
HAL Id: hal-00356681
https://hal.science/hal-00356681

Preprint submitted on 28 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Real Time Neural Networks In Interactive
Complex Systems

Matthieu Lagarde, Pierre Andry, Philippe Gaussier

To cite this version:
Matthieu Lagarde, Pierre Andry, Philippe Gaussier. Distributed Real Time Neural Networks In
Interactive Complex Systems. 2008. �hal-00356681�

https://hal.science/hal-00356681
https://hal.archives-ouvertes.fr

Distributed Real Time Neural Networks In Interactive
Complex Systems

Lagarde Matthieu
ETIS CNRS/ENSEA/Univ

Cergy-Pontoise
F-95000 Cergy-Pontoise,

France
lagarde@ensea.fr

Andry Pierre
ETIS CNRS/ENSEA/Univ

Cergy-Pontoise
F-95000 Cergy-Pontoise,

France
andry@ensea.fr

Gaussier Philippe
ETIS CNRS/ENSEA/Univ

Cergy-Pontoise
F-95000 Cergy-Pontoise,

France
IUF

gaussier@ensea.fr

ABSTRACT
In this paper, we present two graphical softwares which help
the modeling and the simulation of real time, distributed
neural networks (NNs). Used in the frame of the develop-
ment of control architectures for autonomous robots, these
softwares allow a real time control and an on-line learning of
different behaviors. We present as an illustration two con-
trol architectures: the first one allowing a mobile robot to
navigate using on-line learning of visual places, and the sec-
ond one allowing a robotic head to learn to express a given
set of emotions during imitation games.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous; I.2 [Artificial Intelligence]: Distributed
Artificial Intelligence; I.6 [Simulation And Modeling]:
Model Development

General Terms
Dynamical systems, biological inspired models

Keywords
real time, distributed computing, artificial neural networks,
robotics

1. INTRODUCTION
The projects Leto and Promethe aim at facilitating the de-

velopment of large neural networks (NNs) with a soft com-
puting approach [5].

Leto is a graphical software dedicated to the design of
NNs. Most of the time, a single network is composed of
many different groups of neuron (layers, or sub-populations
with different dynamics and/or different learning rules). In
order to be able to implement such models, leto (Figure 1)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSTST 2008 October 27-31, 2008, Cergy-Pontoise, France
Copyright 2008 ACM 978-1-60558-046-3/08/0003 ...$5.00.

allows to manage groups of neurons (sizing, creation, sup-
pression, tuning of parameters) and the different types of
links connecting these groups. Figure 2 shows the different
links that can be built between the neurons of two groups.
Note that any kind of linking, such as reentrant connections,
is possible.

Promethe is the NN simulator, which schedules the ex-
ecution of the groups (the activity of the neurons) and the
learning (the weight of the links between the groups). A
network that has been designed using Leto can be run using
Promethe. Moreover, several Promethe can be connected
with special input/output groups of neurons, in order to
form a distributed NN.

Figure 1: Window of Leto allowing building NNs

With these tools, the development of NNs doesn’t rely on a
procedural language, but on graphic programming. NNs are
designed with Leto which facilitates the integration of several
neural groups, and executed by Promethe in order to model
the interaction of the groups (see Figure 3 for a global illus-
tration of the development the NNs). Most of the time, we
use the NNs as control architectures for autonomous robots
as well as learning systems processing large databases (for
example in the frame of image processing). In both cases,
the level of the simulations and the complexity of the models
require the distribution of the networks over several process-
ing units, with important constraints : the repartition must
preserve the network stability (information flows, dynamics,
learning) and the robot control implies the respect of the
time constraints linked to the captors and effectors of the
system. Therefore, it is necessary to have suitable tools to

- 95 -

Figure 2: A. one to one links. B. one to all links
(only from one neurons is represented for clarity) C.
one to neighborhood links with a neighborhood of 1
(only from one neuron is represented for clarity). D.
Random links.

develop distributed NN models and to carry them out on
robots.

