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Abstract. It is well known that a smooth projective Fano variety is rationally con-
nected. Recently Zhang [Z2] (and later Hacon and McKernan [HM] as a special case of
their work on the Shokurov RC-conjecture) proved that the same conclusion holds for
a klt pair (X, ∆) such that −(KX + ∆) is big and nef. We prove here a natural gen-
eralization of the above result by dropping the nefness assumption. Namely we show
that a klt pair (X, ∆) such that −(KX + ∆) is big is rationally connected modulo the
non-nef locus of −(KX + ∆). This result is a consequence of a more general structure
theorem for arbitrary pairs (X, ∆) with −(KX + ∆) pseff.

1. Introduction

An important and nowadays classical property of smooth Fano varieties is their ra-
tional connectedness, which was established by Campana [Ca2] and by Kollár, Miyaoka
and Mori [KMM]. Singular varieties, and more generally pairs, with a weaker positivity
property arise naturally in the Minimal Model Program, and it was conjectured that a
klt pair (X, ∆) with −(KX +∆) big and nef is rationally connected. The conjecture was
proved by Zhang [Z2], and was also obtained later by Hacon and McKernan [HM] as a
special case of their work on the Shokurov RC-conjecture. Even in the smooth case, as
soon as the nefness hypothesis is dropped one can loose the rational connectedness, as
shown by the following example (which is a natural generalization to arbitrary dimension
of [T, Example 6.4]).

Example 1.1. Let PN be a hyperplane of PN+1, Z a smooth hypersurface of degree
N + 1 in PN and CZ ⊂ PN+1 a cone over it. Let X be the blowing up of CZ at its
vertex. Notice that X is a P1-bundle over the strict transform of Z. The variety X has
canonical divisor equal to KX = −H + aE where E is the exceptional divisor (which is
isomorphic to Z) and H the pull-back on X of an hyperplane section of CZ. Since CZ

has multiplicity N +1 at its vertex, an easy computation shows that a = −1. Thus −KX

is big, but X is not rationally connected since Z is not.

One way to measure the lack of nefness of a divisor is the non-emptyness of a pertur-
bation of its (stable) base locus. To be precise, let us recall first that the stable base
locus SBs(D) of a divisor D is given by the set-theoretic intersection ∩m≥1 Bs(mD) of
the base loci of all its multiples. Then one defines, following [N] (see also [Bou] definition
3.3 and theorem A.1), the non-nef locus of D to be the set NNef(D) := ∪m SBs(mD+A),
where A is a fixed ample divisor . One checks that the definition does not depend on the
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choice of A, and that NNef(D) = ∅ if, and only if, D is nef. Notice that the countable
union defining NNef(D) is a finite one, if the ring R(X, D) is finitely generated (see §2.4
below). In any case NNef(D) is not dense, as soon as D is pseudo-effective, and we
always have NNef(D) ⊂ SBs(D). We prove the following.

Theorem 1.2. Let (X, ∆) be a pair such that −(KX + ∆) is big. Then X is rationally
connected modulo an irreducible component of NNef(−(KX +∆))∪Nklt(X, ∆), i.e. there
exists an irreducible component V of NNef(−(KX + ∆))∪Nklt(X, ∆) such that for any
general point x of X there exists a rational curve Rx passing through x and intersecting
V .

If the pair is klt, i.e. if the non-klt locus Nklt(X, ∆) is empty (see §2.2 for the definition
of the non-klt locus), we immediately deduce the following.

Corollary 1.3. Let (X, ∆) be a klt pair such that −(KX+∆) is big. Then X is rationally
connected modulo an irreducible component of the non-nef locus of −(KX + ∆).

Notice that if X is as in the Example 1.1 then NNef(−KX) = E.

Another immediate consequence of Theorem 1.2 is the following generalization of
Zhang’s result [Z2, Theorem 1] to arbitrary pairs.

