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We study the elastic properties of two-dimensional phononic crystals made of aluminum nanocube lattices.

From the experimental point of view, collective modes resulting from the coupling between cubes inside the

crystal are excited and time resolved using ultrafast acoustics. We derive a general theoretical model of the

collective modes. From the analytical expression we discuss the influence of numerous crystal parameters on

the detected frequencies. We then present experimental results on various samples which all exhibit an excel-

lent agreement with the model. The theoretical description reveals that collective modes propagate along the

sample surface. From that we propose to use such modes for measuring the in-plane elastic properties of thin

films.

DOI: 10.1103/PhysRevB.78.064302 PACS number�s�: 63.22.�m, 63.20.�e, 78.47.jc

I. INTRODUCTION

Picosecond ultrasonics �PU�, also called ultrafast acous-

tics, is an optical method that enables the generation and

detection of ultrasounds up to several hundred gigahertz far

above conventional acoustic techniques.1–3 This is possible

thanks to the use of femtosecond laser pulses whose absorp-

tion in any opaque media thermally launches acoustic waves.

The hypersound propagation modulates the optical reflectiv-

ity or transmittivity which is measured by a second delayed

laser pulse. PU has been intensively used for probing elastic

properties of thin films and multilayers down to a few

nanometers.4–8 From this point of view, femtosecond laser

pulses in a pump-probe scheme achieve a sonar at the sub-

micronic scale. Using the same setup, it is also possible to

probe the elastic properties of nano-objects whose vibrations

fall in a frequency range reachable by such an experiment.

The detection of confined vibrational modes has been dem-

onstrated on various systems such as colloids or quantum

dots.9–13

All these studies did concern randomly disposed nano-

objects with no mechanical coupling. Nanotechnology offers

more and more opportunities to build artificial crystals

whose unit cell is composed of one or more nano-object.14–16

What about the elastic properties of such a crystal? This

subject is a hot topic since it offers an unique way of design-

ing the elasticity of a material by adjusting the individual

properties of the dot and their arrangement within the crystal.

From the theoretical point of view, the coupling between

nano-objects leads to the formation of vibration bands of

various nature. First the modes of the isolated object couple

in “molecular” branches whose curvature is directly related

to the coupling between dots. Second, low-frequency modes

appear resulting from the displacement of one object with

respect to others. Such modes are similar to acoustic

phonons in an atomic crystal.

Until recently time-resolved studies performed on artifi-

cial crystals did not reveal collective modes but only indi-

vidual vibrations.15,16 Very recently we successfully applied

ultrafast acoustics to probe both kinds of vibration on arrays

of nanocubes made using e-beam lithography.17 Aluminum
nanocubes were mechanically coupled via an aluminum un-
derlayer. We identified two distinct species of vibrations. The
first modes are individual resonances of the cube; these are
high-frequency oscillations which do not depend on the lat-

tice parameter and whose period is linearly dependent on the

cube width. This first result is similar to previous studies

dedicated to colloïds or clusters. We also detected lower fre-

quency oscillations which present different properties. The

main point is the dependence of the period on both lattice

parameter and cube width. We identified these oscillations as

collective modes and proposed a simple elastic model for

reproducing the experimental data. This report was a demon-

stration of the capability of picosecond ultrasonics for prob-

ing the elastic properties of such artificial crystals that are

so-called phononic crystals. Several questions have been

raised by this study in particular regarding the acoustical

nature of the collective modes detected in these experiments.

Here we focus on these collective modes for which we give

a complete theoretical description. The generalized model

predicts the detected frequencies for lattices whose symme-

try, dot size, step, underlayer thickness, or composition can

be modified. We then confront this model to experiments

performed on numerous series of samples. An excellent

agreement is found in any case. We learn more about the

acoustical nature of these collective modes which are found

to propagate along the surface in various directions. Finally

we show how these modes could be used for measuring in-

plane elastic properties of thin layers.

