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The Role of Internal Os
illators for the One-ShotLearning of Complex Temporal Sequen
es.Matthieu LAGARDE, Pierre ANDRY, Philippe GAUSSIERETIS, Neuro
yberneti
 Team, UMR CNRS 80512, avenue Adolphe-Chauvin, University of Cergy-Pontoise, Fran
e{lagarde,andry,gaussier}�ensea.frAbstra
t. We present an arti�
ial neural network used to learn online
omplex temporal sequen
es of gestures to a robot. The system is basedon a simple temporal sequen
es learning ar
hite
ture, neurobiologi
alinspired model using some of the properties of the 
erebellum and thehippo
ampus, plus a diversity generator 
omposed of CTRNN os
illa-tors. The use of os
illators allows to remove the ambiguity of 
omplexsequen
es. The asso
iations with os
illators allow to build an internalstate to disambiguate the observable state. To understand the e�e
t ofthis learning me
hanism, we 
ompare the performan
e of (i) our modelwith (ii) simple sequen
e learning model and with (iii) the simple se-quen
e learning model plus a 
ompetitive me
hanism between inputsand os
illators. Finally, we present an experiment showing a AIBO robot,whi
h learns and reprodu
es a sequen
e of gestures.1 INTRODUCTIONOur long term goal is to build an autonomous robot able to learn sensorimotortasks. Su
h a system should be (i) able to a
quire new �behaviors� : gestures,obje
ts manipulation as sequen
es 
ombining multimodal elements of di�erentlevels. To do this, an autonomous system must (ii) take advantage of informationof the asso
iations between vision and motor 
apabilities. This paper fo
uses es-sentially on the �rst point : learning, predi
ting and reprodu
tion of 
omplexsensorimotor sequen
es.In this s
ope, solutions based on neural networks are an interesting solution. Neu-ral networks are able to learn sequen
es using asso
iative me
hanisms. Moreover,these networks o�er a level of 
oding (neuron) that takes into a

ount informa-tion about the lower sensorimotor system; su
h systems avoid the use of symbolsor information that 
ould separate the sequen
e learning 
omponent from thebuilding of asso
iations between sensation and a
tion. Networks are adaptedto online learning favoring easier intera
tions with humans and other robots.Among these models, 
haoti
 neural networks are based on re
urrent network(RN). In [1℄, a fully 
onne
ted RN learns a sequen
e thanks to a single layer ofneurons. The dynami
s generated by the network help to learn a short sequen
e.After a few iterations, the learned sequen
e vanishes progressively. In [2℄, a ran-dom RN (RRN) learns a sequen
e thanks to a 
ombination of two layers of



2neurons. The �rst layer generates an internal dynami
 by means of a RRN.The se
ond layer generates a resonan
e phenomenon. The network learns shortsequen
es of 7 or 8 states. But this model is highly sensitive to noises or thestimulus variations and does not learn long periods sequen
es. A similar modelis the E
ho States Network (ESN) based on RRN for short term memory [3℄(STM). Under 
ertain 
onditions (detailed in [4℄), the a
tivation of ea
h neuronin the hidden layer, is a fun
tion of the input history presented to the network;this is the e
ho fun
tion. On
e again, the idea is to use a �reservoir� of dynami
sfrom whi
h the desired output is learned in 
onjun
tion with the e�e
t of theinput a
tivity.In the 
ontext of roboti
s, many models 
on
ern gesture learning. By means ofnonlinear dynami
al systems, [5℄ develops 
ontrol poli
ies to approximate there
orded movements and to learn them with a �tting of mixture model usinga re
ursive least square regression te
hnique. In [6℄, the traje
tories of gesturesare a
quired by the 
onstru
tion of motor skills with a probalisti
 representationof the movement. Traje
tories 
an be learnt through via points [7℄ with parallelve
tor-integration-to-endpoint models [8℄. In our work, we wish to be able to re-use and dete
t subsequen
es and possibly, 
ombine them. Thus, we need to learnsome of the important 
omponents of the sequen
e and not only to approximatethe traje
tory of the gesture.In this paper, we present a biologi
ally inspired model of neural network fortemporal 
omplex sequen
es learning. A �rst approa
h des
ribed in [9℄ proposesa neural network for the online learning of the timing between events for simplesequen
es (with non ambiguous states like �A B C�). We propose a model for
omplex sequen
es (with ambiguous states like A and B in �A B A C B�). In or-der to remove the ambiguous states or transitions, we use batteries of os
illatorsas a reservoir of diversity allowing to separate the inputs appearing repeatedlyin the sequen
e. In se
tion 3, we show results from simulations 
omparing theperforman
es of 3 di�erent systems involved in the learning and reprodu
tionof the same set of 
omplex sequen
es : (i) the system des
ribed in [9℄, (ii) thissystem plus a simple 
ompetitive me
hanism between the os
illators and theinput (showing the e�e
t of adding internal dynami
s in order to separate am-biguous states) and (iii) a system optimizing the use of the os
illators by usingan asso
iative learning rule in order to re
ruit new internal states when needed(repetition of the same input state). Se
tion 4 details the appli
ation of ourmodel on a real robot for the learning of a 
omplex gesture. Finally, we 
on
ludeand point out some open problems.2 A MODEL FOR TIMING AND SEQUENCELEARNINGThe ar
hite
ture (Fig. 1) is based on a neurobiologi
al model [10℄ inspired fromsome of the properties of the 
erebellum and the hippo
ampus. This modeluses asso
iative learning rules between past inputs memorized as a STM andpresent inputs in order to learn the timing of simple sequen
es. �Simple� refers