Corollary 1.4. Let (X, ∆) be a pair such that −(KX + ∆) is big and nef. Then X is
rationally connected modulo the non-klt locus Nklt(X, ∆).

Again by Example 1.1, one can see that the previous statement is optimal. Indeed,
take X as in Example 1.1, and ∆ equal to the exceptional divisor E. Then X is not
rationally connected, but it is rationally connected modulo Nklt(X, ∆) = E.

It may be interesting to point out that, thanks to the work of Campana [Ca1], from
Theorem 1.2 we also deduce the following.

Corollary 1.5. Let (X, ∆) be a pair such that −(KX +∆) is big. Let V be an irreducible
component of NNef(−(KX +∆))∪Nklt(X, ∆) such that X is rationally connected modulo
V . Then, if V ′ is a desingularization of V , the image of π1(V

′) inside π1(X) has finite
index.

Theorem 1.2 is a special case of a more general statement, which may be regarded as
a generalization of the main result of Zhang in [Z1]. Namely we have the following.

Theorem 1.6. Let (X, ∆) be a pair such that −(KX + ∆) is pseff. Let f : X 99K Z be
a dominant rational map with connected fibers. Suppose that

(1.1) the restriction of f to NNef(−(KX + ∆)) ∪ Nklt(X, ∆) does not dominate Z.

Then, either (i) the variety Z is uniruled; or (ii) κ(Z) = 0. Moreover, in the case
−(KX + ∆) is big, under the same assumption (1.1) we necessarily have that Z is
uniruled.

Notice that the possibility (ii) in Theorem 1.6 does occur, as one can see by taking X
to be the product of a projective space and an abelian variety Z. To put Theorem 1.6
into perspective, notice that in general the image of a variety X with pseff anticanonical
divisor may be of general type. Indeed we have the following instructive example (due
to Zhang [Z2, Example, pp. 137–138]).
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Example 1.7. Let C be a smooth curve of arbitrary genus g. Let A be an ample line
bundle with deg(A) > 2 deg(KC). Consider the surface S := P(OC(A) ⊕ OC), together
with the natural projection π : S → C. Then : (i) −KS is big, but not nef; (ii) for any
integer m > 0 the linear system | − mKS| contains a fixed component dominating the
base C.

In the smooth case the proof of Theorem 1.6 yields a better result, which is optimal
by Example 1.7.

Theorem 1.8. Let X be a smooth projective variety such that −KX is pseff. Let f :
X 99K Z be a dominant rational map with connected fibers. Suppose that

(1.2) the restriction of f to Cosupp(J (|| − (KX + ∆)||)) does not dominate Z.

Then, either (i) the variety Z is uniruled; or (ii) κ(Z) = 0. Moreover, in the case
−(KX + ∆) is big, under the same assumption (1.2) we necessarily have that Z is
uniruled.

As a by-product of the previous result we obtain, in the smooth case, the following
improvement of Theorem 1.2.

Theorem 1.9. Let X be a smooth projective variety such that −KX is big. Then X is
rationally connected modulo the locus Cosupp(J (X, || − (KX)||)).

Again, notice that if X is as in the Example 1.1 then E = NNef(−KX) is equal to
Cosupp(J (X, || − (KX)||)).

Moreover, as remarked by Zhang in [Z1] and [Z2], Theorems 1.6 and 1.8 allow to
obtain the following informations on the geometry of the Albanese map, which may be
seen as generalizations of [Z1, Corollary 2] and [Z2, Corollary 3].

Corollary 1.10. Let (X, ∆) be a pair such that −(KX + ∆) is pseff. Let AlbX : X 99K

Alb(X) be the Albanese map (from any smooth model of X). Suppose that NNef(−(KX +
∆)) ∪Nklt(X, ∆) does not dominate Alb(X). Then the Albanese map is dominant with
connected fibers.

