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33, rue St Leu, 80039 Amiens, France

louis.dupaigne@math.cnrs.fr

Abstract

We calculate the full asymptotic expansion of boundary blow-up so-
lutions (see equation (1) below), for any nonlinearity f . Our approach
enables us to state sharp qualitative results regarding uniqueness and ra-
dial symmetry of solutions, as well as a characterization of nonlinearities
for which the blow-up rate is universal. Lastly, we study in more detail
the standard nonlinearities f(u) = up, p > 1.

1 Introduction

Let B denote the unit ball of RN , N ≥ 1 and let f ∈ C1(R). We study
the equation

(1)

{

∆u = f(u) in B,

u = +∞ on ∂B,

where the boundary condition is understood in the sense that

lim
x→x0,x∈B

u(x) = +∞ for all x0 ∈ ∂B

and where f is assumed to be positive at infinity, in the sense that

(2) ∃ a ∈ R s.t. f(a) > 0 and f(t) ≥ 0 for t > a.

A function u satisfying (1) is called a boundary blow-up solution or simply
a large solution. Existence of a solution of (1) is equivalent to the so-called
Keller-Osserman condition :

(3)

∫ +∞ dt
√

F (t)
< +∞, where F (t) =

∫ t

a

f(s) ds.

1
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For a proof of this fact, see the seminal works of J.B. Keller [8] and R.
Osserman [11] for the case of monotone f , as well as [6] for the general
case. From here on, we always assume that (3) holds.

Our goal here is to study asymptotics, uniqueness and symmetry prop-
erties of solutions. Our approach improves known results in at least two
directions : firstly, aside from the necessary condition (3), we need not
make any additional assumption on f to obtain the sharp asymptotics
of solutions. Secondly, we obtain the complete asymptotic expansion of
solutions to all orders. Here is a summary of our findings.

Theorem 1.1 Let f ∈ C1(R) and assume (2), (3) hold. Consider two
solutions u1, u2 of (1). Then,

lim
x→x0,x∈B

u1(x)− u2(x) = 0, for all x0 ∈ ∂B.

More precisely, there exists a constant C = C(u1, u2, N, F ) > 0, such that
for all x ∈ B,

(4) |u1(x)− u2(x)| ≤ C

∫ +∞

u2(x)

dt

F (t)
dt.

In addition,

(5) |F (u1)− F (u2)| ∈ L∞(B).

Estimates on the gradient of solutions can be obtained for a restricted
class of nonlinearities, namely

Theorem 1.2 Let f ∈ C1(R) and assume (2) and (3) hold. Assume in
addition that f is increasing up to a linear perturbation i.e. there exists
an increasing function f̃ and a constant K such that

(6) f(t) = f̃(t)−Kt, for all t ∈ R.

Consider two solutions u1 and u2 of (1). Then,

(7) |∇(u1 − u2)| ∈ L∞(B).

The previous theorems can be used to study qualitative properties of
solutions, such as uniqueness and symmetry. We begin with the question
of uniqueness of solutions of (1). The following conjecture is due to P.J.
McKenna ([5]).

Conjecture 1.3 ([5]) Let N ≥ 1, Ω a smoothly bounded domain of RN

and f ∈ C1(R) a function such that (2) and (3) hold. Assume in addition
that the function f̃ defined by

(8) f(t) = f̃(t)− λ1t, for all t ∈ R

is increasing, where λ1 = λ1(−∆;Ω) > 0 denotes the principal eigenvalue
of the Laplace operator with homogeneous Dirichlet boundary condition.
Then, there exists a unique large solution of

{

∆u = f(u) in Ω,

u = +∞ on ∂Ω.
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As a direct consequence of Theorem 1.1, we prove Conjecture 1.3 in the
case Ω = B.

Corollary 1.4 Let f ∈ C1(R) and assume (2) and (3) hold. Assume in
addition that that the function f̃ defined by (8) is nondecreasing. Then,
there exists a unique large solution of (1).