3here to the sequen
es in whi
h the same state appears only on
e. The mainadvantage of this model is that the asso
iative me
hanism also learns the timingof the sequen
e, whi
h allows a

urate predi
tions of the transitions that 
omposethe sequen
e. In order to learn 
omplex sequen
es in whi
h the same state isrepeated several times, in our model we have added a me
hanism that generatesinternal dynami
s and that 
an be asso
iated with the repeated inputs of thesequen
e. The asso
iation between the repeated inputs and di�erent a
tivitiesof the os
illator allows to 
ode hidden states with di�erent and un-ambiguouspatterns of a
tivities. As a result, our ar
hite
ture manages to learn/predi
t andreprodu
e 
omplex temporal sequen
es.
Fig. 1. Complex sequen
es learning model. Barred links are modi�able 
onnexions. Theothers are asso
iated to unmodi�able 
onnexions. The left part is detailed in �gure 3.Aand 3.B. The right part is detailed in �gure 4.2.1 Generating internal diversityOs
illators are very mu
h used in roboti
 appli
ations like lo
omotion using
entral pattern generator (CPG) [11℄. An os
illator is a 
ontinuous time re
urrentneural network (CTRNN) 
omposed of two neurons (Fig. 2.A). The study onCTRNNs 
an be found in [12℄. This kind of os
illators is known for stability, andresistan
e to the noises. CTRNN are easy to implement too. A CTRNN 
ouplingtwo neurons produ
es an os
illator (Fig. 2.B) :

τe.
dx

dt
= −x + S((wii ∗ x) − (wji ∗ y) + weconst

) (1)
τi.

dy

dt
= −y + S((wjj ∗ y) + (wij ∗ x) + wiconst

) (2)with τe a time 
onstant for the ex
itatory neuron and τi for the inhibitory neuron.
x and y are the a
tivity of the ex
itatory and the inhibitory neuron respe
tively.
wii is the weight of the re
urrent link of the ex
itatory neuron, wjj the weightof the re
urrent link of the inhibitory neuron. wij is the weight of the link fromthe ex
itatory neuron to inhibitory neuron. wji is the weight of the link from theinhibitory neuron to ex
itatory neuron. weconst

and wiconst
are the weights of thelinks from the 
onstant inputs. And S is the transfer fun
tion of ea
h neuron.In our model, we use three os
illators with τe = τi.
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timeFig. 2. A. Os
illator model. Left neuron is ex
itatory and right neuron is inhibitory.Ex
itatory links are : Wii = 1, Wjj = 1, Wij = 1. Inhibitory links is : Wji = −1,Constant input value is equal to 1 with 
onstant links Weconst = 0.45 and Wiconst = 0.Initial a
tivities of neurons are X(0) = 0, Y (0) = 0.B. Display of the instantaneous mean frequen
y a
tivity of 3 os
illators systems with
τ1 = 20 (plain line), τ2 = 30 (long dashed line), τ3 = 50 (short dashed line).2.2 learning of internal statesIn order to use repeatedly the same input in a given sequen
e, di�erent 
on�gu-rations of os
illators 
an be asso
iated with the same input. To understand thegeneration of diversity and its impli
ation in our learning algorithm, we havetested two me
hanisms : a simple 
ompetition 
oupling input states with os
il-lators (Fig. 3.A) and an asso
iative me
hanism based on a learning rule (Fig.3.B) that re
ruits neurons a

ording to the a
tivities of the os
illators and therepeated inputs.Competitive me
hanism The 
ompetition is 
omputed as follow : ea
h neuron
ij of the Competition group a
ts as an neuron performing the logi
al operatorAND between the neurons of the Inputs group and of the Os
illators group :