Corollary 1.11. Let X be a smooth projective variety such that −KX is pseff. Let
AlbX : X → Alb(X) be the Albanese map. Suppose that Cosupp(J (X, || − (KX)||))
does not dominate Alb(X). Then the Albanese map is surjective with connected fibers.

Our approach to prove Theorem 1.6 is similar to [Z1], [Z2] and to [HM], and goes as
follows: using the hypotheses and multiplier ideal techniques we prove that there exists
an effective divisor L ∼Q −(KX +∆) such that the restriction (∆+L)|Xz

to the general
fiber of f is klt (if −(KX + ∆) is not big we actually add a small ample to it). Then,
supposing for simplicity that X and Y are smooth, and f regular, we invoke Campana’s
positivity result [Ca3, Theorem 4.13] to deduce that f∗(KX/Z + ∆ + L) ∼Q −KZ is
weakly positive. Then by results contained in [MM], [BDPP] and [N] the variety Z is
forced to be either uniruled or to have zero Kodaira dimension. The technical difficulties
come from the singularities of the pair, and from the indeterminacies of the map, but
they may be overcome by working on an appropriate resolution. In particular, the
detailed and very nice account given by Bonavero in [Bon, §7.7] on how to reprove [Z2]
using the methods of [HM] was of great help for us.

Acknowledgements. We thank Shigeharu Takayama for bringing to our attention
the problem from which this work arose.
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2. Preliminaries

We recall some basic definitions and results.

2.1. Notation and conventions. We work over the field of complex numbers. Unless
otherwise specified, a divisor will be integral and Cartier. If D and D′ are Q-divisors on a
projective variety X we write D ∼Q D′, and say that D and D′ are Q-linearly equivalent,
if an integral non-zero multiple of D − D′ is linearly equivalent to zero. A divisor D is
big if a large multiple mD induces a birational map ϕmD : X 99K PH0(X, OX(mD))∗.
A divisor D is pseudo-effective (or pseff) if its class belongs to the closure of the effective

cone Eff(X) ⊂ N1(X). For the basic properties of big and pseff divisors and of their
cones see [L1, §2.2]. A variety X is uniruled if there exists a dominant rational map
Y ×P1 99K X where Y is a variety of dimension dim(Y ) = dim(X)−1. As a combination
of the deep results contained in [MM] and [BDPP] we have the following characterization
of uniruledness : a proper algebraic variety X is uniruled if, and only if, there exists a
smooth projective variety X ′ birational to X whose canonical divisor KX′ is not pseff.

2.2. Pairs. We need to recall some terminology about pairs. Let X a normal projective
variety, ∆ =

∑
aiDi an effective Weil Q-divisor. If KX + ∆ is Q-Cartier, we say that

(X, D) is a pair. Consider a log-resolution f : Y → X of the pair (X, ∆), that is a proper
birational morphism such that Y is smooth and f ∗∆ + E is a simple normal crossing
divisor, where E is the exceptional divisor of f . There is a uniquely defined exceptional
divisor

∑
j bjEj on Y such that

KY = f ∗(KX + ∆) − (f−1)∗∆ +
∑

j

bjEj,

where (f−1)∗∆ denotes the strict transform of ∆ in Y .

We say that (X, ∆) is log-terminal or Kawamata log-terminal (klt for short) if for each
i and j, we have ai < 1 and bj > −1. If the previous inequalities are large, we say that
the pair is log-canonical. We say that the pair (X, ∆) is klt or log-canonical at a point
x if these inequalities are verified for each of the divisors Di, Ej having a non empty
intersection with f−1({x}). We call Nklt(X, ∆) the set of points x at which the pair
(X, ∆) is not klt. We refer the reader to [Kol2] for a detailed treatment of this subject.

2.3. Multiplier ideals. We will freely use the language of multiplier ideals as described
in [L2]. We recall in particular that we can associate to a complete linear serie |D| and
a rational number c, an asymptotic multiplier ideal J (c · ‖D‖) defined as the unique
maximal element for the inclusion in

{J (
c

k
· b(|kD|)}k>1.

