provide a sufficient
condition that permits to obtain a numerical certificate of non convexity of K in
the form of points x, y ∈ K and λ ∈ (0, 1) which violate (1.2).

2. Main result

Given the basic semi-algebraic set K defined in (1.1), let K̂ ⊂ R
n × R

n × R be
the associated basic semi-algebraic set:

(2.1) K̂ := {(x, y, λ) : ĝ(x, y, λ) ≥ 0, j = 1, . . . , 2m+ 1 }

where:

(x, y, λ) 7→ ĝj(x, y, λ) := gj(x), j = 1, . . . ,m(2.2)

(x, y, λ) 7→ ĝj(x, y, λ) := gm−j(y), j = m+ 1, . . . , 2m(2.3)

(x, y, λ) 7→ ĝj(x, y, λ) := λ(1 − λ), j = 2m+ 1,(2.4)

and let P (ĝ) ⊂ R[x, y, λ] be the preordering associated with the polynomials ĝj

that define K̂ in (2.1), i.e.,

(2.5) P (g) :=





∑

J⊆{1,...,2m+1}

σJ

(
∏

k∈J

ĝk

)
: σJ ∈ Σ[x, y, λ]




 .

where Σ[x, y, λ] ⊂ R[x, y, λ] is the set polynomials that are sums of squares (in short
s.o.s.). Our necessary and sufficient condition of convexity is a follows.

Theorem 2.1. Let K ⊂ R
n be the basic semi-algebraic set defined in (1.1). Then

K is convex if and only if for every j = 1, . . . ,m and all (x, y, λ) ∈ R
n × R

n × R:

(2.6) σj(x, y, λ) gj(λx+ (1 − λ) y) = gj(λx+ (1 − λ) y)2pj + hj(x, y, λ)

for some polynomials σj , hj ∈ P (ĝ) and some integer pj ∈ N.
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Proof. The set K is convex if and only if (1.2) holds, that is, if and only if for every
j = 1, . . . ,m,

gj(λx+ (1 − λ)y) ≥ 0, ∀x, y ∈ K, λ ∈ [0, 1],

or, equivalently, if and only if for every j = 1, . . . ,m,

(2.7) gj(λx + (1 − λ)y) ≥ 0, ∀(x, y, λ) ∈ K̂.

But then (2.6) is just application of Stengle’s Positivstellensatz [1, Theor. 4.4.2, p.
92] to (2.7) (in fact, a Nichtnegativstellensatz version). �

The polynomials σj , hj ∈ P (ĝ), j = 1, . . . ,m, obtained in (2.6) indeed provide an
obvious certificate of convexity for K. This is because if (2.6) holds then for every
x, y ∈ K and every λ ∈ [0, 1] one has σj(x, y, λ) ≥ 0 and hj(x, y, λ) ≥ 0 because
σj , hj ∈ P (ĝ); and so σj(x, y, λ)gj(λx + (1 − λ)y) ≥ 0. Therefore if σj(x, y, λ) > 0
then gj(λx + (1 − λ)y) ≥ 0 whereas if σj(x, y, λ) = 0 then gj(λx + (1 − λ)y)2pj =
0 which in turn implies gj(λx + (1 − λ)y) = 0. Hence for every j = 1, . . . ,m,
gj(λx + (1 − λ)y) ≥ 0 for every x, y ∈ K and every λ ∈ [0, 1], that is, (1.2) holds
and so K is convex.

2.1. A numerical certificate of convexity. In this section we describe how to
obtain numerically the polynomial certificate (σj , hj) ∈ P (ĝ)× P (ĝ), j = 1, . . . ,m,
of Theorem 2.1.

Let vs := (xαyβλk), (α, β ∈ N
n, k ∈ N) be the vector of monomials of the

canonical basis of R[x, y, λ]s (the vector space of polynomials of degree at most s),
i.e., the vector of all monomials

xα yβ λk = xα1

1 · · ·xαn

n yα1

1 · · · yαn

n λk, (α, β, k) ∈ N
2n+1
s ,

where

N
2n+1
s := {(α, β, k) ∈ N

2n+1 : |α| + |β| + k (= k +
∑

i

αi +
∑

j

βj) ≤ s }.

Let r :=
(
2n+1+s
2n+1

)
) and write the matrix vs v

T
s ∈ R[x, y, λ]r×r as

∑
α,β,k Bαβk x

α yβλk

for some appropriate real symmetric matrices (Bαβk) ∈ R
r×r, (α, β, k) ∈ N

2n+1
2s .