The paper is organized as follows: Section II gives details

about the crystals’ design and fabrication. We then describe

the experimental setup and illustrate the experimental

method on one sample series. In Sec. III we derive a theo-

retical model of the collective modes. From the analytical

expression we discuss the influence of the different crystal

parameters on the detected frequencies. Experimental results

which exhibit an excellent agreement with the model are

shown in Sec. VI. In Sec. V we discuss the possible interest

of these modes for probing the in-plane elastic properties of

thin films.
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II. EXPERIMENTAL DETAILS

A. Elaboration of the samples

The samples are built up on a Pyrex substrate. First an

aluminum layer is deposited by e-beam metal evaporation. It

is the underlayer on which cubes are deposited. Its thickness,

designated as h in the following, is 20, 100, or 400 nm de-

pending on the sample. The details concerning the samples

used for this work are given in Table I. We use e-beam li-

thography to print the artificial crystals in a positive photo-

resist. Aluminum cubes are then built up by a second metal

evaporation and a lift-off process. The high resolution of

e-beam lithography �less than 10 nm� enables a precise con-

trol of the geometrical parameters and assures a low cube

width dispersion. We designed square �series A and C–E� and

hexagonal �series B� lattices of various cube widths �d�. For

a given cube width, underlayer thickness �h�, and lattice

symmetry, a set of crystals with various step sizes �a� is

fabricated.

B. Experimental setup

The time-resolved experiments were conducted using a

two-color pump and probe setup visible in Fig. 1. The laser

source is a tunable Ti:sapphire oscillator which produces 120

fs optical pulses at a repetition rate of 76 MHz. The laser

wavelength is tuned at 800 nm. The probe is focused into a

�-baryum borate crystal for second-harmonic generation of a

blue probe centered at 400 nm. This two-color scheme is

needed since it was shown that the detection of the collective

mode requires the probe wavelength to be less than the lat-

tice constant of the crystals.17 The time delay between pump

and probe is controlled by a mirror associated to a 600 mm

long translation stage which enables to scan up to 8 ns. To

improve the signal detection the pump is chopped thanks to

an acousto-optical modulator. This modulation is used for

amplification of the probe signal in a lock-in scheme. The

focal spot size of both pump and probe at the sample surface

is about 50 �m so that excitation and detection concern a

large collection of cubes.

C. Measurement and analysis of experimental data

Here we explain the analysis performed for each sample

series. The energy of the pump beam is deposited at the

sample surface due to the strong absorption of aluminum at

800 nm. The resulting heating of the aluminum surface cre-

ates a thermal stress. Because of the short laser-pulse dura-

tion acoustic displacements in the gigahertz range are impul-

sively excited in the structure.2

Any periodic displacement causes a modulation at the

same frequency of the reflected probe beam intensity. The

transient reflectivities of two samples from the series A with

different lattice constants a are presented in Figs. 2�a� and

2�b�. The signal includes several oscillating components. In

the first 400 ps a weak oscillation whose period is 50 ps is

visible. This component does not change with the lattice con-

stant. It is related to the eigenmodes of the aluminum

TABLE I. List of sample series. For each line a set of crystals

with lattice parameters 400, 450, 500, 600, 700, 800, 1000, and

1200 nm are fabricated.

Sample series Lattice type Dot size d
�nm�

Underlayer thickness h
�nm�

A square 200 100

B hexagonal 200 100

C square 100 100

D square 200 20

E square 200 400

Ti : Sapphire

AOM

L
o
c
k
-in

Sample

Delay line

SHG

FIG. 1. Schematic diagram of the experimental setup. Second-

harmonic generation �SHG� is used for producing a blue probe.

Signal to noise ratio is improved by modulating the pump beam

using an acousto-optic modulator �AOM� and a lock-in scheme.
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FIG. 2. Experimental method: for each lattice parameter a, we

plot the measured frequencies as a function of 1 /a. The data ob-

tained here on series A are then fitted using an analytical model

described in the text.
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cubes.17 Let focus on the main signal visible on the nanosec-

ond timescale. This oscillating signal includes several fre-

quencies. It appears from the comparison of Figs. 2�a� and

2�b� that they strongly depend on the lattice step since the

period of the signal for the a=700 nm sample is longer than

for the a=500 nm sample. This paper is devoted to the

analysis of these oscillations. In the following we will show

that they originate from the propagation of a surfacelike

mode. To investigate this mode the following method is

used: For each sample type �lattice symmetry, cube width,

underlayer thickness� we perform transient reflectivity mea-

surements on the whole set of crystals with increasing lattice

constant. The use of Fourier transform reveals up to four

frequencies per crystal which are plotted as a function of the

inverse of the lattice constant. This way we build the curves

plotted in Fig. 2�c�. The multiple frequencies detected order

regularly as branches. The continuous lines are obtained

from the model developed in Sec. III.