For any integer k > 1, there is an inclusion b(|kD|) ⊂ J (k · ‖D‖). One important
property is that, when the divisor D is big, the difference between the two ideals above
is uniformly bounded in k (see [L2, Theorem 11.2.21] for the precise statement).

2.4. Non-nef locus. The non-nef locus (also called the restricted base locus) of a divisor
L depend only on the numerical equivalence class of L (see [Na]). Moreover, by [ELMNP,
Corollary 2.10] if X is smooth we have that

NNef(L) = ∪m∈N Cosupp(J (X, ||mL||)).
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As mentioned in the introduction L is nef if, and only if, NNef(L) = ∅ and moreover L is
pseudo-effective if, and only if, NNef(L) 6= X. For the proofs of the properties mentioned
above and more details on non-nef and stable base loci, see [ELMNP, §1] and [N, III,
§1]. Note that though there is no known example, it is expected that NNef(L) is not
Zariski-closed in general. Nevertheless, when the algebra R(X, D) is finitely generated,
NNef(L) = b(|kD|) for a sufficiently large integer k : apply [L2, Example 11.1.3] and
[ELMNP, Corollary 2.10].

2.5. Positivity of direct images. Recall the following positivity result for direct im-
ages, due to Campana [Ca3, Theorem 4.13], which improves on previous results obtained
by Kawamata [Ka], Kollár [Kol1] and Viehweg [Vie1]. We refer the reader to [Vie2, Ch.
2] for the definition and a detailed discussion of the notion of weak positivity, which will
not be directly used in this paper.

Theorem 2.1 (Campana). Let f : V ′ → V be a morphism with connected fibres between
smooth projective varieties. Let ∆ be an effective Q-divisor on V ′ whose restriction to
the generic fibre is log-canonical. Then, the sheaf

f∗OV ′(m(KV ′/V + ∆))

is weakly positive for all positive integer m such that m∆ is integral.

We will rather use the following consequence of Campana’s positivity result (for a
proof see e.g. [D, Section §6.2.1]).

Corollary 2.2. Let f : V ′ → V be a morphism with connected fibres between smooth
projective varieties. Let ∆ be an effective Q-divisor on V ′ whose restriction to the generic
fibre is log-canonical. Let W be a general fiber of f and suppose that

κ(W, m(KV ′/V + ∆)|W ) ≥ 0.

Then, for every ample divisor H on V there exists a positive integer b > 0 such that

h0(V ′, b(KV ′/V + ∆ + f ∗H)) 6= 0.

3. Proof of the results

3.1. The proof of the main result. We will use the following standard result.

Lemma 3.1. Let (X, ∆) be a pair, T a smooth quasi-projective variety, f : X → T
a surjective morphism, and Xt the general fiber of f . Suppose that ∆ is big and that
(Xt, ∆|Xt

) is klt. Then there exist two Q-divisors A and B, with A ample and B effective
such that ∆ ∼Q A + B, and the restrictions (Xt, (A + B)|Xt

) and (Xt, B|Xb
) are klt.

Another easy fact which we will use is the following.

Lemma 3.2. Let a, b two ideal sheafs of X. Let f : Y → X a proper birational
morphism such that f−1

a and f−1
b are invertible. Let E and F two effective divisors on

Y such that OY (−F ) = f−1
a and OY (−E) = f−1

b. Then OY (−E − F ) = f−1(a ⊗ b).

An important technical ingredient of the proof is provided by the following.

Proposition 3.3. Let (X, ∆) pair and L a big Q-Cartier divisor on X. Then there
exists an effective Q-Cartier divisor D ∼Q L such that Nklt(X, ∆ + D) ⊂ NNef(L) ∪
Nklt(X, ∆).
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Proof. We will construct D as the push-forward of a divisor on a well chosen birational
model of (X, ∆).