Recall that in (2.6) σj , hj ∈ P (ĝ) can be written

σj =
∑

J⊆{1,...,2m+1}

θj
J

(
∏

k∈J

ĝk

)
, θj

J ∈ Σ[x, y, λ](2.8)

hj =
∑

J⊆{1,...,2m+1}

ϕj
J

(
∏

k∈J

ĝk

)
, ϕj

J ∈ Σ[x, y, λ],(2.9)

and for every J ⊆ {1, . . . , 2m+ 1}, write

θj
J(x, y, λ) =

∑

α,β∈Nn,k∈N

θj
J,αβk x

α yβ λk

ϕj
J (x, y, λ) =

∑

α,β∈Nn,k∈N

ϕj
J,αβk x

α yβ λk

for some real coefficients (θj
J,αβk) and (ϕj

J,αβk).
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Then for every j = 1, . . . ,m, checking whether (2.6) holds with an apriori bound

2s on 2pj and on the degrees of the polynomials θj
J and ϕj

J for all J ⊆ {1, . . . , 2m+
1}, reduces to find a feasible solution to a system Qjs where :

• The unknowns are the coefficients (θj
J,αβk) and (ϕj

J,αβk) as well as real

symmetric matrices XJ , ZJ ∈ R
r×r, J ⊆ {1, . . .2m+ 1}.

• (2.6) with σJ and hJ as in (2.8)-(2.9), defines linear equality constraints be-

tween the unknown coefficients (θj
J,αβk) and (ϕj

J,αβk), for all J ⊆ {1, . . . , 2m+

1} and all (α, β, k) ∈ N
2n+1
2s ,

• For every J ⊆ {1, . . . , 2m+ 1}, the s.o.s. constraint on θj
J and ϕj

J reads:

θj
J,α,β,k = trace(Xj

J , Bαβk), ∀ (α, β, k) ∈ N
2n+1
2s ,

ϕj
J,α,β,k = trace(Zj

J , Bαβk), ∀ (α, β, k) ∈ N
2n+1
2s ,

Xj
J , Z

j
J � 0 (linear matrix inequalities)

(where for a real symetric matrix A the notation A � 0 stands for A is positive

semidefinite). Hence, finding a feasible solution (θj
J , ϕ

j
J , XJ , ZJ) of the above system

Qjs reduces to solving what is called a semidefinite program, that is, a convex
optimization problem which (up to given arbitrary precision) can be solved in time
polynomial in the input size of the problem. For more details on semidefinite
programming see e.g. [8].

If (2.6) holds then for every j = 1, . . . ,m, there is some sj ∈ N such that
the semidefinite programs Qjsj

has a feasible solution. Therefore convexity of K

can be checked by increasing the degree bound s and solving the finitely many
semidefinite programs Qjs until a feasible solution is found at some s := sj . Then
any feasible solution σj , hj ∈ P (ĝ) of (2.6), j = 1, . . . ,m, provides a certificate
of convexity for K. However the certificate is only ”numerical” as the coefficients
of the polynomials σj , hj are obtained numerically and are subject to anavoidable
numerical inaccuracies.

2.2. An easier sufficient condition for convexity. While Theorem 2.1 pro-
vides a necessary and sufficient condition for convexity, it is very expensive to
check because for each j = 1, . . . ,m, the certificate of convexity σj , hj ∈ P (ĝ) in

(2.6) involves computing 2 × 22m+1 polynomials θj
J , ϕ

j
J . However one also has the

following sufficient condition:

Theorem 2.2. Let K ⊂ R
n be the basic semi-algebraic set defined in (1.1). Then

K is convex if for every j = 1, . . . ,m and all x, y, λ ∈ R
n × R

n × R:

gj(λx+ (1 − λ) y) =

m∑

k=1

(
σj

k(x, y, λ)gk(x) + ψj
k(x, y, λ) gk(y)

)

+ σj(x, y, λ) + ωj(x, y, λ)λ(1 − λ)(2.10)

for some polynomials σj , ωj, σ
j
k, ψ

j
k ∈ Σ[x, y, λ].

Proof. Observe that if (2.10) holds then gj(λx + (1 − λ)y) ≥ 0 on K̂ for every
j = 1, . . . ,m and so K is convex. �

Again, checking whether (2.10) holds with an apriori bound 2s on the degrees of

the s.o.s. polynomials σj , ωj, σ
j
k, ψ

j
k, reduces to solving a semidefinite program. But

in contrast to the semidefinite program Qjs previously defined, it now only involves
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2m + 2 unknown s.o.s. polynomials (to be compared with 2 × 22m+1 previously).
On the other hand, Theorem 2.2 only provides a sufficient condition, that is, even
if K is convex it may happen that (2.10) does not hold.

However, when K is compact, convex, and if for some M > 0 the quadratic
polynomial x 7→M − ‖x‖2 can be written

(2.11) M − ‖x‖2 = σ0(x) +

m∑

k=1

σk(x) gj(x),

for some s.o.s. polynomials (σk) ⊂ Σ[x], then (2.10) is almost necessary because for
every ǫ > 0:

gj(λx+ (1 − λ) y) + ǫ =

m∑

k=1

(
σj

kǫ(x, y, λ)gk(x) + ψj
kǫ(x, y, λ) gk(y)

)

+σjǫ(x, y, λ) + ωjǫ(x, y, λ)λ(1 − λ)(2.12)

for some polynomials σjǫ, ωjǫ, σ
j
kǫ, ψ

j
kǫ ∈ Σ[x, y, λ].