These plots have several relevant characteristics. First

point, the upper branches of Fig. 2�c� can be deduced by

scaling the lower one with remarkable factors �2,2 and �5.

Second, each branch extends linearly to zero for lower and

lower 1 /a in a similar manner as an acoustic phonon branch.

This is consistent with an acoustic origin of the oscillations.

For experimental values of 1 /a the curvature indicates the

crucial role of the cube density per unit of surface. These

characteristics are observed on each sample series described

in Table I.

III. MODELING

Here we derive a theoretical description of the curves pre-

sented in Fig. 2 in the square lattice case. We then generalize

it to any kind of two-dimensional crystal.

For doing that, we start from an usual dispersion relation

for an acoustic mode written as

��k�� = c�a� . �k�� , �1�

where k� is the wave vector and c�a� the sound velocity of the

mode. It is important to note that the collective nature of the

mode appears in the dependence of the sound velocity on the

lattice parameter. We first show that due to periodicity only a

discrete set of wave vectors is permitted which explains that

all the branches derive from the first one. Then we give an

analytical expression for the sound velocity c�a� as a func-

tion of a, d, and h which is valid for any crystal symmetry.

Finally, we discuss the influence of each parameter on the

frequencies.

A. Excitation of a discrete set of wave vectors

Due to the sample periodicity, the initial strain due to the

pump light absorption has a similar periodic profile. Among

all the normal modes of the structure the initial strain

launched by the pump light will distribute on the subset of

modes whose displacement comply with the sample period-

icity. Let ��r� , t� be the strain field of one mode at position r�

and at time t. Then whatever the vector A� of the direct lattice

is, we can write

��r� + A� ,t� = ��r�,t� . �2�

Assuming ��r� , t� to be propagative parallel to the surface, we

can write

��r�,t� = �0ei��t−k�.r��. �3�

The respect of the condition �2� leads to k� .A� =2n�, where n
is an integer. As a consequence for any crystal the only

propagative modes excited are those whose wave vector k� is

a reciprocal-lattice vector.18 In the case of a square lattice

with a lattice constant equal to a, the permitted wave vectors

k� can be written as

k� =
2�

a
�iu�x + ju�y� , �4�

where i and j are integer numbers. The corresponding mode

thus propagates in the �i , j� direction and its wave number ki,j
is given by

ki,j = �i2 + j2�2�

a
� . �5�

By reporting this in Eq. �1�, we get for one crystal several

frequencies between which we retrieve the observed remark-

able factors between branches. The first four modes are those

obtained with the directions �1,0�, �1,1�, �2,0�, and �2,1�. The

ratios between the corresponding frequencies are 1, �2, 2,

and �5 identical to those observed experimentally in Fig.

2�c�. A first conclusion is thus that for any crystal, a same

nondispersive acoustic wave is excited at several discrete

wave vectors whose wave numbers vary �which leads to dif-

ferent frequencies� and which propagates along different

crystal directions.

The discrete set of wave vectors is derived from the re-

ciprocal lattice. For example in a hexagonal lattice the mag-

nitude of the wave vectors ki,j are

ki,j = �i2 − ij + j2� 2

�3
��2�

a
� . �6�

In that case, the ratio between the two first branches is ex-

pected to be �3, given by the ratio between wave vectors in

the �1,0� and �2,1� directions.

B. Velocity

Let us describe an analytical model in order to reproduce

the velocity of the collective mode �c�a��. Since the curva-

ture is larger for high 1 /a values, the velocity c�a� decreases

with the dot density at the sample surface. Here we show that

such an effect can be explained by considering the mass

loading of the cubes. Since all the branches are deduced from

the first branch, we focus on the lower collective-mode fre-

quency �f1,0� and its dependence on the lattice constant a. We

also assume that it is issued from a vibration of a unit cell

described as a harmonic oscillator of stiffness K and mass M.

