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We calculate the full asymptotic expansion of boundary blow-up solutions (see equation (1) below), for any nonlinearity f . Our approach enables us to state sharp qualitative results regarding uniqueness and radial symmetry of solutions, as well as a characterization of nonlinearities for which the blow-up rate is universal. Lastly, we study in more detail the standard nonlinearities f (u) = u p , p > 1.
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Introduction

Let B denote the unit ball of R N , N ≥ 1 and let f ∈ C 1 (R). We study the equation

(1) ∆u = f (u) in B, u = +∞ on ∂B,
where the boundary condition is understood in the sense that lim x→x 0 ,x∈B u(x) = +∞ for all x0 ∈ ∂B and where f is assumed to be positive at infinity, in the sense that

(2) ∃ a ∈ R s.t. f (a) > 0 and f (t) ≥ 0 for t > a.

A function u satisfying (1) is called a boundary blow-up solution or simply a large solution. Existence of a solution of ( 1) is equivalent to the so-called Keller-Osserman condition :

(3) +∞ dt F (t) < +∞, where F (t) = t a f (s) ds.
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For a proof of this fact, see the seminal works of J.B. Keller [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] and R.

Osserman [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] for the case of monotone f , as well as [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF] for the general case. From here on, we always assume that (3) holds.

Our goal here is to study asymptotics, uniqueness and symmetry properties of solutions. Our approach improves known results in at least two directions : firstly, aside from the necessary condition (3), we need not make any additional assumption on f to obtain the sharp asymptotics of solutions. Secondly, we obtain the complete asymptotic expansion of solutions to all orders. Here is a summary of our findings.

Theorem 1.1 Let f ∈ C 1 (R) and assume (2), (3) hold. Consider two solutions u1, u2 of [START_REF] Bandle | Asymptotic behavior of large solutions of elliptic equations[END_REF]. Then,

lim x→x 0 ,x∈B u1(x) -u2(x) = 0,
for all x0 ∈ ∂B.

More precisely, there exists a constant C = C(u1, u2, N, F ) > 0, such that for all x ∈ B,

(4) |u1(x) -u2(x)| ≤ C +∞ u 2 (x)
dt F (t) dt.

In addition,

(5)

|F (u1) -F (u2)| ∈ L ∞ (B).
Estimates on the gradient of solutions can be obtained for a restricted class of nonlinearities, namely Theorem 1.2 Let f ∈ C 1 (R) and assume (2) and (3) hold. Assume in addition that f is increasing up to a linear perturbation i.e. there exists an increasing function f and a constant K such that [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF] f (t) = f (t) -Kt, for all t ∈ R.

Consider two solutions u1 and u2 of [START_REF] Bandle | Asymptotic behavior of large solutions of elliptic equations[END_REF]. Then, [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] |∇(u1 -u2)| ∈ L ∞ (B).

The previous theorems can be used to study qualitative properties of solutions, such as uniqueness and symmetry. We begin with the question of uniqueness of solutions of [START_REF] Bandle | Asymptotic behavior of large solutions of elliptic equations[END_REF]. The following conjecture is due to P.J.

McKenna ( [START_REF] Mckenna | Conference[END_REF]).

Conjecture 1.3 ( [START_REF] Mckenna | Conference[END_REF]) Let N ≥ 1, Ω a smoothly bounded domain of R N and f ∈ C 1 (R) a function such that (2) and (3) hold. Assume in addition that the function f defined by

(8) f (t) = f (t) -λ1t, for all t ∈ R
is increasing, where λ1 = λ1(-∆; Ω) > 0 denotes the principal eigenvalue of the Laplace operator with homogeneous Dirichlet boundary condition.

Then, there exists a unique large solution of

∆u = f (u) in Ω, u = +∞ on ∂Ω.
As a direct consequence of Theorem 1.1, we prove Conjecture 1.3 in the case Ω = B.

Corollary 1.4 Let f ∈ C 1 (R) and assume (2) and (3) hold. Assume in addition that that the function f defined by [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] is nondecreasing. Then, there exists a unique large solution of (1).

Remark 1.5 Many uniqueness theorems have been established in the literature (see e.g. the survey [START_REF] Bandle | Asymptotic behavior of large solutions of elliptic equations[END_REF]), and they hold for a general class of bounded domains Ω. However, in all of these results, additional assumptions on f are needed, such as convexity.

Proof of Corollary 1.4. Assume first that f is nondecreasing. Let u1, u2 denote two large solutions. It suffices to prove that u1 ≤ u2. Assume this is not the case and let ω = {x ∈ B : w(x) > 0} = ∅, where w = u1 -u2.

Working if necessary on a connected component of ω, we may always assume that ω is connected. Using Theorem 1.1, we see that w solves the

equation ∆w = f (u1) -f (u2) ≥ 0 in ω, w = 0 on ∂ω.
By the Maximum Principle, w ≤ 0 in ω, a contradiction. Assume now that we only have f ′ ≥ -λ1. Let ϕ1 > 0 denote an eigenfunction associated to λ1 and let σ = w/ϕ1, where w = u1 -u2 denotes the difference of two solutions. Assume again that ω = {x ∈ B : w(x) > 0} = ∅. By a standard calculation,

∇ • ϕ 2 1 ∇σ = (f (u1) -f (u2) + λ1(u1 -u2))ϕ1 ≥ 0 in ω.
We claim that σ = 0 on ∂ω, from which the desired contradiction will follow. By (4) and the well-known estimate ϕ1 ≥ c(1 -|x|), it suffices to show that

(9) lim x→∂B +∞ u 2 (x) dt F (t) dt 1 -|x| = 0
We shall prove later (see Lemma 2.4) that there exists a radial boundary blow-up solution U of (1) such that u2 ≥ U . Since U is radial, it follows from (2) that U ′ (r) > 0 for r = |x| close to 1. In particular,

U ′′ ≤ ∆U = f (U ).
Multiplying by U ′ and integrating the above inequality between r0 and r close to 1, it follows that (U ′ ) 2 /2 ≤ F (U ) + C. Integrating again between r and 1, we obtain

+∞ U (r) dt 2(F + C) ≤ 1 -r, for r close to 1. So, +∞ u 2 (x) dt F (t) dt 1 -|x| ≤ +∞ U (x) dt F (t) dt 1 -|x| ≤ C 2F (U (x))
and ( 9) follows.

When f ′ > -λ1, uniqueness fails in general. One may ask however whether all solutions of (1) are radial. H. Brezis made the following conjecture.

Conjecture 1.6 ( [START_REF] Brezis | Personal communication to L. Véron[END_REF]) Let f ∈ C 1 (R) denote a function such that (2) and (3) hold. Then, every solution of (1) is radially symmetric.

To our knowledge, the first contribution to the proof of Conjecture 1.6 is due to P.J. McKenna, W. Reichel, and W. Walter (see [START_REF] Mckenna | Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up[END_REF]), using the additional assumption that limt→+∞ f ′ (t)/ F (t) = +∞. A. Porretta and L. Véron then proved the conjecture, assuming only that f is asymptotically convex (see [START_REF] Porretta | Symmetry of large solutions of nonlinear elliptic equations in a ball[END_REF]). We improve these results as follows.

