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The Role of Internal Osillators for the One-ShotLearning of Complex Temporal Sequenes.Matthieu LAGARDE, Pierre ANDRY, Philippe GAUSSIERETIS, Neuroyberneti Team, UMR CNRS 80512, avenue Adolphe-Chauvin, University of Cergy-Pontoise, Frane{lagarde,andry,gaussier}�ensea.frAbstrat. We present an arti�ial neural network used to learn onlineomplex temporal sequenes of gestures to a robot. The system is basedon a simple temporal sequenes learning arhiteture, neurobiologialinspired model using some of the properties of the erebellum and thehippoampus, plus a diversity generator omposed of CTRNN osilla-tors. The use of osillators allows to remove the ambiguity of omplexsequenes. The assoiations with osillators allow to build an internalstate to disambiguate the observable state. To understand the e�et ofthis learning mehanism, we ompare the performane of (i) our modelwith (ii) simple sequene learning model and with (iii) the simple se-quene learning model plus a ompetitive mehanism between inputsand osillators. Finally, we present an experiment showing a AIBO robot,whih learns and reprodues a sequene of gestures.1 INTRODUCTIONOur long term goal is to build an autonomous robot able to learn sensorimotortasks. Suh a system should be (i) able to aquire new �behaviors� : gestures,objets manipulation as sequenes ombining multimodal elements of di�erentlevels. To do this, an autonomous system must (ii) take advantage of informationof the assoiations between vision and motor apabilities. This paper fouses es-sentially on the �rst point : learning, prediting and reprodution of omplexsensorimotor sequenes.In this sope, solutions based on neural networks are an interesting solution. Neu-ral networks are able to learn sequenes using assoiative mehanisms. Moreover,these networks o�er a level of oding (neuron) that takes into aount informa-tion about the lower sensorimotor system; suh systems avoid the use of symbolsor information that ould separate the sequene learning omponent from thebuilding of assoiations between sensation and ation. Networks are adaptedto online learning favoring easier interations with humans and other robots.Among these models, haoti neural networks are based on reurrent network(RN). In [1℄, a fully onneted RN learns a sequene thanks to a single layer ofneurons. The dynamis generated by the network help to learn a short sequene.After a few iterations, the learned sequene vanishes progressively. In [2℄, a ran-dom RN (RRN) learns a sequene thanks to a ombination of two layers of



2neurons. The �rst layer generates an internal dynami by means of a RRN.The seond layer generates a resonane phenomenon. The network learns shortsequenes of 7 or 8 states. But this model is highly sensitive to noises or thestimulus variations and does not learn long periods sequenes. A similar modelis the Eho States Network (ESN) based on RRN for short term memory [3℄(STM). Under ertain onditions (detailed in [4℄), the ativation of eah neuronin the hidden layer, is a funtion of the input history presented to the network;this is the eho funtion. One again, the idea is to use a �reservoir� of dynamisfrom whih the desired output is learned in onjuntion with the e�et of theinput ativity.In the ontext of robotis, many models onern gesture learning. By means ofnonlinear dynamial systems, [5℄ develops ontrol poliies to approximate thereorded movements and to learn them with a �tting of mixture model usinga reursive least square regression tehnique. In [6℄, the trajetories of gesturesare aquired by the onstrution of motor skills with a probalisti representationof the movement. Trajetories an be learnt through via points [7℄ with parallelvetor-integration-to-endpoint models [8℄. In our work, we wish to be able to re-use and detet subsequenes and possibly, ombine them. Thus, we need to learnsome of the important omponents of the sequene and not only to approximatethe trajetory of the gesture.In this paper, we present a biologially inspired model of neural network fortemporal omplex sequenes learning. A �rst approah desribed in [9℄ proposesa neural network for the online learning of the timing between events for simplesequenes (with non ambiguous states like �A B C�). We propose a model foromplex sequenes (with ambiguous states like A and B in �A B A C B�). In or-der to remove the ambiguous states or transitions, we use batteries of osillatorsas a reservoir of diversity allowing to separate the inputs appearing repeatedlyin the sequene. In setion 3, we show results from simulations omparing theperformanes of 3 di�erent systems involved in the learning and reprodutionof the same set of omplex sequenes : (i) the system desribed in [9℄, (ii) thissystem plus a simple ompetitive mehanism between the osillators and theinput (showing the e�et of adding internal dynamis in order to separate am-biguous states) and (iii) a system optimizing the use of the osillators by usingan assoiative learning rule in order to reruit new internal states when needed(repetition of the same input state). Setion 4 details the appliation of ourmodel on a real robot for the learning of a omplex gesture. Finally, we onludeand point out some open problems.2 A MODEL FOR TIMING AND SEQUENCELEARNINGThe arhiteture (Fig. 1) is based on a neurobiologial model [10℄ inspired fromsome of the properties of the erebellum and the hippoampus. This modeluses assoiative learning rules between past inputs memorized as a STM andpresent inputs in order to learn the timing of simple sequenes. �Simple� refers