Potij = (winputi
∗ xinputi

+ woscij
∗ xoscij

) − thresholdij (3)with winputi
= 1, woscij

= 1, thresholdij = 1.2, xinputi
the a
tivity of the inputat index i and xoscij

the a
tivity of the os
illator at index j.In a se
ond step, a 
ompetition between all neurons ij of the Competition groupis applied :
Winnerij =

{

1 if ij = Argmaxij(Potij)
0 otherwise

(4)The winner neuron be
omes the input of the temporal sequen
e learning network(subse
tion 2.3). In this way, a �reservoir� of os
illator neurons 
an be used as away to asso
iate the same input with di�erent internal patterns. Intuitively, thesimple 
ompetition (no learning is required here) allows to dire
tly sele
t di�er-ent �internal� states 
orresponding to the same input repeated many times in thesequen
e. For example in Fig. 3.A, ea
h input (A,B,C,D) 
an appears up to 3times (
orresponding to the number of os
illators) in the same sequen
e. More-over, su
h a me
hanism does not disturb the predi
tion nor the reprodu
tion



5of the sequen
e. Obviously, if the 
ompetition between os
illators is an avenueworth exploring, it is still possible to have ambiguity. An input 
an be asso
iatedwith same winner os
illator two or more times. Consequently, there is still poten-tial ambiguities on the �internal� states of our model, and some sequen
es 
ouldnot be reprodu
ed 
orre
tly. A pre
ise measure of this problem 
orresponds tothe probability that the same state 
an be asso
iated with the same os
illatorseveral times and therefore the �internal� state partially depends of the shape,phase and number of os
illators. Typi
ally, the problem happens when a givenstate 
omes ba
k with the same frequen
y as the sele
ted os
illator. The 
urvesC2 and C3 on �gure 5 show the performan
es of the 
ompetitive me
hanism. Tosolve this problem, an asso
iative me
hanism allowing to re
ruit neurons 
oding�internal� states has been added.
A. B.Fig. 3. A. Model of the neural network 
oupling an input state with an os
illator. Alllinks are �xed 
onne
tions. B. Model of the neural network used to asso
iate an inputstate with a 
on�guration of os
illators. Only few links are represented for the legibility.Dashed links are modi�able 
onne
tions. Solid links are �xed 
onne
tions.Asso
iative me
hanism The learning pro
ess of an asso
iation between aninput state and a 
on�guration of os
illators is :

US = wi ∗ xi (5)with wi the weight of the link from input state i, and xi a
tivity of the inputstate i. If US > threshold, we 
ompute the potential and the a
tivity of theneuron as follow :
Potj =

Mosci
∑

j=0

|(wj − ej)| Actj =
1

1 + Potj
(6)with Mosci the number of os
illators, wj the weight of the link from os
illator j,and ej the a
tivity of the os
illator j. The neuron that has the minimum a
tivityis re
ruited : Win = Argminj(Actj). Initial weigths of 
onnexions have highvalues. The os
illators 
on�guration is learnt a

ording to the error of distan
e

∆wj = ε(ej − wj) with ε a learning rate, wj weight of link from Os
illator j,and ej a
tivity of os
illator j. The Asso
iations group be
omes the new input