Corollary 1.7 Let f ∈ C 1 (R) and assume that (2) and (3) hold. Let u denote a solution of [START_REF] Bandle | Asymptotic behavior of large solutions of elliptic equations[END_REF]. Assume in addition that, up to a linear perturbation, f is increasing (i.e. [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF] holds for some nondecreasing function f and some constant K). Then, u is radially symmetric. Furthermore, ∂u ∂r > 0 in B \ {0}. Remark 1.8 In the setting of the classical symmetry result of B. Gidas, W. M. Ni and L. Nirenberg (see [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]), ( 6) is also assumed in order to prove symmetry. In the same article, the authors give an example of a nonlinearity f failing [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF] for which there do exist nonradial solutions of the equation. In the context of large solutions, we do not have such a counterexample. In fact, we expect that none exists i.e. we believe that Conjecture 1.6 holds. But at this stage, we do not even know whether radial symmetry continues to hold for simple nonlinearities such as f (u) = u 2 (1 + sin u). Corollary 1.7 is a direct consequence of the moving plane method and Theorem 1.2 :

Proof of Corollary 1.7 . Let U denote a radial solution of (1). It follows from (2) that U is a nondecreasing function of r = |x| for r close to 1 -and dU dr (r) → +∞ as r → 1 -. By [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF], we conclude that any solution u of (1) satisfies ∂u ∂r (x) → +∞ as x → ∂B, while the tangential part of the gradient of u remains bounded. We then apply Theorem 2.1 in [START_REF] Porretta | Symmetry of large solutions of nonlinear elliptic equations in a ball[END_REF].

In addition to the relative asymptotic information given by ( 4), ( 5) and [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF], the exact asymptotic expansion of a solution can be calculated to all orders. This is what we explain next. Consider (for simplicity only) a radial solution of (1) i.e. a solution of (10)

d 2 u dr 2 + N -1 r du dr = f (u),
with lim r→1 -u(r) = +∞. We want to think of the second term on the left-hand side of (10) as a lower order perturbation as r → 1. Multiplying the equation by v = du/dr and putting the error term on the right-hand side, we get 1 2

d dr v 2 = d dr F (u) - N -1 r v 2 .
Make the change of independent variable u = u(r). Thinking of v as a function of the new variable u, we have d dr = du dr d du = v d du and so 1 2

d du v 2 = dF du - N -1 r v.
In other words, v solves the nonlinear integral equation

v(u) = 2 F (u) -(N -1) u U 0 v r dt + C =: N (v),
where U0, C are given constants. The above equation turns out to be contractive in a suitable Banach space. In particular, it can be solved using a standard iterative scheme v k+1 = N (v k ). As we shall demonstrate, each v k contains (in implicit form) the first k terms in the asymptotic expansion of the solution at blow-up. To summarize, we have: Consider the Banach space

Theorem 1.9 Let f ∈ C 1 (R)
X = {v ∈ C(I; R) : ∃M > 0 such that |v| ≤ M v0},
endowed with the norm v = sup I |v/v0|. If the constant U0 is chosen sufficiently large, then for some ρ ∈ (0, 1), there exists a unique solution v ∈ B(v0, ρ) ⊂ X of the integral equation

(12) v(u) = 2 F (u) -(N -1) u U 0 v r dt , u ∈ I,
where r = r(u, v) is given for u ∈ I, v ∈ B(v0, ρ) by

(13) r(u, v) = 1 - +∞ u 1 v dt.
In addition, v is the limit in X of (v k ) defined for k = 0 by [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] and for k ≥ 1, by

(14) v k (u) = 2   F (u) -(N -1) u U 0 v k-1 1 - +∞ t 1 v k-1 ds dt   and the sequence v k is asymptotic to v i.e. as u → +∞, v k+1 (u) = v k (u) + o(v k (u))
and given any k ∈ N we have

v(u) = v k (u) + O(v k+1 (u) -v k (u)).
Let now u denote any solution of (1) and fix r0 ∈ (0, 1) such that u(x) ≥ U0 for |x| ≥ r0. For k ≥ 0, define u k for r ≥ r0 as the unique solution * of (15)

     du k dr = v k (u k ) lim r→1 - u k (r) = +∞,
where v k is given by (14). Then,

u k+1 (r) u k (r) du v0 = o +∞ u k (r) du v0 as r → 1 -
and given any k ∈ N, we have

(16) u(x) u k (|x|) du v0 = o +∞ u k (|x|) du v0 as x → ∂B.
Theorem 1.9 enables one to calculate (implicitly) the asymptotic expansion of a solution term by term. But how many terms in this expansion are singular? This is what we discuss in our last set of results.

We begin with the simplest class of nonlinearities f , those for which only one term in the expansion is singular, namely the function u0 defined by [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] and (15). It turns out, as A.C. Lazer and P.J. McKenna first demonstrated (see [START_REF] Lazer | Asymptotic behavior of solutions of boundary blowup problems[END_REF]), that in this case u0(1d(x)) is the only singular term in the asymptotics of any blow-up solution on any smoothly bounded domain Ω ⊂ R N and for any dimension N ≥ 1, where d(x) denotes the distance of a point x ∈ Ω to the boundary of Ω. In other words, the blow-up rate is universal. The question is now to determine for which nonlinearities f , this universal blow-up occurs. We characterize these nonlinearities as follows:

Theorem 1.10 Let Ω ⊂ R N denote a bounded domain satisfying an inner and an outer sphere condition at each point of its boundary. Let f ∈ C 1 (R), assume (2), (3) hold and consider the equation

(17) ∆u = f (u) in Ω, u = +∞ on ∂Ω. Assume (18) lim u→+∞ 2F (u) +∞ u t 0 √ 2F ds (2F ) 3/2 dt = 0.
Then, any solution of (17) satisfies

(19) lim x→∂Ω u(x) -u0(1 -d(x)) = 0,
where d(x) = dist(x, ∂Ω) and u0 is defined by [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF], (15).

We also have the following partial converse statement : if

(20) lim inf u→+∞ 2F (u) +∞ u t 0 √ 2F ds (2F ) 3/2 dt > 0, then (19) always fails.
Remark 1.11 To our knowledge, (18) improves upon all known conditions for (19) to hold (see in particular [START_REF] Lazer | Asymptotic behavior of solutions of boundary blowup problems[END_REF] and [START_REF] Bandle | On second-order effects in the boundary behaviour of large solutions of semilinear elliptic problems[END_REF]). Despite its unappealing technical appearance, (18) only uses information on the asymptotics of F (in particular, no direct information on f is required). Nonlinearities such that F (u) ∼ e u or F (u) ∼ u p , p > 4 as u → +∞ satisfy (18). For F (u) ∼ u 4 , (20) holds and so the conclusion (19) fails.

Remark 1.12 Condition (18) can be weakened to :

lim r→1 - 2F (u0) +∞ u 0 t 0 √ 2F ds (2F ) 3/2 dt = 0,
where u0 = u0(r) is defined by (15). Similarly, (20) can be weakened to

lim inf r→1 - 2F (u1) +∞ u 1 t 0 √ 2F ds (2F ) 3/2 dt > 0.
As an immediate corollary, we obtain uniqueness on general domains, whenever only one singular term appears: Corollary 1.13 Assume (18). If in addition, f is nondecreasing, then the solution of (17) is unique.

Proof. Simply repeat the proof of Corollary 1.4.