Remark 1.5 Many uniqueness theorems have been established in the lit-
erature (see e.g. the survey [1]), and they hold for a general class of
bounded domains Ω. However, in all of these results, additional assump-
tions on f are needed, such as convexity.

Proof of Corollary 1.4.Assume first that f is nondecreasing. Let u1, u2

denote two large solutions. It suffices to prove that u1 ≤ u2. Assume this
is not the case and let ω = {x ∈ B : w(x) > 0} 6= ∅, where w = u1 − u2.
Working if necessary on a connected component of ω, we may always
assume that ω is connected. Using Theorem 1.1, we see that w solves the
equation

{

∆w = f(u1)− f(u2) ≥ 0 in ω,

w = 0 on ∂ω.

By the Maximum Principle, w ≤ 0 in ω, a contradiction.
Assume now that we only have f ′ ≥ −λ1. Let ϕ1 > 0 denote an

eigenfunction associated to λ1 and let σ = w/ϕ1, where w = u1 − u2

denotes the difference of two solutions. Assume again that ω = {x ∈ B :
w(x) > 0} 6= ∅. By a standard calculation,

∇ ·
(

ϕ2
1∇σ

)

= (f(u1)− f(u2) + λ1(u1 − u2))ϕ1 ≥ 0 in ω.

We claim that σ = 0 on ∂ω, from which the desired contradiction will
follow. By (4) and the well-known estimate ϕ1 ≥ c(1− |x|), it suffices to
show that

(9) lim
x→∂B

∫ +∞
u2(x)

dt
F (t)

dt

1− |x| = 0

We shall prove later (see Lemma 2.4) that there exists a radial boundary
blow-up solution U of (1) such that u2 ≥ U . Since U is radial, it follows
from (2) that U ′(r) > 0 for r = |x| close to 1. In particular,

U ′′ ≤ ∆U = f(U).

Multiplying by U ′ and integrating the above inequality between r0 and r
close to 1, it follows that (U ′)2/2 ≤ F (U)+C. Integrating again between
r and 1, we obtain

∫ +∞

U(r)

dt
√

2(F + C)
≤ 1− r,

for r close to 1. So,

∫ +∞
u2(x)

dt
F (t)

dt

1− |x| ≤
∫ +∞
U(x)

dt
F (t)

dt

1− |x| ≤ C
√

2F (U(x))
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and (9) follows. �

When f ′ 6> −λ1, uniqueness fails in general. One may ask however
whether all solutions of (1) are radial. H. Brezis made the following
conjecture.

Conjecture 1.6 ([4]) Let f ∈ C1(R) denote a function such that (2) and
(3) hold. Then, every solution of (1) is radially symmetric.

To our knowledge, the first contribution to the proof of Conjecture 1.6 is
due to P.J. McKenna, W. Reichel, and W. Walter (see [10]), using the ad-
ditional assumption that limt→+∞ f ′(t)/

√

F (t) = +∞. A. Porretta and
L. Véron then proved the conjecture, assuming only that f is asymptoti-
cally convex (see [12]). We improve these results as follows.

Corollary 1.7 Let f ∈ C1(R) and assume that (2) and (3) hold. Let
u denote a solution of (1). Assume in addition that, up to a linear per-
turbation, f is increasing (i.e. (6) holds for some nondecreasing function
f̃ and some constant K). Then, u is radially symmetric. Furthermore,
∂u
∂r

> 0 in B \ {0}.
Remark 1.8 In the setting of the classical symmetry result of B. Gidas,
W. M. Ni and L. Nirenberg (see [7]), (6) is also assumed in order to
prove symmetry. In the same article, the authors give an example of a
nonlinearity f failing (6) for which there do exist nonradial solutions of the
equation. In the context of large solutions, we do not have such a counter-
example. In fact, we expect that none exists i.e. we believe that Conjecture
1.6 holds. But at this stage, we do not even know whether radial symmetry
continues to hold for simple nonlinearities such as f(u) = u2(1 + sin u).