Let fY : Y → X be a log-resolution of the pair (X, ∆). Let ∆Y be an effective
Q-divisor on Y such that (fY )∗∆Y = ∆ and

KY + ∆Y = f ∗
Y (KX + ∆) + FY

with FY effective and not having common components with ∆Y . Note that

(3.1) fY (Nklt(Y, ∆Y )) ⊂ Nklt(X, ∆).

By [L2, Theorem 11.2.21], there is an effective divisor E on Y such that for each suf-
ficiently divisible integer m > 0 we have J (m · ‖f ∗

Y L‖) ⊗ OY (−E) ⊂ b(|mf ∗
Y L|). Let

m > 0 be a large and sufficiently divisible integer such that

(3.2) Nklt(Y, ∆Y +
1

m
E) = Nklt(Y, ∆Y ).

Let fV : V → Y be a common log-resolution of J (m ·‖f ∗
Y L‖)⊗OY (−E) and b(|mf ∗

Y L|)
(see [L2, Definition 9.1.12]). Let ∆V be an effective Q-divisor such that (fV )∗∆V =
∆Y + 1

m
E and

KV + ∆V = f ∗
V (KY + ∆Y +

1

m
E) + FV

with FV effective not having common components with ∆V . Again, the pair (V, ∆V )
verifies

(3.3) fV (Nklt(V, ∆V )) ⊂ Nklt(Y, ∆Y +
1

m
E) = Nklt(Y, ∆Y ).

Denote by G1 the effective divisor such that

OV (−G1 − f ∗
V E) = f−1

V (J (m · ‖f ∗
Y L‖) ⊗ OY (−E)),

and by G2 the divisor such that

OV (−G2) = f−1

V b(|mf ∗
Y L|).

Since J (m · ‖f ∗
Y L‖) ⊗ OX(−E) ⊂ b(|mf ∗

Y L|), we have G1 + f ∗
V E > G2. Moreover, by

Lemma 3.2, the divisor G1 verifies

(3.4) fV (G1) = Cosupp(J (m · ‖f ∗
Y L‖)).

Notice that by construction there exists a base-point-free linear series |N | on V such
that f ∗

V f ∗
Y mL ∼ N + G2. Since |N | is base-point-free, there is a Q-divisor N ′ ∼Q N

such that we have

(3.5) Z := Nklt(V, ∆V +
1

m
(G1+N ′)) = Nklt(V, ∆V +

1

m
G1) ⊂ Supp G1∪Nklt(V, ∆V ).

By (3.3), (3.4) and (3.5) we get

fV (Z) ⊂ Cosupp(J (m · ‖f ∗
Y L‖)) ∪ Nklt(Y, ∆Y ) ⊂ NNef(f ∗

Y L) ∪ Nklt(Y, ∆Y ).

Since G1 + f ∗
V E + N ′ > G2 + N ′, we have (fV )∗(G1 + f ∗

V E +N ′) > (fV )∗(G2 + N ′), thus

Nklt(Y, ∆Y +
1

m
((fV )∗(N

′ + G2))) ⊂ Nklt(Y, ∆Y +
1

m
(E + (fV )∗(N

′ + G1))).

Since we have

Nklt(Y, ∆Y +
1

m
(E + (fV )∗(N

′ + G1))) = fV (Nklt(V, ∆V +
1

m
(N ′ + G1))),
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we deduce that

Nklt(Y, ∆Y +
1

m
((fV )∗(N

′ + G2))) ⊂ NNef(f ∗
Y L) ∪ Nklt(Y, ∆Y ).