More than one term can be present in the asymptotic expansion of u. Finding all the (singular) terms in this expansion is of staggering algebraic complexity. To illustrate this, we provide the first three terms (in implicit form).

Proposition 1.14 Let u2 be defined by (15) for k = 2. Let also R1, R2, R3 denote three real-valued functions defined for U ∈ R sufficiently large by

R0(U ) = +∞ U du √ 2F , R1(U ) = (N -1) +∞ U u √ 2F dt (2F ) 3/2 du, R2(U ) = (N -1)× × +∞ U       - u (N -1) t √ 2F ds √ 2F + √ 2F +∞ u ds √ 2F dt+ + 5(N -1) 4 u √ 2F dt 2 2F       du (2F ) 3/2 .
Then, for all r ∈ (0, 1), r close to 1, we have

1 -r = R0(u2(r)) + R1(u2(r)) + R2(u2(r))(1 + o(1)).
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For specific nonlinearities, it is possible to invert the above identity. This is what we do for f (u) = u p , p > 1:

Proposition 1.15 Let p > 1 (with 2/(p -1) ∈ N) and let f (u) = u p , for u > 0. Then, the unique positive solution of (1) satisfies

u = d -2 p-1 [2/(p-1)] k=0 a k d k + o(1) as r → 1 -,
where d(r) = 1r for r ∈ (0, 1), and where each a k ∈ R depends on N and p only.

Remark 1.16 Proposition 1.15 was first proved by S. Berhanu and G. Porru (see [START_REF] Berhanu | Qualitative and quantitative estimates for large solutions to semilinear equations[END_REF]). As can be seen from the proof, Proposition 1.15 remains valid for any nonlinearity f such that, for some positive constant c, F (u) = cu p+1 + O(u) for large values of u (and any solution of the equation).

Outline of the paper

1. In the next section, we show that any solution u of ( 1) can be squeezed between two radial solutions U and V i.e. the inequality U ≤ u ≤ V holds throughout B.

2. Thanks to this result, we need only find the asymptotics of radial solutions to prove Theorem 1.1. This is what we do in Section 3.

3. To obtain gradient estimates, the squeezing technique is insufficient and more work is needed. In Section 4, we estimate tangential derivatives via a standard comparison argument, while we gain control over the radial component through a more delicate potential theoretic argument.

4. Section 5 is dedicated to the proof of Theorem 1.9, that is we establish an algorithm for computing the asymptotics of solutions to all orders.

5. In Section 6, we characterize nonlinearities for which the blow-up rate is universal. 6. At last, Sections 7 and 8 contain the tedious calculations of the first three terms of the asymptotic expansion of u in implicit form for general f , and of all terms explicitely for f (u) = u p .

Notation

Throughout this paper, the letter C denotes a generic constant, the value of which is immaterial. In the last section of the paper, we use the symbol c k to denote a quantity indexed by an integer k, thought of being "constant for fixed k", the value of which is again immaterial.

Ordering solutions

In this section, we prove that any solution of the equation is bounded above and below by radial blow-up solutions. To do so, we impose the following additional condition: g(t) := f (-t) satisfies ( 2) and ( 21)

+∞ dt G(t) = +∞, where G ′ (t) = f (-t).
Remark 2.1 Note that (21) is not restrictive. Indeed, if u denotes a solution of (1) and m = minB u, then u also solves (1) with nonlinearity f defined for u ∈ R by

f (u) = f (m) + (m -u) if u < m f (u) if u ≥ m.
Then, f clearly satisfies (21).

We now proceed through a series of three lemmas.

Lemma 2.2 Assume (21) holds. For M ∈ R sufficiently large, there exists a radial function v ∈ C 2 (B) ∩ C(B) satisfying ∆v ≥ f (v) in B and such that v ≤ -M in B.
Proof. Let g(t) = f (-t) for t ∈ R and let a > M be a parameter to be fixed later on. Since g satisfies ( 2), we may always assume that g(t) ≥ 0 for t ≥ M . Let now w denote a solution of ( 22)

     -w ′′ = g(w) w(0) = a w ′ (0) = 0
Claim. There exists an a > M sufficently large such that w(1) ≥ M . Note that w is nonincreasing in the set {t : w(t) ≥ M }. We distinguish two cases. Case 1. w > M .

In this case, w is defined on all of R + . In particular, w(1) > M , as desired. Case 2. There exists R > 0 such that w(R) = M .

In this case, since w is nonincreasing in (0, R), we just need to prove that R ≥ 1. To do so, multiply (22) by -w ′ and integrate between 0 and r ∈ (0, R):

-w ′ = 2(G(a) -G(w)),
where G is an antiderivative of g. Integrate again between 0 and R:

a M dt 2(G(a) -G(t)) = R 0 -w ′ 2(G(a) -G(w)) dr = R. Now, R = a M dt 2(G(a) -G(t)) ≥ G -1 (G(a)/2) M dt 2(G(a) -G(t)) ≥ ≥ G -1 (G(a)/2) M dt 2G(t) .
By (21), we deduce that R ≥ 1 for sufficently large a. We have just proved that w| (0,1) ≥ w(1) ≥ M and the claim follows.

It follows that the function v defined for x ∈ B by v(x) = -w(|x|), is the desired subsolution.

Lemma 2.3 Let f ∈ C(R) and assume (2) and (3) hold. Assume v ∈ C(B) satisfies ∆v ≥ f (v) in B.
Then, there exists a radial large solution V of (1) such that V ≥ v.

Proof. Let v := N . Then, v and v are respectively a sub and supersolution of

(23) ∆v = f (v) in B, v = N on ∂B, provided N is chosen so large that N > v L ∞ (B) and f (N ) ≥ 0. Futher- more, v < v in B
for such values of N . By the method of sub and supersolutions (see e.g. Proposition 2.1 in [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF]), there exists a minimal solution VN of (23) such that N ≥ VN ≥ v. Note that VN is radial, as follows from the classical symmetry result of Gidas, Ni and Nirenberg (see [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]). Also, since VN is minimal, we have that the sequence (VN ) is nondecreasing with respect to N (apply e.g. the Minimality Principle, Corollary 2.2, in [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF]). It turns out that the sequence (VN ) is uniformly bounded on compact sets of B. Indeed, fix R1 < 1. There exists a solution Ũ blowing up on the boundary of the ball of radius 1 and satisfying Ũ ≥ v in BR 1 , see Remark 2.9 in [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF]. By minimality, v ≤ VN ≤ Ũ in BR 1 , whence (VN ) is uniformly bounded on BR 2 for any given R2 < R1.

We have just proved that each VN is radial and that the sequence (VN ) is nondecreasing and bounded on compact subsets of B. By standard elliptic regularity, it follows that (VN ) converges to a radial solution V of (1), such that V ≥ v in B.