Since their creation, the Leto and Promethe projects have
enormously evolved, following the different technologies of
computer science and, in particular, the field of real-time
distributed computation.
The first parallelizing architecture used the Parallel Virtual
Machine (PVM) interface [10]. This virtual machine en-
abled to use a pool of workstations as a set of processing
units on which different tasks could be assigned. Message
passing instructions were used in the code in order to de-
fine which kind of message should be sent (or received) by
which task. In addition, synchronization mechanisms were
available (blocking and unblocking reception for instance).
The use of PVM was adequate for small architectures. Nev-
ertheless, there was a unique message queue whatever the
number of tasks. This queue turned out to be a bottleneck
in the performances of the system. Therefore, a system with
a queue for each task communication was preferred.
To distribute an application means to execute it on vari-
ous computers. Computers can have different processors,
different versions of operating system etc. . . . It is impor-
tant that the resulting behaviors of the NN applications
must not change from a computer to another. Consequently,
Promethe is able to manage real-time processing in the NNs.
There are two different real-time processing with different
constraints. The first is the hard real-time: the systems
must respect strict temporal constraints. In this kind of ap-
plications, if one service does not respect the deadlines, the
consequences can be critical. The second is the soft real
time, where the temporal constraints exist, but they are ap-
plied on the mean of the total time. Hence, if the constraints
are not respected punctually, the system can be caught up
with on the next step. In the field of interactive complex
systems, the issue of real time plays an important role at
several levels. This issue is strongly linked to the distribu-
tion of the algorithm.
In this paper, we present how a NN is distributed on pro-
cessing units and/or on several computers. Next, we present
the early integration of real time processing in a model. Fi-
nally, we show different kind of applications created with
Leto and simulated with Promethe.

2. DISTRIBUTED NEURAL NETWORKS
In the field of epigenetic robotics, our interest is to study

the emergence of higher level behaviors, from the combina-

Figure 3: Development of large NNs in order to
control autonomous robots. Our design starts from
the modeling of brain structures (visual areas, hip-
pocampic loop, functions of the cerebellum, etc).
Each structure is assimilated as a set of neural func-
tions and plays a role (learning, filtering, processing,
etc) in the whole computational model. From this
model, the sets of neural functions (also called neu-
ral groups) are distributed on several NNs, each NN
being designed using Leto. During the robotic exper-
iment, each NN is run on one computing unit using
promethe

tion of low level building blocks. These building blocks are
designed as perception-action (PerAc, [6]) loops, each loop
being a combination of a reflex pathway and a categoriza-
tion pathway (it can be seen as a reliable improvement of
the counter-propagation principle [8], suitable for the control
of autonomous systems). Following the idea that the same
“brain” should be able to adapt to very different tasks, and
therefore that the same loops can be shared by very different
architectures, the distribution of an application between the
different loops plays an important role, allowing to reuse a
loop in order to test its implication in different emerging be-
haviors. For example, the same NN loop allowing to extract

- 96 -

Figure 4: Illustration of a possible communication
between several NNs. Communication between net-
work 1 and network 2 is asynchronous, and commu-
nication between network 1 and network 3 is syn-
chronous. Send and receive groups have the same
number of neurons and the configuration file, or the
MetaLeto application solve the links between the
name of the network and the IP address of the pro-
cessing unit.

focus points from the pictures of a CCD camera is used in
expression recognition and in the place building mechanism
of navigation systems.
To execute an application on several processing units, the
different NNs need to communicate. To do so, the simu-
lator Promethe integrates a network layer based on BSD
sockets with the use of TCP/IP. A set of special groups of
neurons allows to send and receive their activities through
the network. The message passing protocol can be either
synchronous or asynchronous using blocking or unblocking
reception mechanisms, in a similar way as PVM does. Figure
4 shows an example of communication between several NNs.