3here to the sequenes in whih the same state appears only one. The mainadvantage of this model is that the assoiative mehanism also learns the timingof the sequene, whih allows aurate preditions of the transitions that omposethe sequene. In order to learn omplex sequenes in whih the same state isrepeated several times, in our model we have added a mehanism that generatesinternal dynamis and that an be assoiated with the repeated inputs of thesequene. The assoiation between the repeated inputs and di�erent ativitiesof the osillator allows to ode hidden states with di�erent and un-ambiguouspatterns of ativities. As a result, our arhiteture manages to learn/predit andreprodue omplex temporal sequenes.
Fig. 1. Complex sequenes learning model. Barred links are modi�able onnexions. Theothers are assoiated to unmodi�able onnexions. The left part is detailed in �gure 3.Aand 3.B. The right part is detailed in �gure 4.2.1 Generating internal diversityOsillators are very muh used in roboti appliations like loomotion usingentral pattern generator (CPG) [11℄. An osillator is a ontinuous time reurrentneural network (CTRNN) omposed of two neurons (Fig. 2.A). The study onCTRNNs an be found in [12℄. This kind of osillators is known for stability, andresistane to the noises. CTRNN are easy to implement too. A CTRNN ouplingtwo neurons produes an osillator (Fig. 2.B) :

τe.
dx

dt
= −x + S((wii ∗ x) − (wji ∗ y) + weconst

) (1)
τi.

dy

dt
= −y + S((wjj ∗ y) + (wij ∗ x) + wiconst

) (2)with τe a time onstant for the exitatory neuron and τi for the inhibitory neuron.
x and y are the ativity of the exitatory and the inhibitory neuron respetively.
wii is the weight of the reurrent link of the exitatory neuron, wjj the weightof the reurrent link of the inhibitory neuron. wij is the weight of the link fromthe exitatory neuron to inhibitory neuron. wji is the weight of the link from theinhibitory neuron to exitatory neuron. weconst

and wiconst
are the weights of thelinks from the onstant inputs. And S is the transfer funtion of eah neuron.In our model, we use three osillators with τe = τi.
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timeFig. 2. A. Osillator model. Left neuron is exitatory and right neuron is inhibitory.Exitatory links are : Wii = 1, Wjj = 1, Wij = 1. Inhibitory links is : Wji = −1,Constant input value is equal to 1 with onstant links Weconst = 0.45 and Wiconst = 0.Initial ativities of neurons are X(0) = 0, Y (0) = 0.B. Display of the instantaneous mean frequeny ativity of 3 osillators systems with
τ1 = 20 (plain line), τ2 = 30 (long dashed line), τ3 = 50 (short dashed line).2.2 learning of internal statesIn order to use repeatedly the same input in a given sequene, di�erent on�gu-rations of osillators an be assoiated with the same input. To understand thegeneration of diversity and its impliation in our learning algorithm, we havetested two mehanisms : a simple ompetition oupling input states with osil-lators (Fig. 3.A) and an assoiative mehanism based on a learning rule (Fig.3.B) that reruits neurons aording to the ativities of the osillators and therepeated inputs.Competitive mehanism The ompetition is omputed as follow : eah neuron
ij of the Competition group ats as an neuron performing the logial operatorAND between the neurons of the Inputs group and of the Osillators group :