Lemma 2.4 Assume (3) and (21) hold. Let u be a solution of [START_REF] Bandle | Asymptotic behavior of large solutions of elliptic equations[END_REF]. Then, there exist two radial functions U, V solving (1) such that

U ≤ u ≤ V in B.
Proof. Let -M denote the minimum value of u and let v denote the subsolution given by Lemma 2.2. In particular, v ≤ u. By Lemma 2.3, there exists a solution U ≥ v of (1) and we may asssume that U is the minimal solution relative to v i.e. given any other solution ũ ≥ v of (1), U ≤ ũ. In particular, U ≤ u. It remains to construct a radial solution V of (1) such that u ≤ V . To do so, we fix

R < 1. By Lemma 2.3, letting v = u| B R , there exists a radial solution v = VR of (24) ∆v = f (v) in BR, v = +∞ on ∂BR,
such that VR ≥ u in BR. Since VR is constructed as the monotone limit of minimal solutions VN (see the proof of the previous lemma), one can easily check that the mapping R → VR is nonincreasing (hence automatically bounded on compact sets of B). Hence, as R → 1, VR converges to a solution V of (1), which is radial and satisfies V ≥ u in B, as desired.

Asymptotics of radial solutions

Our next result establishes that the asymptotic expansion of a radial blowup solution is unique. More precisely, consider the one-dimensional problem

(25) d 2 φ dr 2 = f (φ), r < 1, φ(r) → +∞ as r → 1 -.
All solutions are given implicitly by

+∞ φ ds 2F (s) = 1 -r, where F ′ = f.
We recall the following fact, first observed by C. Bandle and M. Marcus in [START_REF] Bandle | On second-order effects in the boundary behaviour of large solutions of semilinear elliptic problems[END_REF] :

Remark 3.1 Let φ and φc denote two solutions of (25) corresponding to the antiderivatives F and F + c, respectively. Then φ(r)φc(r) → 0 as r → 1 -.

We improve this result in the following way.

Theorem 3.2 Let N ≥ 1 and let u1, u2 denote two strictly increasing functions solving

(26)      d 2 u dr 2 + N -1 r du dr = f (u), r < 1, lim r→1 - u(r) = +∞.
Then,

|u1(r) -u2(r)| ≤ C +∞ u 2 (r) dt F (t) dt.
In addition, the quantity |F (u1) -F (u2)| is bounded. Proof. We want to think of the second term on the left-hand side of equation ( 26) as a lower order perturbation as r → 1. So, we integrate (26) in the same way we would solve (25), namely we let v = du/dr and multiply the equation by v. We get

d dr v 2 2 + N -1 r v 2 = d dr (F (u)) .
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We define the resulting error term by ( 27)

g := - v 2 2 + F (u),
which, seen as function of r, satisfies the differential equation ( 28)

dg dr = N -1 r v 2 .
Since u is a strictly increasing function, the change of independent variable u = u(r) is valid. Thinking of g as a function of the variable u, we have Since (26) holds for r close to 1, the above equation holds for u in a neighborhood of +∞. Solving (27) for v, we finally obtain (30)

     dg du = N -1 r v = N -1 r 2(F (u) -g), dr du = 1/v = (2(F (u) -g)) -1/2 .
We start by calculating the leading asymptotic behaviour of g at +∞ :

Lemma 3.4 lim u→+∞ g(u) F (u) = 0.
In addition,

(31) lim u→+∞ g(u) (N -1)G(u) = 1
, where G is any antiderivative of √ 2F .

Proof. First, we claim that

(32) lim u→+∞ G(u) F (u) = 0.
Indeed, fix ε > 0 and recalling that (3) holds, choose M > 0 so large that

+∞ M dt √ 2F (t)
< ε. By the definition of G, there exists a constant CM such that

G(u) = CM + u M 2F (t)dt.
Since F is nondecreasing it follows that

G(u) ≤ CM + 2F (u) u M dt 2F (t) ≤ CM + 2εF (u).
Dividing by F (u) and letting u → +∞, (32) follows. Next, we claim that

(33) lim u→+∞ g(u) F (u) = 0.
Note that by (29), g(u) is increasing, thus it is bounded below by a constant c as u → +∞. Hence, by (30),

dg du ≤ N -1 r 2(F (u) -c) ≤ 2(N -1) 2(F (u) -c),
where the last inequality holds if r > 1/2 i.e. if u is sufficiently large. Integrating on a given interval (u0, u), we obtain

c ≤ g(u) ≤ g(u0) + 2(N -1) u u 0 2(F (t) -c) dt.
Using (32) and the fact that limt→+∞ √

2F (t) √ 2(F (t)-c)
= 1, we deduce (33).

Now that (33) has been established, we return to (30) and infer that given ε > 0, we have for sufficiently large u,

dg du ≥ N -1 r 2(1 -ε)F (u) ≥ (N -1) 2(1 -ε)F (u) and dg du ≤ N -1 r 2(1 + ε)F (u) ≤ N -1 1 -ε 2(1 + ε)F (u).
Integrating the above, we finally obtain for large u,

(1-ε)(N -1) u u 0 2F (t) dt ≤ g(u)-g(u0) ≤ (1+ε) 3/2 (N -1) u u 0 2F (t) dt
and (31) follows. The fact that g(u) → +∞ as u → +∞ follows automatically.

Next, we prove that given two solutions u1, u2, the corresponding error terms g1, g2 given by (27) differ by a bounded quantity. Then, g1 -g2 is bounded.

Proof. We begin by rewriting the system (30) as a nonlinear integral equation with unknown g. To do so, solve the first line of (30) for r:

r = (N -1) 2(F -g) dg du
.

Differentiate with respect to u:

dr du = (N -1) f -dg du 2(F -g) dg du - 2(F -g) d 2 g du 2 dg du 2 .
Equate the above equation with the second line of (30), to obtain the following second order differential equation:

(34) d 2 g du 2 + 1 2(N -1) 1 F -g dg du 2 - f -dg du 2(F -g) dg du = 0.
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Define (35) q = 1 F -g - 1 F = g F (F -g) .
So, 1/(Fg) = 1/F + q and (34) can be rewritten as

d 2 g du 2 + 1 2(N -1) 1 F + q dg du 2 - f -dg du 2 1 F + q dg du = 0.
In other words, k = dg/du solves the logistic equation

dk du + 1 2 1 F + q k N N -1 k -f = 0.
The general solution of such an equation is well-known and is given by

k = 2(N -1) N e 1 2 u u 0 ( 1 F +q)f dt u u 0 1 F + q e 1 2 t u 0 ( 1 F +q)f ds dt + C
where u0, C are arbitrary constants. Since all integrands are positive for large u, we may take u0 = +∞ in the above formula and obtain

k = - 2(N -1) N e -1 2 +∞ u ( 1 F +q)f dt +∞ u 1 F + q e -1 2 +∞ t qf ds dt + C (36) = - 2(N -1) N √ F e -1 2 +∞ u qf dt +∞ u 1 F + q √ F e -1 2 +∞ t qf ds dt + C = - (N -1) N √ 2F e -1 2 +∞ u qf dt +∞ u 1 √ 2F + q 2 √ 2F e -1 2 +∞ t qf ds dt + C .
Next, we identify the leading asymptotics of the quantity +∞ u qf dt. To do so, simply recall the definition of q given by (35), as well as the leading asymptotics of g given by Lemma 3.4:

(37) +∞ u qf dt = +∞ u g F (F -g) f dt ∼ (N -1) +∞ u G f F 2 dt,
where

G ′ = √ 2F .
Integrating by parts, we discover that

(38) +∞ u G f F 2 dt = G F + +∞ u √ 2F F dt = G F + 2 +∞ u 1 √ 2F dt = o(1)
Using this in (36), we deduce that

k ∼ - N -1 N 1 C √ 2F .
In addition, k = dg/du = (N -1)/r 2(Fg) ∼ (N -1) √ 2F . So, we must have C = -1/N and so (39)

dg du = k = - (N -1) N √ 2F e -1 2 +∞ u qf dt +∞ u 1 √ 2F + q 2 √ 2F e -1 2 +∞ t qf ds dt -1 N .
Take now two solutions u1, u2 of (26) and let g1, g2 denote the associated error terms. By (39), we have

dg1 du - dg2 du = - N -1 N √ 2F ×   e -1 2 +∞ u q 1 f dt +∞ u 1 √ 2F + q 1 2 √ 2F e -1 2 +∞ t q 1 f ds dt -1 N - e -1 2 +∞ u q 2 f dt +∞ u 1 √ 2F + q 2 2 √ 2F e -1 2 +∞ t q 2 f ds dt -1 N   ,
where q = qi satisfies (35) for g = gi. Reducing to the same denominator and using (37), (38), it follows that

dg1 du - dg2 du ∼ - N -1 N 3 √ 2F e -1 2 +∞ u q 1 f dt +∞ u 1 √ 2F + q2 2 √ 2F e -1 2 +∞ t q 2 f ds dt - 1 N -e -1 2 +∞ u q 2 f dt +∞ u 1 √ 2F + q1 2 √ 2F e -1 2 +∞ t q 1 f ds dt - 1 N
To simplify the above expression, we write ei = e -1 2 +∞ u q i f dt . We obtain

dg1 du - dg2 du ∼ - N -1 N 3 √ 2F e1 +∞ u 1 √ 2F + q2 2 √ 2F e2dt - 1 N -e2 +∞ u 1 √ 2F + q1 2 √ 2F e1dt - 1 N = N -1 N 4 √ 2F (e1 -e2) - N -1 N 3 √ 2F × e1 +∞ u 1 √ 2F + q2 2 √ 2F e2dt -e2 +∞ u 1 √ 2F + q1 2 √ 2F e1dt = N -1 N 4 √ 2F (e1 -e2) - N -1 N 3 √ 2F × (e1 -e2) +∞ u 1 √ 2F + q2 2 √ 2F e2dt + e2 +∞ u 1 √ 2F + q1 2 √ 2F e1dt - +∞ u 1 √ 2F + q2 2 √ 2F e2dt 
Cancelling lower order terms in the above expression and noting that e2 ∼ 1, we obtain

dg1 du - dg2 du ∼ N -1 N 4 √ 2F (e1 -e2) - N -1 N 3 √ 2F × +∞ u 1 √ 2F + q1 2 √ 2F e1dt - +∞ u 1 √ 2F + q2 2 √ 2F e2dt
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The right-hand side in the above expression can be rewritten as

N -1 N 4 √ 2F (e1 -e2) - N -1 N 3 √ 2F × +∞ u 1 √ 2F (e1 -e2) dt + 1 2 +∞ u √ 2F (q1e1 -q2e2) dt ∼ N -1 N 4 √ 2F (e1 -e2) - N -1 2N 3 √ 2F +∞ u √ 2F (q1e1 -q2e2) dt = N -1 N 4 √ 2F (e1-e2)- N -1 2N 3 √ 2F +∞ u √ 2F (q1(e1-e2)+e2(q1-q2))dt
Since ei ∼ 1, we have, using the mean value formula,

(40) e1 -e2 ∼ - 1 2 +∞ u (q1 -q2)f dt.
In addition, by (35),

qi ∼ gi F 2 and q1 -q2 ∼ g1 -g2 F 2 .
So,

e1 -e2 ∼ - 1 2 +∞ u (g1 -g2) f F 2 dt and it follows that dg1 du - dg2 du ∼ - 1 2 N -1 N 4 √ 2F +∞ u (g1 -g2) f F 2 dt- N -1 2N 3 √ 2F +∞ u √ 2F - 1 2 g1 F 2 +∞ t (g1 -g2) f F 2 ds + g1 -g2 F 2 dt
Hence,

dg1 du - dg2 du ≤ C √ 2F +∞ u |g1 -g2| f F 2 dt+ +∞ u G F 3/2 +∞ t |g1 -g2| f F 2 ds dt + +∞ u |g1 -g2| (2F ) 3/2 dt ≤ C √ 2F +∞ u |g1 -g2| f F 2 dt + +∞ u |g1 -g2| (2F ) 3/2 dt ,
where G ′ = √ 2F . We want to estimate further each of the two terms on the right-hand side of the above inequality. Since gi = O(G), one can easily check that all integrals are convergent. In particular, we may always find U > u so large that

+∞ U |g1 -g2| f F 2 dt ≤ U u |g1 -g2| f F 2 dt, +∞ U |g1 -g2| (2F ) 3/2 dt ≤ U u |g1 -g2| (2F ) 3/2 dt.
It follows that

dg1 du - dg2 du ≤ C √ 2F U u |g1 -g2| f F 2 dt + U u |g1 -g2| (2F ) 3/2 dt ≤ C sup t∈[u,U ] |g1 -g2| 1 √ 2F + √ 2F +∞ u dt (2F ) 3/2 ≤ C √ 2F sup t∈[u,U ] |g1 -g2|
Integrating the above expression between a given constant u0 and u, we obtain

|g1 -g2|(u) ≤ |g1 -g2|(u0) + C sup t∈[u 0 ,U ] |g1 -g2| u u 0 dt √ 2F Choose now u0 so large that C +∞ u 0 dt √ 2F < 1/2. It follows that sup t∈[u 0 ,U ] |g1 -g2| ≤ 2|g1 -g2|(u0) = C0.
This begin true for U arbitrarily large, we finally deduce that g1 -g2 is bounded, as desired.

Completion of the proof of Theorem 3.2 Let u1, u2 denote two solutions of (26). By (30), each ui, i = 1, 2, solves dui/dr 2(F (ui)gi) =

Integrating, we obtain

+∞ u 1 1 2(F (t) -g1) dt = 1 -r = +∞ u 2 1 2(F (t) -g2) dt.
Without loss of generality, for a given r we may assume u2(r) ≥ u1(r).

Split the left-hand side integral :

+∞ u 1 = u 2 u 1 + +∞ u 2 . It follows that u 2 u 1 1 2(F (t) -g1) dt = +∞ u 2 1 2(F (t) -g2) - 1 2(F (t) -g1) dt = +∞ u 2 2(F (t) -g1) -2(F (t) -g2) 2(F (t) -g1) 2(F (t) -g2) dt = +∞ u 2 g2 -g1 2(F (t) -g1) 2(F (t) -g2) 2(F (t) -g1) + 2(F (t) -g2) dt
Recall that by Lemma 3.4, gi = o(F ) as t → +∞. Recall also that g2 -g1 is bounded. So, for sufficiently large values of u2, we deduce (41)

u 2 u 1 1 2F (t) dt ≤ C +∞ u 2 dt F (t) 3/2 . Since F is increasing, it follows that 0 ≤ u2 -u1 F (u2) ≤ C u 2 u 1 1 2F (t) dt ≤ C +∞ u 2 dt F (t) 3/2 ≤ C F (u2) +∞ u 2 dt F (t) .
Hence,

0 ≤ u2 -u1 ≤ C +∞ u 2 dt F (t) ,
as stated in Theorem 3.2. It remains to prove [START_REF] Mckenna | Conference[END_REF]. Without loss of generality, we assume u1(r) ≤ u2(r) so

u 2 u 1 dt F (t) = +∞ u 1 dt F (t) - +∞ u 2 dt F (t) = +∞ u 2 dt F (t -(u2 -u1)) - +∞ u 2 dt F (t) = +∞ u 2 F (t) -F (t -(u2 -u1)) F (t)F (t -(u2 -u1)) dt = +∞ u 2 F (t) -F (t -(u2 -u1)) F (t)F (t -(u2 -u1)) F (t) + F (t -(u2 -u1)) dt ≥ (F (u2) -F (u1)) +∞ u 2 dt F (t) 3/2 .
Recalling (41), (5) follows.