6of the temporal sequen
e learning network (subse
tion 2.3). As showed on the�gure 3.B, an input allows re
ruiting 3 di�erent neurons 
oding �internal� states.They 
orrespond to the 
onne
tivity of the un
onditional links 
hosen betweenthe Inputs group and the Asso
iation group. The asso
iative me
hanism ensuresto re
ruit a new �internal� state for ea
h input (A, B, C or D) from the sequen
e.The 
onne
tivity of links between the Input group and the Asso
iation group,has been 
hosen to have a number of hidden states equal for ea
h input. Thisallows the 
omparison between the di�erent models in our simulations. But it
ould be possible to 
hange the 
onne
tivity of the links to allow the re
ruitementof more hidden states for ea
h repeated input in the sequen
e. We have testedthis me
hanism in our ar
hite
ture in simulation and roboti
 appli
ation.2.3 Temporal sequen
es learning
Fig. 4. Representation of hippo
ampus. Entorhinal Cortex (EC) re
eives inputs andtransmits them to Dentate Gyrus (DG) and CA3 pyramidal 
ells. Between the DGgroup and the CA3 group there are fully 
onne
ted with modi�able 
onne
tions. Be-tween the EC group and CA3 group, and the EC group and DG group, there are �xedone to neighborhood 
onne
tions.This part of model is based on a s
hemati
 representation of hippo
ampus [10℄(Fig. 4). DG represents past state (STM), and develops a temporal a
tivityspe
trum. CA3 links allow pattern 
ompletion and re
ognition between in
omingstate from EC and previous state maintained in DG. We suppose the DG a
tivity
an be modelled as follow :

ActDG
j,l (t) =

1

mj

· exp−
(t − mj)

2

2 · σj

(7)with ActDG
j,l the a
tivity of the 
ell at index l on the line j, t the time, mj a time
onstant and σj the standard deviation. Neurons on one line share their a
tivityin the time and represent a temporal tra
e of EC. Learning of an asso
iation ison the weights of links between CA3 and DG. The normalization of the a
tivity
oming from DG neurons is performed due to the normalization of the DG-CA3weights.

W
DG(j,l)
CA3(i,j) =







ActDG
j,l

∑

j,l
(ActDG

j,l )
2 if ActDG

j 6= 0

unchanged otherwise
(8)Interestingly, this model has the property to work when a same input 
omesseveral times 
ontinously. Thanks to the derivative group EC, a repeated input



7is stored during the total time of its presen
e. Consequently, two su

essive statesare not ambiguous for the system (�A A� = �A�).3 SIMULATION RESULTSA temporal sequen
e of states is rarely replayed two times exa
tly with the samerhythm. Time 
an vary between two states espe
ially when demonstrating a se-quen
e to a robot. In our simulations we apply a time variation between statesand observe the 
onsequen
es on three ar
hite
tures. The �rst ar
hite
ture isthe model of simple sequen
es learning presented in subse
tion 2.3. The se
ondis the same model plus the 
ompetitive me
hanism presented in subse
tion 2.2.The third ar
hite
ture is the same as the �rst one plus the asso
iative me
ha-nism (Fig. 1) seen in subse
tion 2.2. Referen
es sequen
es are generated to besu

essfully reprodu
ed by the se
ond ar
hite
ture with a timing variation of0%. All ar
hite
tures are trained with the same sequen
es and the same maxi-mum of timing variation (0%, 5% or 10%), but with a time variation randomly
hosen between 0 and the maximum variation of the time. In our experiments,to bootstrap a sequen
e, we provide the �rst state. Consequently, this state willnot be ambiguous in the sequen
es. For example, a 
omplex sequen
es 
an be�D B C B A C A B� : �D� is the starting state and it will not be repeated after.Fig. 5 shows the performan
es of ea
h ar
hite
ture. We 
an see that the �rst ar-
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"C4"Fig. 5. C1 : �rst ar
hite
ture : simple sequen
es learning. The results are the same withtime variation of 0%, 5% and 10%. C2 : se
ond ar
hite
ture : 
omplex sequen
es learn-ing with a 
ompetitive me
hanism and a time variation of 5%. C3 : se
ond ar
hite
ture :
omplex sequen
es learning with a 
ompetitive me
hanism and a time variation of 10%.C4 : 
urrent ar
hite
ture : 
omplex sequen
es learning with an asso
iative me
hanism.The results are the same timing variation of 0%, 5% and 10%.
hite
ture (subse
tion 2.3) has very good performan
es with sequen
es of 3 and4 states, be
ause those sequen
es have no repeated states (simple sequen
es).With sequen
es having more than 4 states, the performan
es fall drasti
ally ,be
ause there is at least one state repeated in the sequen
es. We 
an see the