Potij = (winputi
∗ xinputi

+ woscij
∗ xoscij

) − thresholdij (3)with winputi
= 1, woscij

= 1, thresholdij = 1.2, xinputi
the ativity of the inputat index i and xoscij

the ativity of the osillator at index j.In a seond step, a ompetition between all neurons ij of the Competition groupis applied :
Winnerij =

{

1 if ij = Argmaxij(Potij)
0 otherwise

(4)The winner neuron beomes the input of the temporal sequene learning network(subsetion 2.3). In this way, a �reservoir� of osillator neurons an be used as away to assoiate the same input with di�erent internal patterns. Intuitively, thesimple ompetition (no learning is required here) allows to diretly selet di�er-ent �internal� states orresponding to the same input repeated many times in thesequene. For example in Fig. 3.A, eah input (A,B,C,D) an appears up to 3times (orresponding to the number of osillators) in the same sequene. More-over, suh a mehanism does not disturb the predition nor the reprodution



5of the sequene. Obviously, if the ompetition between osillators is an avenueworth exploring, it is still possible to have ambiguity. An input an be assoiatedwith same winner osillator two or more times. Consequently, there is still poten-tial ambiguities on the �internal� states of our model, and some sequenes ouldnot be reprodued orretly. A preise measure of this problem orresponds tothe probability that the same state an be assoiated with the same osillatorseveral times and therefore the �internal� state partially depends of the shape,phase and number of osillators. Typially, the problem happens when a givenstate omes bak with the same frequeny as the seleted osillator. The urvesC2 and C3 on �gure 5 show the performanes of the ompetitive mehanism. Tosolve this problem, an assoiative mehanism allowing to reruit neurons oding�internal� states has been added.
A. B.Fig. 3. A. Model of the neural network oupling an input state with an osillator. Alllinks are �xed onnetions. B. Model of the neural network used to assoiate an inputstate with a on�guration of osillators. Only few links are represented for the legibility.Dashed links are modi�able onnetions. Solid links are �xed onnetions.Assoiative mehanism The learning proess of an assoiation between aninput state and a on�guration of osillators is :

US = wi ∗ xi (5)with wi the weight of the link from input state i, and xi ativity of the inputstate i. If US > threshold, we ompute the potential and the ativity of theneuron as follow :
Potj =

Mosci
∑

j=0

|(wj − ej)| Actj =
1

1 + Potj
(6)with Mosci the number of osillators, wj the weight of the link from osillator j,and ej the ativity of the osillator j. The neuron that has the minimum ativityis reruited : Win = Argminj(Actj). Initial weigths of onnexions have highvalues. The osillators on�guration is learnt aording to the error of distane

∆wj = ε(ej − wj) with ε a learning rate, wj weight of link from Osillator j,and ej ativity of osillator j. The Assoiations group beomes the new input



6of the temporal sequene learning network (subsetion 2.3). As showed on the�gure 3.B, an input allows reruiting 3 di�erent neurons oding �internal� states.They orrespond to the onnetivity of the unonditional links hosen betweenthe Inputs group and the Assoiation group. The assoiative mehanism ensuresto reruit a new �internal� state for eah input (A, B, C or D) from the sequene.The onnetivity of links between the Input group and the Assoiation group,has been hosen to have a number of hidden states equal for eah input. Thisallows the omparison between the di�erent models in our simulations. But itould be possible to hange the onnetivity of the links to allow the reruitementof more hidden states for eah repeated input in the sequene. We have testedthis mehanism in our arhiteture in simulation and roboti appliation.2.3 Temporal sequenes learning
Fig. 4. Representation of hippoampus. Entorhinal Cortex (EC) reeives inputs andtransmits them to Dentate Gyrus (DG) and CA3 pyramidal ells. Between the DGgroup and the CA3 group there are fully onneted with modi�able onnetions. Be-tween the EC group and CA3 group, and the EC group and DG group, there are �xedone to neighborhood onnetions.This part of model is based on a shemati representation of hippoampus [10℄(Fig. 4). DG represents past state (STM), and develops a temporal ativityspetrum. CA3 links allow pattern ompletion and reognition between inomingstate from EC and previous state maintained in DG. We suppose the DG ativityan be modelled as follow :

ActDG
j,l (t) =

1

mj

· exp−
(t − mj)

2

2 · σj

(7)with ActDG
j,l the ativity of the ell at index l on the line j, t the time, mj a timeonstant and σj the standard deviation. Neurons on one line share their ativityin the time and represent a temporal trae of EC. Learning of an assoiation ison the weights of links between CA3 and DG. The normalization of the ativityoming from DG neurons is performed due to the normalization of the DG-CA3weights.