Gradient estimates

Proof of Theorem 1.2. Let w = u1 -u2 denote the difference of two solutions. Without loss of generality, we may assume that u2 is the minimal solution of (1), so that u1 ≥ u2 and u2 is radial.

Step 1 : estimate of tangential derivatives We begin by proving that any tangential derivative of w is bounded. Since the problem is invariant under rotation and since u2 is radial, we need only show that ∂u 1 ∂x 2 (r, 0, . . . , 0) remains bounded as r → 1 -. Given x = (x1, x2, x ′ ) ∈ B and θ > 0 small, we denote by x θ = (x1 cos θ -x2 sin θ, x1 sin θ + x2 cos θ, x ′ ) the image of x under the rotation of angle θ above the x1-axis in the (x1, x2) plane. By the rotation invariance of the Laplace operator, the function u θ defined for x ∈ B by u θ (x) = u1(x θ ), solves [START_REF] Bandle | Asymptotic behavior of large solutions of elliptic equations[END_REF]. Using (4) and assumption (6), we deduce that

w θ = u1 -u θ solves (42) ∆w θ + Kw θ = f (u1) -f (u θ ) in B, w θ = 0 on ∂B.
By the Maximum Principle on small domains, there exists R0 ∈ (0, 1) such that the operator L = ∆ + K is coercive on B \ BR 0 . As a consequence, we claim that there exists a constant C > 0 such that for all x ∈ B \ BR 0 , (43)

|w θ (x)| ≤ C sup ∂B R 0 |w θ | . Let indeed ζ > 0 denote the solution of      ∆ζ + Kζ = 0 in B \ BR 0 ζ = 1 on ∂BR 0 ζ = 0 on ∂B.
We shall prove that z ± := w θ -± sup ∂B R 0 |w θ | ζ are respectively nonpositive and nonnegative, which implies that (43) holds for the constant C = ζ ∞ . We work with z + and assume by contradiction that the open set ω = {x ∈ B \BR 0 : z + (x) > 0} is non-empty. Restricting the analysis to a connected component, we have

∆z + + Kz + = f (u1) -f (u θ ) ≥ 0 in ω z + ≤ 0 on ∂ω.
By the Maximum Principle, we conclude that z + ≤ 0 in ω, a contradiction. We have thus proved (43). Since u1 ∈ C 1 (BR 0 ), we deduce that for some constant C > 0 and all x ∈ B \ BR 0 ,

|w θ (x)| ≤ Cθ.
Applying the above inequality at the point x = (r, 0, . . . , 0), r ∈ (R0, 1) and letting θ → 0, we finally deduce that ∂u1 ∂x2 (r, 0, . . . , 0) ≤ C for all r ∈ (R0, 1), as desired.

Step 2 : estimate of the radial derivative It remains to control ∂w/∂r. Fix R ∈ (0, 1). Let GR(x, y) denote Green's function in the ball of radius R. Then, for x ∈ BR,

(44) w(x) = ∂B R ∂GR ∂νy (x, •)w dσ + B R GR(x, •)(f (u1) -f (u2)) dy =: w1(x) + w2(x).
We want to let R → 1 in the above identity. To do so, we first observe that w1 is harmonic. By the Maximum Principle, |w1| ≤ w L ∞ (∂B R ) . By estimate (4), we conclude that w1 → 0 as R → 1. To estimate w2, we need the following crucial estimate :

Lemma 4.1 Assume (6). Then,

sup θ∈S N -1 1 0 |f (u1) -f (u2)| (r, θ) dr < +∞.
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We shall also need the following elementary estimates.

Lemma 4.2 There exists a constant C > 0 such that for all 1/2 < r, R < 1 and all x, y ∈ BR,

(45) GR(x, y) = R 2-N G1 x R , y R (46) 
       ∂Br G1(x, •) dσ ≤ 1 ∂Br ∂G1 ∂ |x| (x, •) dσ ≤ C
We postpone the proofs of the above two lemmas and return to (44).

Using polar coordinates,

w2(x) = B R GR(x, •)(f (u1) -f (u2)) dy = R 0 ∂Br GR(x, •)(f (u1) -f (u2))dσ dr
By Lemmas 4.1 and 4.2, we may easily pass to the limit in the above expression as R → 1, so Proof of Lemma 4.1. We first deal with the case where u1, u2 are radial and u1 ≥ u2. By assumption (6), we have

w(x) = B G1(x, •)(f (u1) -f ( u2 
1 0 |f (u1) -f (u2)| dr ≤ 1 0 f (u1) -f (u2) dr + K u1 -u2 L ∞ (B) .
Using (4), we see that u1 -u2 is bounded and so it remains to estimate f (u1) -f (u2). By (30), each ui, i = 1, 2, solves dui/dr 2(F (ui)gi) = 1.
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We also know by Lemma 3.4 that gi = o(F (ui)). So, lim r→1 dui/dr 2F (ui) = 1.

Using this fact, as well as Lemma 3.5 and (5), we obtain for R ∈ (1/2, 1),

R 0 ( f (u1) -f (u2)) dr ≤ R 0 (f (u1) -f (u2)) dr + K u1 -u2 L ∞ (B) ≤ C R 0 (f (u1) -f (u2)) du1/dr 2F (u1) dr + C ≤ C R 0 f (u1) du1/dr 2F (u1) -f (u2) du2/dr 2F (u2) dr+ + C R 0 f (u2) du2/dr 2F (u2) - du1/dr 2F (u1) dr + C ≤ C F (u1) -F (u2) (R) + C+ + C R 0 f (u2) 2(F (u2) -g2) 2F (u2) - 2(F (u1) -g1) 2F (u1) dr ≤ C F (u1) -F (u2) F (u1) + F (u2) (R) + C+ + C R 0 f (u2) F (u2)F (u1) -g2F (u1) -F (u1)F (u2) -g1F (u2) F (u2)F (u1) dr ≤ C F (u1(R)) F (u1) -F (u2) L ∞ (B) + C+ + C R 0 f (u2) F (u2)F (u1) g1F (u2) -g2F (u1) F (u2)F (u1) dr ≤ C + C R 0 f (u2) F (u2)F (u1) (g1 -g2)F (u2) + g2(F (u2) -F (u1)) F (u2)F (u1) dr ≤ C + C g1 -g2 L ∞ (B) R 0 f (u2) F (u2) dr+ + C F (u1) -F (u2) L ∞ (B) R 0 g2 F (u2) dr ≤ C + C R 1/2 f (u2) F (u2) du2/dr 2F (u2) dr + C ≤ C + C F -1/2 (1/2) -F -1/2 (R) ≤ C.
This proves the lemma for radial solutions. To obtain the estimate in the general case, we may always assume that u2 is the minimal solution of (1), so that u2 ≤ u1 and u2 is radial. By Lemma 2.4, up to replacing f by f given by Remark 2.1, there exists another radial solution V such that V ≥ u1 ≥ u2. Using assumption (6), we have

1 0 |f (u1) -f (u2)| dr ≤ 1 0 f (u1) -f (u2) dr + K u1 -u2 L ∞ (B) ≤ 1 0 f (V ) -f (u2) dr + K u1 -u2 L ∞ (B) ≤ 1 0 (f (V ) -f (u2)) dr + 2K u1 -u2 L ∞ (B)
By ( 4), u1 -u2 is bounded and the result follows from the radial case.