Note that (fV )∗(N
′+G2)) ∼Q mf ∗

Y L. Thanks to (3.1) to conclude the proof it is sufficient
to prove that fY (NNef(f ∗

Y L)) ⊂ NNef(L) and set D := (fY )∗(
1

m
((fV )∗(N

′ + G2))). Let
A an ample Q-divisor on Y and W an irreducible component of SBs(f ∗

Y L + A). Then
there exists an ample Q-divisor H on X such that A − f ∗

Y H is ample. Thus

fY (W ) ⊂ fY (SBs(f ∗
Y (L + H))) ⊂ SBs(L + H).

This is true for every A and therefore

fY (NNef(f ∗
Y L)) ⊂ NNef(L).

From the previous inclusions, we conclude that

Nklt(X, ∆ +
1

m
(fY )∗((fV )∗(N

′ + G2))) ⊂ NNef(L) ∪ Nklt(X, ∆)

and setting D := (fY )∗(
1

m
((fV )∗(N

′ + G2))) we are done. �

Proof of Theorem 1.6. We give the proof in the case −(KX + ∆) is pseff and point out
at the end how to obtain a stronger conclusion when it is big.

We may assume that Z is smooth. Fix an ample divisor HX on X, and a rational
number 0 < δ ≪ 1. From Proposition 3.3 applied to the big divisor L = −(KX + ∆) +
δHX we deduce the existence of an effective Q-divisor D ∼Q −(KX + ∆) + δHX such
that Nklt(X, ∆+D) does not dominate the base Y . From a result on generic restrictions
of multiplier ideals [L2, Theorem 9.5.35], we have that the restriction to the generic fiber
(Xz, (∆ + D)|Xz

) is a klt pair. In conclusion, by the above discussion and Lemma 3.1,
we may replace our original pair (X, ∆) by a new pair, which, by abuse of notation, we
will again call (X, ∆), such that:

(i) KX + ∆ ∼Q δHX ;
(ii) ∆ = A + B, where A and B are Q-divisor which are respectively ample and

effective, and A may be taken such that A ∼Q
δ
2
HX ;

(iii) the restrictions (Xz, ∆|Xz
) and (Xz, B|Xz

) to the fiber over the general point
z ∈ Z are klt.

Consider a proper birational morphism µ : Y → X from a smooth projective variety
Y onto X providing a log-resolution of the pair (X, ∆) and resolving the indeterminacies
of the map X 99K Z. In particular we have the following commutative diagram

(3.6) Y
µ

//

g
  A

A

A

A

A

A

A

X

f
��
�

�

�

Z.

We write

(3.7) KY + Σ = µ∗(KX + ∆) + E,

where Σ and E are effective divisor without common components and E is µ-exceptional.
Notice that from (3.7) and the fact that E is exceptional we deduce that

(3.8) κ(Y, KY + Σ) = κ(X, KX + ∆)
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whereas from (3.7) together with (iii) above we get that

(3.9) the restriction (Yz, Σ|Yz
) to the fiber of g over the general point z ∈ Z is klt.

More precisely, if we write

(3.10) Σ = µ∗A + BY ∼Q

δ

2
µ∗HX + BY

we have
(3.11)

the restriction (Yz, (BY )|Yz
) to the fiber of g over the general point z ∈ Z is klt.

We have the following result.

Lemma 3.4. In the above setting, there exists an ample Q-divisor HZ on Z such that
µ∗HX ∼Q 2g∗HZ + Γ where Γ is effective and the restriction (Yz, (BY + Γ)Yz

) to the
general fiber is klt.

Proof of Lemma 3.4. Let F be the exceptional divisor of µ. For 0 < ε ≪ 1 the divisor
µ∗HX −εF is ample. Take a very ample divisor H1 on Z, an integer m ≫ 0 large enough
so that m(µ∗HX − εF ) − g∗H1 is base-point-free and a general member

Am ∈ |m(µ∗HX − εF ) − g∗H1|.