Corollary 1.7 is a direct consequence of the moving plane method and
Theorem 1.2 :

Proof of Corollary 1.7 . Let U denote a radial solution of (1). It
follows from (2) that U is a nondecreasing function of r = |x| for r close
to 1− and dU

dr
(r) → +∞ as r → 1−. By (7), we conclude that any solution

u of (1) satisfies ∂u
∂r

(x) → +∞ as x → ∂B, while the tangential part of
the gradient of u remains bounded. We then apply Theorem 2.1 in [12].
�

In addition to the relative asymptotic information given by (4), (5)
and (7), the exact asymptotic expansion of a solution can be calculated
to all orders. This is what we explain next. Consider (for simplicity only)
a radial solution of (1) i.e. a solution of

(10)
d2u

dr2
+

N − 1

r

du

dr
= f(u),

with limr→1− u(r) = +∞. We want to think of the second term on the
left-hand side of (10) as a lower order perturbation as r → 1. Multiplying
the equation by v = du/dr and putting the error term on the right-hand
side, we get

1

2

d

dr
v2 =

d

dr
F (u)− N − 1

r
v2.
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Make the change of independent variable u = u(r). Thinking of v as a
function of the new variable u, we have d

dr
= du

dr
d
du

= v d
du

and so

1

2

d

du
v2 =

dF

du
− N − 1

r
v.

In other words, v solves the nonlinear integral equation

v(u) =

√

2

(

F (u)− (N − 1)

∫ u

U0

v

r
dt

)

+ C =: N (v),

where U0, C are given constants. The above equation turns out to be
contractive in a suitable Banach space. In particular, it can be solved using
a standard iterative scheme vk+1 = N (vk). As we shall demonstrate, each
vk contains (in implicit form) the first k terms in the asymptotic expansion
of the solution at blow-up. To summarize, we have:

Theorem 1.9 Let f ∈ C1(R) and assume (2), (3) hold. Let U0 ∈ R,
I = [U0,+∞) and let v0 be the function defined for u ∈ I by

(11) v0(u) =
√

2F (u).

Consider the Banach space

X = {v ∈ C(I ;R) : ∃M > 0 such that |v| ≤ Mv0},

endowed with the norm ‖v‖ = supI |v/v0|. If the constant U0 is chosen
sufficiently large, then for some ρ ∈ (0, 1), there exists a unique solution
v ∈ B(v0, ρ) ⊂ X of the integral equation

(12) v(u) =

√

2

(

F (u)− (N − 1)

∫ u

U0

v

r
dt

)

, u ∈ I,

where r = r(u, v) is given for u ∈ I, v ∈ B(v0, ρ) by

(13) r(u, v) = 1−
∫ +∞

u

1

v
dt.

In addition, v is the limit in X of (vk) defined for k = 0 by (11) and for
k ≥ 1, by

(14) vk(u) =

√

√

√

√

√2



F (u)− (N − 1)

∫ u

U0

vk−1

1−
∫ +∞
t

1
vk−1

ds
dt





and the sequence vk is asymptotic to v i.e. as u → +∞,

vk+1(u) = vk(u) + o(vk(u))

and given any k ∈ N we have

v(u) = vk(u) +O(vk+1(u)− vk(u)).
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Let now u denote any solution of (1) and fix r0 ∈ (0, 1) such that u(x) ≥
U0 for |x| ≥ r0. For k ≥ 0, define uk for r ≥ r0 as the unique solution∗

of

(15)











duk

dr
= vk(uk)

lim
r→1−

uk(r) = +∞,

where vk is given by (14). Then,

∫ uk+1(r)

uk(r)

du

v0
= o

(

∫ +∞

uk(r)

du

v0

)

as r → 1−

and given any k ∈ N, we have

(16)

∫ u(x)

uk(|x|)

du

v0
= o

(

∫ +∞

uk(|x|)

du

v0

)

as x → ∂B.

Theorem 1.9 enables one to calculate (implicitly) the asymptotic expan-
sion of a solution term by term. But how many terms in this expansion
are singular? This is what we discuss in our last set of results.