Proof of Lemma 4.2. (45) is standard : write the representation formula (44) both in BR and in B1, change variables in the B1 integral and identify the kernels. Next, we prove that given any r ∈ (0, 1), ∂Br G1(x, •)dσ ≤ 1.

It suffices to show that for any φ ∈ Cc(0, 1), (47)

1 0 φ(r) ∂Br G1(x, •)dσ dr ≤ φ L 1 (0,1)
.

By definition of Green's function, the left-hand side of the above inequality is the function v solving

-∆v = φ in B, v = 0 on ∂B.
The above equation can also be integrated directly :

v ′ (r) = r 1-N r 0 φ(t)t N-1 dt, whence |v ′ | ≤ φ L 1 (0,1)
and |v| ≤ φ L 1 (0,1) i.e. (47) holds. This proves that ∂Br G1(x, •)dσ ≤ 1.

We turn to the second estimate in (46). Recall that the Green's function in the unit ball is expressed for x, y ∈ B, x = y, by (48)

G1(x, y) = Γ R 2 + r 2 -2Rr cos ϕ 1/2 -Γ 1 + R 2 r 2 -2Rr cos ϕ 1/2 ,
where R = |x|, r = |y|, ϕ is the angle formed by the vectors x and y and Γ is the fundamental solution of the Laplace operator. Differentiating with respect to R, we obtain for some CN > 0, (

) CN ∂G1 ∂ |x| (x, y) = R -r cos ϕ (R 2 + r 2 -2Rr cos ϕ) N/2 - Rr 2 -r cos ϕ (1 + R 2 r 2 -2Rr cos ϕ) N/2 = R -r + r(1 -cos ϕ) ((R -r) 2 + 2Rr(1 -cos ϕ)) N/2 - Rr 2 -r + r(1 -cos ϕ) ((1 -Rr) 2 + 2Rr(1 -cos ϕ)) N/2 = A-B . 49 
We estimate A and leave the reader perform similar calculations for B.

Clearly, given ε > 0, the expression (49) remains uniformly bounded in the range 1/2 < R, r < 1, ε < ϕ < 2πε. Hence,

∂Br |A| dσ ≤ Cε + C ∂Br ∩[0<ϕ<ε]
|A| dσ.

For y ∈ ∂Br ∩ [0 < ϕ < ε], let z = z(y) denote the intersection of the line (Oy) and the hyperplane P passing through x and tangent to the hypersphere ∂BR. Then, there exists constants c1, c2 > 0 such that for all y ∈ ∂Br ∩

[0 < ϕ < ε], c1(1 -cos φ) ≤ |z -x| 2 ≤ c2(1 -cos φ).
Hence, letting B N-1 (x, ρ) ⊂ P denote the N -1-dimensional ball of radius ρ > 0 centered at x, we obtain

∂Br |A| dσ ≤ C 1 + B N -1 (x,R sin ε) |R -r| + Cr |z -x| 2 |R -r| 2 + c |z -x| 2 N/2 dz ≤ C 1 + B N -1 (O,Rε) |R -r| + C |z| 2 |R -r| 2 + c |z| 2 N/2 dz ≤ C 1 + B N -1 O, Rε |R-r| |R -r| + C |R -r| 2 |z| 2 |R -r| N 1 + c |z| 2 N/2 |R -r| N-1 dz ≤ C 1 + R N -1 1 1 + c |z| 2 N/2 dz + |R -r| B N -1 O, Rε |R-r| |z| 2-N dz ≤ C.
Working similarly with the B term in (49), we finally obtain the desired estimate (46).

Asymptotics to all orders

This section is devoted to the proof of Theorem 1.9. Our first task consists in applying the Fixed Point Theorem to the functional N defined for v ∈ B(v0, ρ), u ∈ I by (50) [N (v)](u) = 2 F (u) -(N -1)

u U 0 v r dt ,
where r is given by (13). Let us check first that N (B(v0, ρ)) ⊂ B(v0, ρ). Take v ∈ B(v0, ρ). Then, (51)

1 ≥ r ≥ 1 - 1 1 -ρ +∞ U 0 1 v0 dt = 1 - 1 1 -ρ +∞ U 0 1 √ 2F dt.
By (3), it follows that for ρ < 1/4 and U0 sufficiently large, 1 ≥ r ≥ 1/2. Hence, This proves Proposition 1.14.

8 An example: f (u) = u p , p > 1 Finding the n-th term in the expansion for abitrary n ∈ N is out of reach for general f , simply because of the algorithmic complexity of calculations. However, when additional information on f is available, one can guess the general form of the expansion and then try to establish it. This is precisely what we do in this section, with the nonlinearity f (u) = u p , p > 1.

For notational convenience, we shall work with F (u) = 1 2 u 2q , where 2q -1 = p, which simply amounts to working with a constant multiple of the original solution.

Recall ( 14) and (15). We want to prove inductively that there exists numbers a k , b k depending on k, p, N only such that vn = u q n k=0 b k u -k(q-1) + o(u q-n(q-1) ), (63)

un = d -1 q-1 n k=0 a k d k + En(d -1 q-1 +n+1 ), ( 64 
)
where En(d

-1 q-1 +n+1 ) ∼ end -1
q-1 +n+1 for some en ∈ R, as d → 0 + . We have v0 = √ 2F = u q . Solving for u0 in (15) yields u0 = c d -1 q-1 . So, (64) and (63) hold for n = 0. Suppose now the result is true for a given n ∈ N. In the computations below, the letter c k denotes a number depending on k, p, N only, which value may change from line to line. By (63), we have

1 vn = u -q 1 + n k=1
b k u -k(q-1) + o(u -n(q-1) )

-1 = = u -q n k=0
c k u -k(q-1) + o(u -n(q-1) ) .
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So, +∞ t ds vn = t 1-q n k=0 c k t -k(q-1) + o(t -(n+1)(q-1) ) = (65) = n+1 k=1 c k t -k(q-1) + o(t -(n+1)(q-1) ). c k t -k(q-1) + o(t -(n+1)(q-1) ).