8time variation has no e�e
t on the performan
es. The ar
hite
ture 
an not re-produ
e them, be
ause CA3 group learns two transitions and, thus it predi
tstwo states for ea
h repeated input. The se
ond ar
hite
ture using 
ompetitiveme
hanism, has better performan
es, but, as we have seen previously in subse
-tion 2.2, ambiguous internal states 
an appear and redu
e this gain of sequen
es
orre
tly reprodu
ed. Consequently, like the �rst ar
hite
ture, the CA3 grouplearns two �internal� states and, thus, it predi
ts two states from one input re-peated. We 
an see, the performan
es 
hange a

ording to the timing variationbetween states in the sequen
es : a same input from a given sequen
e 
an beasso
iated with two di�erent os
illators and, 
onsequently a di�erent �internal�state wins. Thanks to the re
ruitment me
hanism, the third ar
hite
ture, has thebest performan
es : 100% with all tested sequen
es. There are not ambiguousstates or �internal� states. The time variation has no e�e
t on the performan
esof the model.4 ROBOTIC APPLICATION
A. B.Fig. 6. A. Representation of desired sequen
e. It begins from the start point. B. Wemanipulate Aibo passively. It learns the su

ession of orientations of the movementfrom these front left leg motor information.The robot used in our experiments is an Aibo ERS7 (Sony). In our appli-
ation, we use only the front left leg, in a passive movement mode to learn asequen
e of gestures. The sequen
e to be learned and reprodu
ed is showed Fig.6.A. In this appli
ation, we test the third ar
hite
ture previously des
ribed.During learning, we manipulate the front left leg of the robot passively (Fig.6.B). During the exe
ution of the movement, the neural network learns online,and in one shot the su

ession of the joints orientation thanks to the motorsfeedba
k information of its leg (proprio
eptive signal). Hen
e, the inputs of ourmodel are the orientations/angles of the leg. The re
orded motors informationwhile learning are shown in Fig. 7.X-learning (horizontal movements) and Fig.7.Y-learning (verti
al movements).To initiate the reprodu
tion of the sequen
e by the robot, we give the �rst stateof the sequen
e (�down�). As Aibo 
an not be manipulated when motors area
tivated, we send the 
ommand dire
tly to the robot. Next, Aibo plays the se-quen
e autonomously (Fig. 7, top). With the starting state, our model predi
tsthe next orientation and send the 
orresponding 
ommand to the robot.
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es the learnt sequen
e. Middle : X-learning and Y-learningare respe
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al motors information while robot learnsthe sequen
e. X-reprodu
tion and Y-reprodu
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tively the horizontal andthe verti
al motors information during the reprodu
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tion, the �rst movement is not reprodu
ed (not predi
ted), but given by theuser in order to trigger the re
all it is our bootstrap state to start the sequen
e. X-axisare the time and Y-axis are the angles of the motors.5 CONCLUSIONS AND DISCUSSIONSWe have proposed a model of neural network for the learning of 
omplex tempo-ral sequen
es. This model introdu
es an asso
iative me
hanism taking advantageof a diversity generator 
omposed of os
illators. These os
illators are based on
oupled CTRNN. This model is e�
ient in the frame of autonomous roboti
sand su

eed in learning in one shot the timing of sequen
es of gestures.During the roboti
s appli
ation, we have noti
ed that the robot reprodu
es thesequen
e with a di�erent amplitude of the movement. This e�e
t 
omes fromthe speed of the displa
ement of the leg of Aibo. In our appli
ation, the speed ofthe reprodu
tion is a prede�ned 
onstant di�erent from the user dynami
 duringlearning. The rhythm of the sequen
e is respe
ted thanks to atemporal group ofneurons. A possible improvement would be to add a model like CPG [5℄ for ea
hmovements (�up�, �down�, �left� and �right�) 
omposing sequen
es with variablespeeds. In our model, the number of neurons 
oding the asso
iations betweenthe inputs and the os
illators, represents the size of the �short term memory�. Inour simulations and appli
ation, the sequen
es learnt do not saturate the �mem-ory�. It would be interesting to analyze the behavior of the neural network withlonger sequen
es, and test the limitations of the system when the neural limithas been rea
hed by the re
ruitment me
hanism. In the present system, it wouldmean that the already re
ruited neurons 
ould be erased in order to en
ode newstates.



10In further works, this sequen
e learning model will 
omplete a model for imita-tion based on low level sensorimotors 
apabilities and vision [13℄. In this way,the robot will learn sensorimotors 
apabilities based on its vision and learn ademonstrated gesture from human or robot by imitation and reprodu
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