Indeed, consider the quadratic polynomial

(x, y, λ) 7→ ∆(x, y, λ) := 2M + 1 − ‖x‖2 − ‖y‖2 − λ2.

From (2.11) and noting that 1 − λ2 = (1 − λ)2 + 2λ(1 − λ), the polynomial ∆ can
be written as

∆(x, y, λ) = σ0(x) +
m∑

k=1

σk(x) gk(x) + σ0(y) +
m∑

k=1

σk(y) gk(y)

+(1 − λ)2 + 2λ(1 − λ),

and so ∆ belongs to the quadratic module Q(ĝ) ⊂ R[x, y, λ] generated by the

polynomials ĝk that define K̂, that is, the set

Q(ĝ) :=

{
m∑

k=1

σk(x, y, λ) gk(x) + ψk(x, y, λ) gk(y)

+σ0(x, y, λ) + ϕ(x, y, λ)λ(1 − λ) : σk, ψk, ϕ ∈ Σ[x, y, λ]} .

This implies that Q(ĝ) is archimedean (see e.g. [7]). Therefore, as gj(λx + (1 −

λ)y) + ǫ > 0 on K̂, (2.12) is a consequence of Putinar’s Positivstellensatz [6].

2.3. A certificate on non-convexity. In this final section we provide a numerical
certificate of non convexity of K when the optimal value of a certain semidefinite
program is strictly negative and some moment matrix associated with an optimal
solution satisfies a certain rank condition.

Given a sequence z = (zαβk) indexed in the canonical basis (xαyβλk) of R[x, y, λ],
let Lz : R[x, y, λ] → R be the linear functional

f (=
∑

α,β,k

fαβk x
αyβλk) 7→ Lz(f) =

∑

α,β,k

fαβk zαβk

and as in [3], the moment matrix Ms(z) ∈ R
r×r associated with z is the matrix with

rows and columns indexed in the the canonical basis (xαyβλk) and with entries

Ms(z)((α, β, k), (α
′, β′, k′)) = z(α+α′)(β+β′)(k+k′)

for every (α, β, k), (α′, β′, k′) ∈ N
2n+1
s .
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Similarly, with a polynomial (x, y, λ) 7→ θ(x, y, λ) =
∑

α,β,k θαβk x
αyβλk, the

localizing matrix Ms(θ z) ∈ R
r×r associated with θ and z, is the matrix with rows

and columns indexed in the the canonical basis (xαyβλk) and with entries

Ms(θ z)((α, β, k), (α′, β′, k′)) =
∑

α”,β”,λ”

θα”β”k” z(α+α′+α”)(β+β′+β”)(k+k′+k”),

for every (α, β, k), (α′, β′, k′) ∈ N
2n+1
s .

Let vk := ⌈(deg ĝk)/2⌉, k = 1, . . . , 2m + 1, and for every j = 1, . . . ,m, and
s ≥ v := maxk vk, consider the semidefinite program

(2.13)






ρjs = min
z

Lz(gj(λx + (1 − λ)y))

s.t. Ms(z) � 0
Ms−vk

(ĝk z) � 0, k = 1, . . . , 2m+ 1
z0 = 1.

The semidefinite program (2.13) is a relaxation of the global optimization problem

g∗j := min
x,y,λ

{gj(λx+ (1 − λ)y) : (x, y, λ) ∈ K̂ }

and so ρjs ≤ g∗j for every s ≥ v. Moreover, ρjs ↑ g∗j as s→ ∞; for more details see

e.g. [3].

Theorem 2.3. Let K ⊂ R
n be as in (1.1) and let z be an optimal solution of the

semidefinite program (2.13) with optimal value ρjs. If ρjs < 0 and

(2.14) rankMs(z) = rankMs−v(z) (=: t)

then the set K is not convex and one may extract t points (x(i), y(i), λ(i)) ∈ K̂,
i = 1, . . . , t, such that

gj(λ(i)x(i) + (1 − λ(i))y(i)) < 0, ∀ i = 1, . . . , t

hence each being a certificate that K is not convex.

Proof. By the flat extension theorem of Curto and Fialkow [2] (see also Laurent
[5]), the rank condition (2.14) ensures that z is the moment sequence of a t-atomic

probability measure µ supported on K̂. That is:

zαβk =

∫

bK

xα yβλk dµ, ∀ (α, β, k) ∈ N
2n+1
2s

Let (x(i), y(i), λ(i))t
i=1 ⊂ K̂ be the support of µ which is a positive linear combina-

tion of Dirac measures δ(x(i),y(i),λ(i)) with positive weights (γi) such that
∑

i γi = 1.
Then

g∗j ≥ ρjs = Lz(gj(λx + (1 − λ)y)) =

∫

bK

gj(λx + (1 − λ)y) dµ

=

t∑

i=1

γi gj(λ(i)x(i) + (1 − λ(i))y(i))

≥

t∑

i=1

γi g
∗
j = g∗j ,

which shows that ρjs = g∗j and so, gj(λ(i)x(i) + (1 − λ(i))y(i)) = g∗j for every
i = 1, . . . , t. But then the result follows from ρjs < 0. �
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