Whence, vn(t) 1 -+∞ t ds vn = t q n k=0 c k t -k(q-1) + o(t q-n(q-1) ). c k u -k(q-1) + o(u 1+q-n(q-1) ) = = u q 1 + n+1 k=1 c k u -k(q-1) + o(u -(n+1)(q-1) )

1/2 = = u q n+1 k=0 c k u -k(q-1) + o(u q-(n+1)(q-1) ). This proves (63). Integrating (15), we obtain Now, vn+1 = vn + cn+1u q-(n+1)(q-1) (1 + o(1)). So, 1 vn+1 = 1 vn + cn+1u -q-(n+1)(q-1) (1 + o(1)). (1 + o(1)).

It follows that

In addition, vn ∼ v0, so un ∼ u0, and so u -(q-1) n+1

∼ d. Using this in the above equation, we get

d + cn+1d n+2 (1 + o(1)) = +∞ u n+1 du vn .
Recalling that vn is defined by (67) and satisfies (64) by induction hypothesis, we conclude that vn+1 = d + cn+1d n+2 (1 + o(1)

-1 q-1 n k=0 a k d + cn+1d n+2 (1 + o(1)
k + En(d -1 q-1 +n+1 ).

Expanding again the above expression, we finally obtain

vn+1 = d -1 q-1 n+1 k=0 a k d k + En+1(d - 1 
q-1 +n+2 ), which proves (64). Proposition 1.15 follows.

  and assume (2), (3) hold. Let U0 ∈ R, I = [U0, +∞) and let v0 be the function defined for u ∈ I by[START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] v0(u) = 2F (u).

Remark 3 . 3

 33 Clearly, Theorem 1.1 follows as a direct consequence of Remark 2.1, Lemma 2.4 and Theorem 3.2.

Lemma 3 . 5 - v 2 i 2 +

 352 Let u1 and u2 be two solutions of (26). Introduce vi = du i dr and gi = F (ui), for i = 1, 2.

  )) dy Using again Lemmas 4.1 and 4.2, we also have that w is differentiable in the r = |x| variable and •)(f (u1)f (u2)) dy Using polar coordinates again and Lemmas 4.1 and 4.2, we finally obtain (u1)f (u2)| (r, θ) dr ≤ C. It only remains to prove Lemmas 4.1 and 4.2.

  And so,vn+1 = 2F -(N -1)
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where we used Lemma 3.4. So for U0 large and u ≥ U0,

We deduce that (52)

Next, we prove that N is contractive. Given v1, v2 ∈ B(v0, ρ), let r1 = r(u, v1), r2 = r(u, v2) (where r is given by ( 13)). Then, by estimate (51), 1/2 ≤ r1, r2 ≤ 1 and

Using Lemma 3.4, we conclude that N is contractive in B(v0, ρ) if U0 was chosen large enough in the first place. We may thus apply the fixed point theorem. So, it only remains to prove (16). We first observe that the sequence (v k ) defined by ( 14) is asymptotic i.e. v k+1 (u) = v k (u)(1 + o(1)), as u → +∞. Since v k+1 = N (v k ), it suffices to prove that N (v0)-v0 = o(v0) and iterate. By (52),

and the claim follows by Lemma 3.4. So, the sequence (v k ) is asymptotic and so must be the sequence (u k ) defined by (15). We are now in a position to prove (16). By Theorem 1.1, we may restrict to the case where u is radially symmetric. Let v = du/dr. By (26), v solves
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Use the change of variable u = u(r) to get

Integrating, it follows that for some constant C

Up to replacing F (u) by F (u) = F (u) + C (which is harmless from the point of view of asymptotics), we may assume C = 0. So it suffices to prove that v ∈ B(v0, ρ) to conclude that v coincides with the unique fixed point of N , whence (16) will follow. By (53) (with C = 0), v ≤ v0 and so

and v ∈ B(v0, ρ) as desired.

Universal blow-up rate

In this section, we prove Theorem 1.10, that is we characterize nonlinearities for which the blow-up rate is universal.

Proof of Theorem 1.10 .

Step 1. We begin by establishing the theorem when Ω = B is the unit ball. In light of Theorem 1.1, it suffices to prove (19) for one given solution u of (1), which we may therefore assume to be radial. By (30), we have after integration that (54

By definition of u0, we also have (55

Observe that u ≥ u0, split the integral in (55) as

and costin-dupaigne-jdiffeq-jan10.hyper3347.tex March 10, 2010 26 equate (54) and (55). It follows that

So, for sufficiently large values of u, we deduce (56)

and (19) follows from (18).

Step 2. Next, we prove that (19) holds for general domains Ω. To this end, we combine a standard approximation argument by inner and outer spheres (see e.g. [START_REF] Lazer | Asymptotic behavior of solutions of boundary blowup problems[END_REF]) and the comparison technique of [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF]. Let u denote a solution of (17) and take a point x0 ∈ ∂Ω. Let B ⊂ Ω denote a ball which is tangent to ∂Ω at x0. Shrink B somewhat by letting Bε = (1ε)B, ε > 0. Observe that u ∈ C(Bε) is a subsolution of (57) ∆U = f (U ) in Bε, U = +∞ on ∂Bε, By Lemma 2.3, there exists a solution Vε of (57), such that Vε ≥ u in Bε. Furthermore, Vε can be chosen to be the minimal solution of (57) such that Vε ≥ u in Bε. In particular, Vε is radial and ε → Vε is nondecreasing. In addition, ε → Vε is uniformly bounded on compact subsets of B (working as in the proof of Lemma 2.3), so Vε converges as ε → 0, to a solution V of ( 1)

where dB denotes the distance to ∂B. Since V ≥ u and since the above discussion is valid for any point x0 ∈ ∂Ω, we finally obtain
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where d(x) is the distance to ∂Ω. Choose now an exterior ball B ⊂ R N \ Ω which is tangent to ∂Ω at x0. For ε > 0 small and R > 0 large, the annulus Aε = RB \ (1ε)B contains Ω. Let Uε denote a large solution on Aε, which we may assume to be minimal, radial and bounded above on Ω by u. Again Uε → U as ε → 0 where U is a radial large solution in A = RB \ B ⊃ Ω. Repeating the analysis of Step 1. (which was purely local) for the case of a radial solution defined on an annulus rather than a ball, we easily deduce that lim

Since u ≥ U and since the above discussion is valid for any point x0 ∈ ∂Ω, we obtain

So, by ( 59) and ( 58), we have that (19) holds in any smoothly bounded domain Ω.

Step 3. It only remains to prove that (19) fails when (20) holds. We use Theorem 1.9 to compute the second term in the asymptotic expansion of a solution. By (14),

Integrating (15) for k = 1, it follows that for r close enough to 1, (60

Recall (55), split the integral in (55) as

and equate (60) and (55) to get
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Assume by contradiction that lim r→1 -(u1-u0)(r) = 0. Then, (62) implies that

Using this information in (61), we obtain that

But (20) would then lead us to a contradiction with the assumption lim r→1 -(u1 -u0)(r) = 0. So we must have lim inf

and so (19) fails.

The first three singular terms

In the previous section, we characterized nonlinearities for which only one term in the expansion is singular. In the present section, we calculate implicitly the next two terms in the expansion. We have not tried to characterize those f for which all remaining terms are nonsingular, but this can certainly be achieved. We leave the tenacious reader try her/his hand at this computational problem.

We begin by calculating the leading asymptotics of v1, v2. By (14), we have

In other words,

To calculate v2, we introduce some notation. Given a positive measurable function v, set
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and T v = (N -1)P Qv + P (vRv).

v1 is then expressed by