Figure 5: Window of Metaleto allowing distributing
NNs on computers

But to define which NN communicate with the others, it
is necessary to give to the simulator the network address of
the others. This part of the distributed software is manually
done with the writing of a network configuration file. This

file contains 2 sections: the declaration of each NN with the
association between his logical name with its network ad-
dress and its network port. The second section names the
network links between each NN. This file allows to Promethe
to know on which processing unit each NNs is running.
But a distribution of an application defined manually leads
to various undesirable behaviors like network dead locks. To
facilitate this part of the work, the project Metaleto allows
the programmer to graphically distribute the various NNs on
different computers with simple drag’ n drop of NNs on the
desired computers. Thanks to the links between NNs, this
project can automatically generate the network files. Met-
aleto integrates also Leto project to directly create and edit
NNs in the same application. Figure 5 shows an application
distributed on several computers and an opened NNs.

3. REAL TIME NEURAL NETWORKS
Of course, it is not useful to systematically parallelize all

the parts of the same NN. One must balance communica-
tion and computation time. As explained in the previous
section, each NN of the application is often composed of one
or several loops representing the functional unit of the model
that we wish to test. Moreover, in the frame of robotic con-
trol, some parts of the neural architecture are critical and
must deliver a reliable and predictable signal with respect
of the time constraints. As a result, we keep in the same
NN several branches of neural groups that we wish to exe-
cute concurrently. To schedule the execution of these groups

Figure 6: Illustration of the scheduler mechanism of
the groups with real time tokens

inside the same network, Promethe uses a mechanism of to-
ken. At the beginning, the simulator creates one thread by
neural group. These threads are destroyed only at the end
of the simulation. The scheduler (i) starts the execution of
all groups (i.e. all threads) having their entire token. To
start a group, it is necessary to have as many tokens as of
primary input links (a recursive link is secondary, because as
a primary link there is a blockade situation.). When a group
has finished, (ii) it gives the token to its successor and (iii)
it indicates its termination. These three steps constitute a
computation wave repeated during the simulation. In or-
der to save calculation time, the updating of neurons can
cut a group into several threads of ”sub groups” of neurons.
These threads are created and destroyed at each updates.

- 97 -

This scheduling policy results in a cyclical movement of the
information where each group is synchronized by the execu-
tion of its predecessors. Of course, it also results in a “best
effort” policy, where the CPU spends as time as needed to
execute the predecessors. To face the real time constraints,
we have adapted the scheduler and added a particular type
of token: the ”real time token”. These tokens are gener-
ated by a particular group (named ”rt group”) at a periodic
timing. In the general use, a rt group is created at the be-
ginning of a branch. In order to avoid particular problems
(figure 6), priorities are assigned to the rt tokens. Conse-
quently, if a group receives two rt tokens from two branches,
then the group runs at the timing of the highest priority.
When the time is expired, the rt group resets its entire to-
ken in all neural groups. This reset can not interrupt the
calculations in progress, but stops the computation wave.
A second method exists where the computation wave is not
stopped. In this case, the developer considers that the next
computation wave will respect the time constraint. But this
second method starts a new wave even if the previous is not
finished. Consequently, it is possible to have two waves in
parallel.

4. MERGING ASYNCHRONOUS
INFORMATION

Using the distribution and the real time tokens, we ob-
tain parallelized control archtectures whose main advantage
is the possibility to test the concurrence and/or the coop-
eration of many sensori-motor loops in the emergence of
the robotic behaviors. Of course, since our models control
a single robot, it is important to have a design approach
that avoid the potenial bottlenecks when the information of
each network have to be merged. Typically, problems arise
when many different loops running concurrently are pro-
viding abondant and different information about the motor
control of the robot. Moreover, since emerging behavior is
our major interest, we do not use apriori solutions fixing or
selecting the priority of the loops (no subsumption archite-
ture [3]). We prefer to use solutions promoting an intrin-
sic selection of the action according to dynamical equations
simulating a continuous field of neurons. This Neural Field
(NF) [1] codes the action space (most of the time the motor
space of the robot, like the angles of joints to control, or
the orientation of mobile robots, etc.). In addition, a read-
out mechanism [11] allow to directly extract from the NF’s
activity the speed command to send to the corresponding
joint [2]. Thanks to the dynamical properties of the NF,
noisy inputs are filtered, concurrent information is merged
(cooperation) or selected (competition) simply according to
the bifurcation capabilty of the field. Finally, the intrinsic
memory of the system allows a stable robot control under
the condition that the NF respects the time constraints of
the device. Such a system allows reliable decision making
with asychronous loops

5. APPLICATIONS

5.1 Indoor Navigation
Robot navigation is a problem that has been largely stud-

ied by the scientific community during several decades. In
our work in this domain, models are composed of several pro-
cesses each participating to the global behavior emergence.