The unit cell is composed of a cube and a square piece of the

underlayer. We can write
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f1,0 =
1

2�
�K

M
=

1

2�
� K

�V
, �7�

where � is the mass density of aluminum and V the unit-cell

volume. V can then be written as a function of a, d, and h the

underlayer thickness. To go further, we first focus on the

square lattice case

f1,0 =
1

2�
�K

�

1

�ha2 + d3
. �8�

According to Eq. �1� the angular frequency of the lowest

mode is

2�f1,0 = c�a�k1,0 = c�a�
2�

a
, �9�

from which we can derive the formula of c�a� valid for a

square lattice

c�a� =
1

2�
�K

�
� a2

ha2 + d3
. �10�

We now examine the limit of infinitely spaced dots. In Fig.

2�c� we note a linear behavior of frequencies close to zero

which defines a constant sound velocity for large a, desig-

nated by c0 in the following. In other words

c0 = lim
a→�

c�a� . �11�

By introducing c0 in Eq. �10�, we get the sound velocity of

the collective mode in the square lattice case

c�a� = c0� a2

a2 + d3
/h

. �12�

c0 here is the only adjustable parameter of the model.

This result can be generalized to any two-dimensional

�2D� lattice. The general unit cell is defined by the vectors a�1

and a�2. The angle between vectors is designated by 	. It is

straightforward to reproduce the previous calculation by

modifying the expression used for the unit-cell volume V in

Eq. �7�. This leads to the generalized sound velocity

c�a� = c0� a2

a2 + d3
/h sin 	

. �13�

In the particular case of a hexagonal lattice, sin 	=�3 /2.

The model can also be extended to a sample in which

cubes and underlayer are composed of two different materi-

als. In that case we distinguish �c and �u the mass density of

the cube and underlayer, respectively. The sound velocity can

then be written as a function of 
=�c /�u:

c�a� = c0� a2

a2 + 
d3
/h sin 	

. �14�

C. Discussion

The frequencies f i,j�a� are given by combining the dis-

crete wave vectors and the sound velocity in Eq. �1�

f i,j�a� =
1

2�
c0� a2

a2 + 
d3
/h sin 	

ki,j . �15�

An important point is that there is only one fitting parameter

for the whole set of branches. The continuous lines on Fig.

2�c� are obtained using a velocity c0=3.07�0.1 nm ps−1.

The agreement between experiments performed on series A

and model is excellent.

From this model we can now examine the influence of the

lattice symmetry, the cube width, and the underlayer thick-

ness on the lattice frequencies. The lattice symmetry plays a

major role in the determination of the set of discrete wave

vectors which itself determines the ratios between branches.

For example, we expect a �2 factor between the first two

branches in a square lattice and �3 factor for a hexagonal

one.

Second from Eq. �14�, we show that curvature is governed

by the factor �=
d3
/ �h sin 	�. Indeed, for large a values,

c�a� in Eq. �12� approaches c0 since d3
/h being negligible

compared to a2. On the contrary, for small value of a, d3
/h is

not negligible and the sound velocity decreases, which mani-

fests itself as a curvature of the branches. Such an effect is

expected in any phononic crystal in which a band structure

appears due to the interferences between multiple reflections.

The cube size d plays a major role on the branch curvature.

The larger the cubes are, the more pronounced the curvature

is expected. We also note that the thinner the underlayer is,

the larger the curvature is. Furthermore, increasing the cube

mass density produces similar effects. Each of these three

influences can be understood by referring to the mass loading

effect induced by the cubes. The curvature is governed by the

impact of the cube mass on the unit-cell mass. The heavier

the cube is, the more pronounced the curvature is.

The lattice symmetry should also affect the curvature of

the branches. Indeed the curvature factor � contains a sin 	
factor. This reveals that for two series whose cube width �d�
and underlayer thickness �h� are identical, the sin 	 factor

modifies the expression of c�a�. The smaller 	 is, the more

pronounced the curvature effect is.

IV. EXPERIMENTAL RESULTS

In this part we present the experimental results obtained

on various series which let us test the model derived in Sec.