Then µ∗HX ∼Q
1

m
Am + εF + 1

m
g∗H1. For m ≫ 0 and 0 < ε ≪ 1, and z ∈ Z general,

the pair

(Yz, (
1

m
Am + εF + B)|Yz

)

is klt, since (Yz, B|Yz
) is. To conclude the proof it is sufficient to set HZ := 1

2m
H1 and

Γ := 1

m
Am + εF . �

By Lemma 3.4 and (3.7) we have that

(KY/Z + BY + Γ)|Yz
∼Q (KY + Σ)|Yz

∼Q E|Yz

is effective. Therefore, by Corollary 2.2, there exists a positive integer b > 0 such that

(3.12) h0(Y, b(KY/Z + BY + Γ + g∗(δHZ))) 6= 0.

Consider a divisor

(3.13) M ∈ |b(KY/Z + BY + Γ + g∗(δHZ))|.

Let C ⊂ Y be a mobile curve coming from X, i.e. the pull-back via µ of a general
complete intersection curve on X. Then C · M ≥ 0. Equivalently we have

(3.14) C · g∗KZ ≤ C · g∗(δHZ) + b(KY + BY + Γ) · C.

Notice that by (3.7), (3.10) and Lemma 3.4 we have

(3.15) (KY + BY + Γ) ∼Q µ∗(KX + ∆) + E + 2δg∗HZ .

Now,

(a) µ∗(KX + ∆) · C → 0 as δ → 0, since KX + ∆ ∼Q δHX by (i) above;
(b) E ·C = 0, since E is µ-exceptional and C is the pull-back via µ of a curve on X;
(c) 2δ(g∗HZ) · C → 0 as δ → 0.
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Therefore letting δ → 0 in (3.14), from (3.15) and (a), (b) and (c) we deduce

(3.16) C · g∗KZ ≤ 0.

If we have strict inequality C · g∗KZ < 0, then Z is uniruled by [MM]. Assume now
that C · g∗KZ = 0 and Z is not uniruled. By [BDPP] the canonical class KZ is pseff
and we can therefore consider its divisorial Zariski decomposition KZ ≡ P + N into a
positive part P which is nef in codimension 1, and a negative one N , which is an effective
R-divisor (see [Bou] and [N]). Since the family of general complete intersection forms a
connecting family (in the sense of [BDPP, Notation 8.1]) and g(C) ·KZ = 0, by [BDPP,
Theorem 9.8] we have that P ≡ 0. Then the numerical Kodaira dimension κσ(Z) = 0
and hence κ(Z) = 0, by [N, Chapter V, Corollary 4.9]. This concludes the proof of the
theorem when −(KX + ∆) is only assumed to be pseff.

If moreover −(KX + ∆) is big, then we do not need to add the small ample δHX to
it in order to apply Proposition 3.3. In this case we may therefore replace our original
pair (X, ∆) by a new pair, again called (X, ∆), such that:

(j) KX + ∆ ∼Q 0;
(jj) ∆ = A + B, where A and B are Q-divisor which are respectively ample and

effective;
(jjj) the restrictions (Xz, ∆|Xz

) and (Xz, B|Xz
) to the fiber over the general point

z ∈ Z are klt.

Then we argue as in the pseff case. Notice that in this case, from (3.8) and (j) above we
deduce that

(3.17) κ(Y, KY + Σ) = 0.

As in Lemma 3.4, we write µ∗A ∼Q 2g∗AZ + Γ, with AZ ample on Z, Γ effective and
the restriction (Yz, (BY + Γ)Yz

) to the general fiber klt. As before, using Campana’s
positivity result we deduce

(3.18) h0(Y, b(KY/Z + BY + Γ + g∗(AZ))) 6= 0.

Hence for all m > 0 sufficiently divisible, the group H0(Z, mb(KZ + AZ)) injects into

H0(Y, mb(KY/Z + BY + Γ + g∗AZ + f ∗(KZ + AZ))) = H0(Y, mb(KY + BY + µ∗A))

(for the equality above we use again Lemma 3.4). Since KY + Σ = KY + BY + µ∗A we
deduce that

(3.19) 0 = κ(Y, KY + Σ) ≥ κ(Z, KZ + AZ).