W
DG(j,l)
CA3(i,j) =







ActDG
j,l

∑

j,l
(ActDG

j,l )
2 if ActDG

j 6= 0

unchanged otherwise
(8)Interestingly, this model has the property to work when a same input omesseveral times ontinously. Thanks to the derivative group EC, a repeated input



7is stored during the total time of its presene. Consequently, two suessive statesare not ambiguous for the system (�A A� = �A�).3 SIMULATION RESULTSA temporal sequene of states is rarely replayed two times exatly with the samerhythm. Time an vary between two states espeially when demonstrating a se-quene to a robot. In our simulations we apply a time variation between statesand observe the onsequenes on three arhitetures. The �rst arhiteture isthe model of simple sequenes learning presented in subsetion 2.3. The seondis the same model plus the ompetitive mehanism presented in subsetion 2.2.The third arhiteture is the same as the �rst one plus the assoiative meha-nism (Fig. 1) seen in subsetion 2.2. Referenes sequenes are generated to besuessfully reprodued by the seond arhiteture with a timing variation of0%. All arhitetures are trained with the same sequenes and the same maxi-mum of timing variation (0%, 5% or 10%), but with a time variation randomlyhosen between 0 and the maximum variation of the time. In our experiments,to bootstrap a sequene, we provide the �rst state. Consequently, this state willnot be ambiguous in the sequenes. For example, a omplex sequenes an be�D B C B A C A B� : �D� is the starting state and it will not be repeated after.Fig. 5 shows the performanes of eah arhiteture. We an see that the �rst ar-
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8time variation has no e�et on the performanes. The arhiteture an not re-produe them, beause CA3 group learns two transitions and, thus it preditstwo states for eah repeated input. The seond arhiteture using ompetitivemehanism, has better performanes, but, as we have seen previously in subse-tion 2.2, ambiguous internal states an appear and redue this gain of sequenesorretly reprodued. Consequently, like the �rst arhiteture, the CA3 grouplearns two �internal� states and, thus, it predits two states from one input re-peated. We an see, the performanes hange aording to the timing variationbetween states in the sequenes : a same input from a given sequene an beassoiated with two di�erent osillators and, onsequently a di�erent �internal�state wins. Thanks to the reruitment mehanism, the third arhiteture, has thebest performanes : 100% with all tested sequenes. There are not ambiguousstates or �internal� states. The time variation has no e�et on the performanesof the model.4 ROBOTIC APPLICATION
A. B.Fig. 6. A. Representation of desired sequene. It begins from the start point. B. Wemanipulate Aibo passively. It learns the suession of orientations of the movementfrom these front left leg motor information.The robot used in our experiments is an Aibo ERS7 (Sony). In our appli-ation, we use only the front left leg, in a passive movement mode to learn asequene of gestures. The sequene to be learned and reprodued is showed Fig.6.A. In this appliation, we test the third arhiteture previously desribed.During learning, we manipulate the front left leg of the robot passively (Fig.6.B). During the exeution of the movement, the neural network learns online,and in one shot the suession of the joints orientation thanks to the motorsfeedbak information of its leg (proprioeptive signal). Hene, the inputs of ourmodel are the orientations/angles of the leg. The reorded motors informationwhile learning are shown in Fig. 7.X-learning (horizontal movements) and Fig.7.Y-learning (vertial movements).To initiate the reprodution of the sequene by the robot, we give the �rst stateof the sequene (�down�). As Aibo an not be manipulated when motors areativated, we send the ommand diretly to the robot. Next, Aibo plays the se-quene autonomously (Fig. 7, top). With the starting state, our model preditsthe next orientation and send the orresponding ommand to the robot.
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