III. Successively we compare the theoretical frequencies to

measured results obtained on series in which the lattice sym-

metry, the cube width, or the underlayer thickness is modi-

fied.

A. Lattice symmetry

First we focus on the influence of lattice symmetry. In

Fig. 3, we compare the two first branches measured on series

A �square lattice� and series B �hexagonal lattice�. The cube

width and the underlayer thickness are identical in both se-

ries �Table I�.
The lower branches of both sets are very close and well

reproduced using the previous model with the same sound

velocity c0=3.07�0.1 nm ps−1. This is in accordance with
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the fact that for infinitely spaced cubes the surface has an

intrinsic velocity which depends only on the substrate and

underlayer system. In addition one should remark the mini-

mal difference between modeling lines for hexagonal and

square symmetries concerning the curvature which has been

discussed in Sec. III C. Experimentally the effect of lattice

symmetry on curvature is too small for being measurable.

The most noticeable point is the difference in the factors

needed for deducing the second from the first branch. The �2

factor needed in the square case is replaced by a �3 factor, as

expected. This result confirms the role of the lattice symme-

try in the selective excitation of a discrete vibration spectrum

in the crystal.

B. Cube width

According to Eq. �12� for a given underlayer thickness,

the cube width is expected to change the branch’s curvature.

To test this effect we used square lattices of 100 nm cubes

�series D�. Here again the same 100 nm aluminum under-

layer is used. The lattice constants are similar to previous

sets and only the cube width is changed. In Fig. 4�a� we

compare the results measured on series D to those obtained

on series A.

For clearness, only the lower branch is plotted. While 200

nm cubes have a strong effect on the velocity c�a� the 100

nm ones have a slight influence. The model accounts very

well for this difference due to the cube width change. The

initial velocity c0 is still unchanged compared to previous

results. These results confirm the role of the cubes as mass

loading of the surface.

C. Underlayer thickness

Finally we explored the influence of the underlayer thick-

ness. From the previous analysis the thickness is expected to

act on the curvature. The consequence of the ratio between

cube width and underlayer thickness is that a thinner layer

gives a larger curvature. Three series of identical square lat-

tices were built on different underlayers �series A, D, and E�.
The thicknesses are 20, 100, and 400 nm, respectively, while

cube width is 200 nm. Only the results of series A and D are

plotted on Fig. 4�b� for clarity. The harmonic-oscillator

model is used to fit the data with a very good agreement. As

predicted by the model, the thinner the underlayer is, the

more pronounced the curvature is found.

V. DISCUSSION

The results presented in Sec. IV demonstrate that the the-

oretical description given in Sec. III is complete. For various

lattice symmetry, cube width, or underlayer thickness the

model reproduces the frequencies on the corresponding se-

ries from one fitting parameter c0. Here we examine the

meaning of the value extracted.

c0 has been introduced as a limit value for the sound

velocity of the collective mode in the extent of widely

spaced cubes. While the perturbation of cubes gives a spe-

cific velocity to the surface mode the velocity, here c0 does

not depend on the cubes anymore. As propagation acts along

the surface it can also be interpreted as the surface acoustic

wave velocity in the underlayer/substrate stack. On series

A–C we get c0=3.07�0.1 nm ps−1 as expected since the

underlayer and the substrate are identical for each series. On

the contrary, the best fit of results obtained on series A, D,

and E gives three different velocities c0. It is thus found to be

dependent on the thickness: the thinner the underlayer, the

higher the velocity. These results are plotted in Fig. 5. It is

important to note that this cannot be explained within the

model. As shown below it gives additional information about

the surface mode.

The velocity c0 is in the same order of magnitude as the

Rayleigh wave velocity of aluminum �cR=2.88 nm ps−1�
and fused silica �cR=3.51 nm ps−1�. It appears that for a

thick aluminum underlayer, c0 is close to the Rayleigh wave

velocity of aluminum while for a thin layer the velocity in-

creases and reaches the Rayleigh wave velocity of silica.

This fact is natural since in these two limit cases the problem

reduces to propagation at the surface of an isotropic half

space.