We begin with the simplest class of nonlinearities f , those for which
only one term in the expansion is singular, namely the function u0 defined
by (11) and (15). It turns out, as A.C. Lazer and P.J. McKenna first
demonstrated (see [9]), that in this case u0(1− d(x)) is the only singular
term in the asymptotics of any blow-up solution on any smoothly bounded
domain Ω ⊂ R

N and for any dimension N ≥ 1, where d(x) denotes the
distance of a point x ∈ Ω to the boundary of Ω. In other words, the
blow-up rate is universal. The question is now to determine for which
nonlinearities f , this universal blow-up occurs. We characterize these
nonlinearities as follows:

Theorem 1.10 Let Ω ⊂ R
N denote a bounded domain satisfying an inner

and an outer sphere condition at each point of its boundary. Let f ∈
C1(R), assume (2), (3) hold and consider the equation

(17)

{

∆u = f(u) in Ω,

u = +∞ on ∂Ω.

Assume

(18) lim
u→+∞

√

2F (u)

∫ +∞

u

∫ t

0

√
2F ds

(2F )3/2
dt = 0.

Then, any solution of (17) satisfies

(19) lim
x→∂Ω

u(x)− u0(1− d(x)) = 0,

where d(x) = dist(x, ∂Ω) and u0 is defined by (11), (15).

∗Note that (15) can be solved by quadratures and its solution is unique. Indeed, vk(u) ∼

v0(u) =
√

2F (u) as u → +∞ and this implies by (3) that
∫+∞ dt/vk(t) < +∞.
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We also have the following partial converse statement : if

(20) lim inf
u→+∞

√

2F (u)

∫ +∞

u

∫ t

0

√
2F ds

(2F )3/2
dt > 0,

then (19) always fails.

Remark 1.11 To our knowledge, (18) improves upon all known condi-
tions for (19) to hold (see in particular [9] and [2]). Despite its unappeal-
ing technical appearance, (18) only uses information on the asymptotics of
F (in particular, no direct information on f is required). Nonlinearities
such that F (u) ∼ eu or F (u) ∼ up, p > 4 as u → +∞ satisfy (18). For
F (u) ∼ u4, (20) holds and so the conclusion (19) fails.

Remark 1.12 Condition (18) can be weakened to :

lim
r→1−

√

2F (u0)

∫ +∞

u0

∫ t

0

√
2F ds

(2F )3/2
dt = 0,

where u0 = u0(r) is defined by (15). Similarly, (20) can be weakened to

lim inf
r→1−

√

2F (u1)

∫ +∞

u1

∫ t

0

√
2F ds

(2F )3/2
dt > 0.

As an immediate corollary, we obtain uniqueness on general domains,
whenever only one singular term appears:

Corollary 1.13 Assume (18). If in addition, f is nondecreasing, then
the solution of (17) is unique.

Proof. Simply repeat the proof of Corollary 1.4. �

More than one term can be present in the asymptotic expansion of u.
Finding all the (singular) terms in this expansion is of staggering algebraic
complexity. To illustrate this, we provide the first three terms (in implicit
form).

Proposition 1.14 Let u2 be defined by (15) for k = 2. Let also R1, R2,
R3 denote three real-valued functions defined for U ∈ R sufficiently large
by

R0(U) =

∫ +∞

U

du√
2F

, R1(U) = (N − 1)

∫ +∞

U

∫ u √
2F dt

(2F )3/2
du,

R2(U) = (N − 1)×

×
∫ +∞

U













−
∫ u

(

(N − 1)

∫ t √
2F ds√
2F

+
√
2F

∫ +∞

u

ds√
2F

)

dt+

+
5(N − 1)

4

(

∫ u √
2F dt

)2

2F













du

(2F )3/2
.

Then, for all r ∈ (0, 1), r close to 1, we have

1− r = R0(u2(r)) +R1(u2(r)) +R2(u2(r))(1 + o(1)).
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For specific nonlinearities, it is possible to invert the above identity.
This is what we do for f(u) = up, p > 1:

Proposition 1.15 Let p > 1 (with 2/(p− 1) 6∈ N) and let f(u) = up, for
u > 0. Then, the unique positive solution of (1) satisfies

u = d
− 2

p−1

[2/(p−1)]
∑

k=0

akd
k + o(1) as r → 1−,

where d(r) = 1 − r for r ∈ (0, 1), and where each ak ∈ R depends on N
and p only.