If the variety Z were not uniruled, by [BDPP] and [MM] this would imply that KZ is
pseff. Therefore KZ + AZ is big, and (3.19) yields the desired contradiction. The proof
of the theorem in the case −(KX + ∆) big is now completed. �

Notice that, when −(KX + ∆) is big, the proof of Theorem 1.6 shows the following
statement. which will be used in the proof of Theorem 1.2.

Theorem 3.5. Let (X, ∆) be a pair such that κ(KX + ∆) = 0, and that ∆ is big. Let
f : X 99K Z be a rational map with connected fibers. Assume that Nklt(X, ∆) doesn’t
dominate Z, Then Z is uniruled.
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3.2. The proof of the consequences of the main result.

Proof of Theorem 1.2. Let (X, ∆) be a pair with −(KX + ∆) big. From Proposition 3.3
we deduce that there exists an effective divisor D ∼Q −(KX + ∆) such that

Nklt(X, ∆ + D) ⊂ NNef(−(KX + ∆)) ∪ Nklt(X, ∆).

Let ν : X ′ → X a log-resolution of (X, ∆ + D). We write

(3.20) KX′ + ∆′ = ν∗(KX + ∆ + D) + E,

where ∆′ and E are effective divisors without common components and E is ν-exceptional.
Notice that from (3.20) and the fact that E is exceptional we deduce that

(3.21) κ(X ′, KX′ + ∆′) = κ(X, KX + ∆ + D) = 0

Notice also that ν(Nklt(X ′, ∆′)) ⊂ NNef(−(KX + ∆)) ∪ Nklt(X, ∆).

Consider now the rational quotient ρ : X ′ 99K R′ := R(X ′). By the main theorem
of [GHS], the variety R′ is not uniruled. Therefore from Theorem 3.5 we obtain that
Nklt(X ′, ∆′) dominates R′.

Let x ∈ X be a general point. Let y ∈ X ′ be a general point such that ν(y) = x. Since
by generic smoothness a general fiber of f is smooth, thus rationally connected, there is a
single rational curve Ry passing through y and intersecting Nklt(X ′, ∆′). Projecting this
curve on X, and using the fact that ν(Nklt(X ′, ∆′)) ⊂ NNef(−(KX +∆))∪Nklt(X, ∆),
we have the same property for X, that is : there exists a rational curve Rx := ν(Ry)
containing x and intersecting an irreducible component of NNef(−(KX+∆))∪Nklt(X, ∆)
(it is sufficient to take any irreducible component X ′ of NNef(−(KX +∆))∪Nklt(X, ∆)
containing the component of ν(Nklt(X ′, ∆′)) dominating R′). �

Proof of Corollary 1.5. The statement follows immediately from [Ca1, Theorem 2.2]. �

Proof of Theorem 1.8. The structure of the proof is identical to that in the singular case.
In the smooth case we get a better result because instead of Proposition 3.3 we may
invoke the following result.

Proposition 3.6. [L2, Example 9.3.57 (i)] Let X be a smooth projective variety and L
a big Q-Cartier divisor on X. Then there exists an effective divisor D ∼Q L such that
Nklt(X, D) ⊂ J (||L||).

The conclusion now follows. �

Proof of Corollary 1.11. Let X
f
→ Y

g
→ Alb(X) be the Stein factorization of AlbX .

Since an abelian variety does not contain rational curves, from the hypothesis and from
Theorem 1.8 it follows that κ(Y ) = 0. From [U] it follows that AlbX(X) is an abelian
variety. Therefore by [Ka] together with the universality of the Albanese map we have
that AlbX is surjective and with connected fibers. �

Proof of Corollary 1.10. It is sufficient to pass to a smooth model X ′ → X and to argue
as in the proof of Corollary 1.11. �
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