To understand the evolution of c0 as a function of h we

performed finite element method �FEM� simulations.19 By
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means of a time domain algorithm an initial stress is propa-

gated at the surface. The velocity is provided by the time of

flight. The numerical results are plotted in Fig. 5. They fit

very well an exponential decay from the Rayleigh wave ve-

locity of silica to the one of aluminum.

Surface waves are damped in the direction normal to the

surface over a distance of a few acoustical wavelengths.

Thus whatever the precise displacement of the surface mode

described here is, it is expected to extend over both alumi-

num layer and silica substrate. Indeed by the same mecha-

nism as for wave vectors the acoustical wavelength is con-

strained to a discrete set whose higher is a. In our

experiments the penetration depth of the surface mode is

always in the same range as the layer thickness. Thus the

intrinsic velocity c0 is governed by the concerned proportion

of layer and substrate.

Thanks to the small acoustic mismatch between alumi-

num and fused silica we can assume that the wave penetra-

tion depth  is the same over both layer and substrate. Let us

write the wave velocity as a mean between the Rayleigh

wave velocity of the substrate and of the underlayer

weighted by the thickness displaced

c0�h� = 	
0

h

cR
Ue−z/dz + 	

h

�

cR
Se−z/dz , �16�

where cR
U and cR

S are the Rayleigh velocities of the underlayer

and substrate, respectively. Finally, we get

c0�h� = �cR
S − cR

U�e−h/ + cR
U. �17�

This rough description shown in Fig. 5 as a continuous line

agrees very well with both experimental and FEM results.

One can note that by measuring c0 we reach the sound

velocity of an acoustic wave which propagates in the plane

of the underlayer/substrate stack. However, the previous

analysis shows that it is possible to eliminate the influence of

the underlayer. In Fig. 5 the extrapolation of the sound ve-

locity in the limit h→0 gives the Rayleigh wave velocity of

the silica substrate as expected. The same method could be

applied to a thin layer deposited on a substrate. In that case,

the sound velocity deduced from the limit h→0 would cor-

respond to an in-plane property of the thin layer. That means

that using such 2D lattices of nanocubes as a transducer, we

can extract elastic properties of thin layers using a conven-

tional ultrafast acoustic setup. It is particularly interesting

since in ultrafast acoustics the geometry of the experience

limits the exploration to longitudinal waves propagating per-

pendicularly to the layer. Due to that it is not possible to get

all the elastic constants. What suggests the present study is

that 2D lattices can be helpful for measuring in-plane prop-

erties on thin films. On isotropic materials by combining

such a measurement to a conventional picosecond ultrasonic

experiment we could access to all the elastic constants in

submicronic layers. Furthermore, we have shown that vari-

ous acoustic waves propagate along the surface in several

directions. Experimentally these waves are clearly identified

as successive branches. In the case of an anisotropic system,

the sound velocity of these branches would differ. By mea-

suring all the frequencies of the collective modes on such a

sample, it should be possible to access to the different sound

velocities.

VI. CONCLUSION

We have presented picosecond ultrasonic measurements

performed on various 2D lattices of aluminum nanocubes.

Collective acoustical modes issued from the mechanical cou-

pling between dots are detected. We have derived an analyti-

cal model which fully reproduces the experimental data first

in the square lattice case and then generalized to any 2D

crystal. Numerous experimental data are fitted using only

this model and one parameter which is the sound velocity of

a surface acoustic wave of the underlayer/substrate stack.

From the theoretical analysis, we show that several waves

propagate along the sample surface in various directions de-

fined by the reciprocal lattice. By studying the impact of

nanocubes on sound velocity we thus get information about

acoustic propagation in the underlayer. From that, we sug-

gest that such lattices could be used for implementing an

in-plane transducer needed in picosecond ultrasonics for

reaching the complete set of elastic constants in thin layers

using the conventional experimental setup.
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FIG. 5. Filled squares: Intrinsic velocity c0 measured on

samples series D, A, and E which only differ by the underlayer

thickness �20, 100, and 400 nm respectively�. Open circles: FEM

simulation results of the surface wave velocity as a function of the

underlayer thickness assuming a 200 nm acoustical wavelength.

The continuous line is a rough extrapolation described in the text

and given by Eq. �17�.
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