Remark 1.16 Proposition 1.15 was first proved by S. Berhanu and G.
Porru (see [3]). As can be seen from the proof, Proposition 1.15 remains
valid for any nonlinearity f such that, for some positive constant c, F (u) =
cup+1 +O(u) for large values of u (and any solution of the equation).

Outline of the paper

1. In the next section, we show that any solution u of (1) can be
squeezed between two radial solutions U and V i.e. the inequal-
ity U ≤ u ≤ V holds throughout B.

2. Thanks to this result, we need only find the asymptotics of radial
solutions to prove Theorem 1.1. This is what we do in Section 3.

3. To obtain gradient estimates, the squeezing technique is insufficient
and more work is needed. In Section 4, we estimate tangential deriva-
tives via a standard comparison argument, while we gain control over
the radial component through a more delicate potential theoretic ar-
gument.

4. Section 5 is dedicated to the proof of Theorem 1.9, that is we estab-
lish an algorithm for computing the asymptotics of solutions to all
orders.

5. In Section 6, we characterize nonlinearities for which the blow-up
rate is universal.

6. At last, Sections 7 and 8 contain the tedious calculations of the first
three terms of the asymptotic expansion of u in implicit form for
general f , and of all terms explicitely for f(u) = up.

Notation
Throughout this paper, the letter C denotes a generic constant, the value
of which is immaterial. In the last section of the paper, we use the symbol
ck to denote a quantity indexed by an integer k, thought of being “constant
for fixed k”, the value of which is again immaterial.

2 Ordering solutions

In this section, we prove that any solution of the equation is bounded
above and below by radial blow-up solutions. To do so, we impose the
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following additional condition: g(t) := f(−t) satisfies (2) and

(21)

∫ +∞ dt
√

G(t)
= +∞, where G′(t) = f(−t).

Remark 2.1 Note that (21) is not restrictive. Indeed, if u denotes a
solution of (1) and m = minB u, then u also solves (1) with nonlinearity
f̃ defined for u ∈ R by

f̃(u) =

{

f(m) + (m− u) if u < m

f(u) if u ≥ m.

Then, f̃ clearly satisfies (21).

We now proceed through a series of three lemmas.

Lemma 2.2 Assume (21) holds. For M ∈ R sufficiently large, there
exists a radial function v ∈ C2(B) ∩ C(B) satisfying

∆v ≥ f(v) in B

and such that
v ≤ −M in B.

Proof. Let g(t) = f(−t) for t ∈ R and let a > M be a parameter to be
fixed later on. Since g satisfies (2), we may always assume that g(t) ≥ 0
for t ≥ M . Let now w denote a solution of

(22)











−w′′ = g(w)

w(0) = a

w′(0) = 0

Claim. There exists an a > M sufficently large such that w(1) ≥ M .
Note that w is nonincreasing in the set {t : w(t) ≥ M}. We distin-

guish two cases.
Case 1. w > M .

In this case, w is defined on all of R+. In particular, w(1) > M , as
desired.
Case 2. There exists R > 0 such that w(R) = M .

In this case, since w is nonincreasing in (0, R), we just need to prove
that R ≥ 1. To do so, multiply (22) by −w′ and integrate between 0 and
r ∈ (0, R):

−w′ =
√

2(G(a)−G(w)),

where G is an antiderivative of g. Integrate again between 0 and R:
∫ a

M

dt
√

2(G(a)−G(t))
=

∫ R

0

−w′
√

2(G(a)−G(w))
dr = R.

Now,

R =

∫ a

M

dt
√

2(G(a)−G(t))
≥
∫ G−1(G(a)/2)

M

dt
√

2(G(a)−G(t))
≥

≥
∫ G−1(G(a)/2)

M

dt
√

2G(t)
.
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By (21), we deduce that R ≥ 1 for sufficently large a. We have just proved
that w|(0,1) ≥ w(1) ≥ M and the claim follows.