Figure 7: Illustration of an application of indoor
navigation composed of several NNs distributed and
executed in parallel. The motor NN is composed of
a dynamic neural field allowing the decision making
between the “joystick”, “infra-red sensors” and the
place recognition provided by “vision NN”.

For instance, we know how to teach the robot a specific nav-
igation behavior [7] from simple elements(figure 7):

• The compass process reads the electronic compass value
and sends it to the visual and motor neural networks.

• The low level vision process transforms visual inputs
into usable informations to characterize and learn vi-
sually different places.

• The vision neural network allows the place recogni-
tion and binds it to the action the robot has to realize
in that place (sensory-motor learning). Therefore, it
sends motor commands to the motor script. The mo-
tor neural network uses a neural field in order to select
the action the robot will execute. It has to choose be-
tween, in increasing order of priority, the motor com-
mand coming from the vision NN, the motor command
coming from the joystick (user) and the motor com-
mand coming from the obstacle avoidance (infra-red
sensors).

Following the same principle, adding other process to the
model will modify the global emergent behavior the robot
will execute. For instance, by adding a planing process (dark
grey box), the system is able to map his environment (topo-
logical map) and thus to define a strategy to reach a specific
resource [4]. In ongoing works, a new temporal sequence
learning process [9] (light grey box) tends to be add to the
model. This process allows a memorization of a specific task
as a sequence of predictable states. The question is : which
properties are going to emerge from the interaction of the
model with these supplementary processes.

5.2 Expressions Recognition
This application consists in the online learning and the

recognition of facial expressions with a robotic head. The
experimental protocol is the following: in a first phase of
interaction, the robot produces a random facial expression
(sadness, happiness, anger, surprised) plus the neutral face
during 2s. Between each facial expression, the robot returns
to a neutral face to avoid human misinterpretations of the
facial expression from the robot during 2s. The human sub-
ject mimics the robotic head. In this phase of interaction,
the robot learns the facial expressions. If the robot displays
the happiness then the subject mimics it. Once this first
phase is finished (after 5 to 10 min, according to the sub-
jects ”patience”), the generator of random emotional states
is stopped in order to begin the second phase of interaction.

- 98 -

Now, the robotic head is able to mimic the human’s facial
expression. In the learning phase, the robotic head displays

Figure 8: Phase shifting between the human facial
expression and the robot facial expression during an
imitation game (the human imitating the robot).

each facial expression during 2s. This time can disturb the
learning because if the robot learns the first images which
are still associated to the human previous facial expression
then the previous expression is unlearned (figure 8). The
presentation time of a given expression must be long enough
to neglect the first images. We must be careful, if this time
is too long, the subject might lose his concentration.
In our system, time constraints are crucial and have to be
respected by the NNs.