It follows that the function v defined for x ∈ B by v(x) = −w(|x|), is
the desired subsolution. �

Lemma 2.3 Let f ∈ C(R) and assume (2) and (3) hold. Assume v ∈ C(B)
satisfies

∆v ≥ f(v) in B.

Then, there exists a radial large solution V of (1) such that V ≥ v.

Proof. Let v := N . Then, v and v are respectively a sub and supersolu-
tion of

(23)

{

∆v = f(v) in B,

v = N on ∂B,

provided N is chosen so large that N > ‖v‖L∞(B) and f(N) ≥ 0. Futher-
more, v < v in B for such values of N . By the method of sub and super-
solutions (see e.g. Proposition 2.1 in [6]), there exists a minimal solution
VN of (23) such that N ≥ VN ≥ v. Note that VN is radial, as follows from
the classical symmetry result of Gidas, Ni and Nirenberg (see [7]). Also,
since VN is minimal, we have that the sequence (VN) is nondecreasing
with respect to N (apply e.g. the Minimality Principle, Corollary 2.2, in
[6]).

It turns out that the sequence (VN) is uniformly bounded on compact
sets of B. Indeed, fix R1 < 1. There exists a solution Ũ blowing up on the
boundary of the ball of radius 1 and satisfying Ũ ≥ v in BR1

, see Remark
2.9 in [6]. By minimality, v ≤ VN ≤ Ũ in BR1

, whence (VN ) is uniformly
bounded on BR2

for any given R2 < R1.
We have just proved that each VN is radial and that the sequence (VN )

is nondecreasing and bounded on compact subsets of B. By standard
elliptic regularity, it follows that (VN ) converges to a radial solution V of
(1), such that V ≥ v in B. �

Lemma 2.4 Assume (3) and (21) hold. Let u be a solution of (1). Then,
there exist two radial functions U, V solving (1) such that

U ≤ u ≤ V in B.

Proof. Let −M denote the minimum value of u and let v denote the
subsolution given by Lemma 2.2. In particular, v ≤ u. By Lemma 2.3,
there exists a solution U ≥ v of (1) and we may asssume that U is the
minimal solution relative to v i.e. given any other solution ũ ≥ v of (1),
U ≤ ũ. In particular, U ≤ u. It remains to construct a radial solution V
of (1) such that u ≤ V . To do so, we fix R < 1. By Lemma 2.3, letting
v = u|BR

, there exists a radial solution v = VR of

(24)

{

∆v = f(v) in BR,

v = +∞ on ∂BR,
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such that VR ≥ u in BR. Since VR is constructed as the monotone limit of
minimal solutions VN (see the proof of the previous lemma), one can easily
check that the mapping R 7→ VR is nonincreasing (hence automatically
bounded on compact sets of B). Hence, as R → 1, VR converges to a
solution V of (1), which is radial and satisfies V ≥ u in B, as desired. �

3 Asymptotics of radial solutions

Our next result establishes that the asymptotic expansion of a radial blow-
up solution is unique. More precisely, consider the one-dimensional prob-
lem

(25)
d2φ

dr2
= f(φ), r < 1, φ(r) → +∞ as r → 1−.

All solutions are given implicitly by

∫ +∞

φ

ds
√

2F (s)
= 1− r, where F ′ = f.

We recall the following fact, first observed by C. Bandle and M. Marcus
in [2] :

Remark 3.1 Let φ and φc denote two solutions of (25) corresponding to
the antiderivatives F and F + c, respectively. Then φ(r)− φc(r) → 0 as
r → 1−.

We improve this result in the following way.

Theorem 3.2 Let N ≥ 1 and let u1, u2 denote two strictly increasing
functions solving

(26)











d2u

dr2
+

N − 1

r

du

dr
= f(u), r < 1,

lim
r→1−

u(r) = +∞.

Then,

|u1(r)− u2(r)| ≤ C

∫ +∞

u2(r)

dt

F (t)
dt.

In addition, the quantity |F (u1)− F (u2)| is bounded.