6. CONCLUSION
We have presented softwares that allow creating distributed

NN models managing real time processing. The global be-
havior of a system emerges from the processes executed in a
parallel way. The distribution of NNs is defined a priori by
the developer thanks to Metaleto program. The execution
under real time constraints is managed by Promethe. These
programs allow graphically developing distributed and real
time NNs and propose a global view of them. The main pa-
rameters (time constraints or how cut the NNs) are defined
by the developer. But, it is always possible to have various
problems like time constant too short to execute a NN, or
dead lock after a wrong distribution of the NNs. In future
improvements, we can imagine to add new tools like dead
locks checking in Metaleto. Therefore with the same soft-
ware, the NNs could be automatically cut without explicit
network groups in the NNs. The distribution of NNs raises
important questions: is the behavior of one NN the same
that a similar NN distributed on several computers? Each
part of NN is scheduled by one scheduler of each Promethe.
A possible evolution could be using a single virtual scheduler
for all NNs. We can imagine each scheduler running each
NN communicate the tokens the ones with the others (fig-
ure 9). This way would also allow a global managing of real
time processing on the entire NN and not on each part. This
raises the question : do all the NNs have to be scheduled in
real-time with a global scheduler? For example, in order to
improve the calculation of “vision NNs”which consume very
large amount of CPU time, it is interesting to get several
pictures in one wave. Consequently, this particular NN can

Figure 9: Illustration of a possible global distributed
scheduler with “rt tokens” passing from a scheduler
of a Promethe to another

not be scheduled with others. Hence, the use of a unique
global scheduler would not be suitable. Finally, in the con-
text of emergent behaviors, the management of distributed
and real-time processes is not trivial. For different kinds of
distribution and/or for different kinds of parameters in real-
time processing, the global behavior of the system can be
different.

7. AKNOWLEDGEMENTS
This work is supported by the French region Ile de France,

the Institut Universitaire de France (IUF) and the European
project Feelix Growing : FP6 IST-045169.

8. ADDITIONAL AUTHORS
Additional authors: Boucenna Sofiane (boucenna@ensea.fr),

Giovannangeli Christophe (giovannangeli@ensea.fr), Cu-
perlier Nicolas (cuperlier@ensea.fr), Maillard Mickael
(maillard@ensea.fr) and Quoy Mathias (quoy@ensea.fr)

9. REFERENCES
[1] S. Amari. Dynamic of pattern formation in

lateral-inhibition type by neural fields. Biological
Cybernetics, 27:77–87, 1977.

[2] P. Andry, P. Gaussier, and J. N. and. B.Hirsbrunner.
Learning invariant sensory-motor behaviors: A
developmental approach of imitation mechanisms.
Adaptive behavior, 12(2), 2004.

[3] R. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and
Automation, 2(1):14–23, 1986.

[4] N. Cuperlier, M. Quoy, C. Giovannangeli, P. Gaussier,
and P. Laroque. Transition cells for navigation and
planning in an unknown environment. In The Society
For Adaptive Behavior SAB 2006, pages 286–297,
Rome, 2006.

[5] P. Gaussier. Simulation d’un système visuel
comprenant plusieurs aires corticales: Application à
l’analyse de scènes. PhD thesis, University of Paris
Sud Centre d’Orsay, december 1992.

[6] P. Gaussier, S. Moga, M. Quoy, and J. Banquet. From
perception-action loops to imitation processes: a
bottom-up approach of learning by imitation. Applied
Artificial Intelligence, 12(7-8):701–727, Oct-Dec 1998.

- 99 -

[7] C. Giovannangeli and P. Gaussier. Autonomous
vision-based navigation: Goal-oriented action planning
by transient states prediction, cognitive map building,
and sensory-motor learning. In Proc. of the 2008
IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS 2008), Nice, France, 2008.

[8] R. Hetch-Nielsen. Applications of counterpropagation
networks. Neural Networks, 1(2):131–139, 1988.

[9] M. Lagarde, P. Andry, and P. Gaussier. The role of
internal oscillators for the one-shot learning of
complex temporal sequences. In J. M. de Sa, L. A.
Alexandre, W. Duch, and D. Mandic, editors,
Artificial Neural Networks – ICANN 2007, volume
4668 of LNCS, pages 934–943. Springer, 2007.

[10] M. Quoy, S. Moga, P. Gaussier, and A. Revel.
Parallelization of neural networks using PVM. Lecture
Notes in Computer Science, 1908:289–296, 2000.

[11] G. Schöner, M. Dose, and C. Engels. Dynamics of
behavior: Theory and applications for autonomous
robot architectures. Robotics and Autonomous
Systems, 16(4):213–245, 1995.

- 100 -