Remark 3.3 Clearly, Theorem 1.1 follows as a direct consequence of Re-
mark 2.1, Lemma 2.4 and Theorem 3.2.

Proof. We want to think of the second term on the left-hand side of
equation (26) as a lower order perturbation as r → 1. So, we integrate
(26) in the same way we would solve (25), namely we let v = du/dr and
multiply the equation by v. We get

d

dr

(

v2

2

)

+
N − 1

r
v2 =

d

dr
(F (u)) .
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We define the resulting error term by

(27) g := −v2

2
+ F (u),

which, seen as function of r, satisfies the differential equation

(28)
dg

dr
=

N − 1

r
v2.

Since u is a strictly increasing function, the change of independent variable
u = u(r) is valid. Thinking of g as a function of the variable u, we have
dg
du

= dg
dr

dr
du

= 1
v

dg
dr

and so

(29)
dg

du
=

N − 1

r
v.

Since (26) holds for r close to 1, the above equation holds for u in a
neighborhood of +∞. Solving (27) for v, we finally obtain

(30)











dg

du
=

N − 1

r
v =

N − 1

r

√

2(F (u)− g),

dr

du
= 1/v = (2(F (u)− g))−1/2 .

We start by calculating the leading asymptotic behaviour of g at +∞ :

Lemma 3.4

lim
u→+∞

g(u)

F (u)
= 0.

In addition,

(31) lim
u→+∞

g(u)

(N − 1)G(u)
= 1, where G is any antiderivative of

√
2F .

Proof. First, we claim that

(32) lim
u→+∞

G(u)

F (u)
= 0.

Indeed, fix ε > 0 and recalling that (3) holds, choose M > 0 so large that
∫ +∞
M

dt√
2F (t)

< ε. By the definition of G, there exists a constant CM such

that

G(u) = CM +

∫ u

M

√

2F (t)dt.

Since F is nondecreasing it follows that

G(u) ≤ CM + 2F (u)

∫ u

M

dt
√

2F (t)
≤ CM + 2εF (u).

Dividing by F (u) and letting u → +∞, (32) follows. Next, we claim that

(33) lim
u→+∞

g(u)

F (u)
= 0.
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Note that by (29), g(u) is increasing, thus it is bounded below by a con-
stant c as u → +∞. Hence, by (30),

dg

du
≤ N − 1

r

√

2(F (u)− c) ≤ 2(N − 1)
√

2(F (u)− c),

where the last inequality holds if r > 1/2 i.e. if u is sufficiently large.
Integrating on a given interval (u0, u), we obtain

c ≤ g(u) ≤ g(u0) + 2(N − 1)

∫ u

u0

√

2(F (t)− c) dt.

Using (32) and the fact that limt→+∞

√
2F (t)√

2(F (t)−c)
= 1, we deduce (33).

Now that (33) has been established, we return to (30) and infer that
given ε > 0, we have for sufficiently large u,

dg

du
≥ N − 1

r

√

2(1− ε)F (u) ≥ (N − 1)
√

2(1− ε)F (u)

and
dg

du
≤ N − 1

r

√

2(1 + ε)F (u) ≤ N − 1

1− ε

√

2(1 + ε)F (u).

Integrating the above, we finally obtain for large u,

(1−ε)(N−1)

∫ u

u0

√

2F (t) dt ≤ g(u)−g(u0) ≤ (1+ε)3/2(N−1)

∫ u

u0

√

2F (t) dt

and (31) follows. The fact that g(u) → +∞ as u → +∞ follows automat-
ically. �

Next, we prove that given two solutions u1, u2, the corresponding error
terms g1, g2 given by (27) differ by a bounded quantity.

Lemma 3.5 Let u1 and u2 be two solutions of (26). Introduce vi =
dui

dr

and

gi = −v2i
2

+ F (ui), for i = 1, 2.

Then, g1 − g2 is bounded.

Proof. We begin by rewriting the system (30) as a nonlinear integral
equation with unknown g. To do so, solve the first line of (30) for r:

r = (N − 1)

√

2(F − g)
dg
du

.

Differentiate with respect to u:

dr

du
= (N − 1)

{

f − dg
du

√

2(F − g) dg
du

−
√

2(F − g) d2g
du2

(

dg
du

)2 .

}

Equate the above equation with the second line of (30), to obtain the
following second order differential equation:

(34)
d2g

du2
+

1

2(N − 1)

1

F − g

(

dg

du

)2

− f − dg
du

2(F − g)

dg

du
= 0.
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Define

(35) q =
1

F − g
− 1

F
=

g

F (F − g)
.

So, 1/(F − g) = 1/F + q and (34) can be rewritten as

d2g

du2
+

1

2(N − 1)

(

1

F
+ q

)(

dg

du

)2

− f − dg
du

2

(

1

F
+ q

)

dg

du
= 0.

In other words, k = dg/du solves the logistic equation

dk

du
+

1

2

(

1

F
+ q

)

k

(

N

N − 1
k − f

)

= 0.

The general solution of such an equation is well-known and is given by

k =
2(N − 1)

N

e
1
2

∫

u
u0
( 1
F

+q)fdt

∫ u

u0

(

(

1
F
+ q
)

e
1
2

∫

t
u0
( 1
F

+q)fds
)

dt+ C

where u0, C are arbitrary constants. Since all integrands are positive for
large u, we may take u0 = +∞ in the above formula and obtain

k = −2(N − 1)

N

e−
1
2

∫

+∞
u ( 1

F
+q)fdt

∫ +∞
u

(

1
F
+ q
)

e−
1
2

∫+∞
t qfdsdt+ C

(36)

= −2(N − 1)

N

√
F

e−
1
2

∫

+∞
u

qfdt

∫ +∞
u

(

1
F
+ q
)√

Fe−
1
2

∫+∞
t qfdsdt+ C

= − (N − 1)

N

√
2F

e−
1
2

∫

+∞
u

qfdt

∫ +∞
u

(

1√
2F

+ q
2

√
2F
)

e−
1
2

∫+∞
t qfdsdt+ C

.

Next, we identify the leading asymptotics of the quantity
∫ +∞
u

qfdt. To
do so, simply recall the definition of q given by (35), as well as the leading
asymptotics of g given by Lemma 3.4:

(37)

∫ +∞

u

qfdt =

∫ +∞

u

g

F (F − g)
fdt ∼ (N − 1)

∫ +∞

u

G
f

F 2
dt,

where G′ =
√
2F . Integrating by parts, we discover that

(38)

∫ +∞

u

G
f

F 2
dt =

G

F
+

∫ +∞

u

√
2F

F
dt =

G

F
+ 2

∫ +∞

u

1√
2F

dt = o(1)

Using this in (36), we deduce that

k ∼ −N − 1

N

1

C

√
2F .

In addition, k = dg/du = (N − 1)/r
√

2(F − g) ∼ (N − 1)
√
2F . So, we

must have C = −1/N and so
(39)

dg

du
= k = − (N − 1)

N

√
2F

e−
1
2

∫

+∞
u

qfdt

∫ +∞
u

(

1√
2F

+ q
2

√
2F
)

e−
1
2

∫+∞
t qfdsdt− 1

N

.
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Take now two solutions u1, u2 of (26) and let g1, g2 denote the associated
error terms. By (39), we have

dg1
du

− dg2
du

= −N − 1

N

√
2F×





e−
1
2

∫

+∞
u

q1fdt

∫ +∞
u

(

1√
2F

+ q1
2

√
2F
)

e−
1
2

∫+∞
t q1fdsdt− 1

N

−

e−
1
2

∫

+∞
u

q2fdt

∫ +∞
u

(

1√
2F

+ q2
2

√
2F
)

e−
1
2

∫+∞
t q2fdsdt− 1

N



 ,

where q = qi satisfies (35) for g = gi. Reducing to the same denominator
and using (37), (38), it follows that

dg1
du

− dg2
du

∼ −N − 1

N3

√
2F

(

e−
1
2

∫

+∞
u

q1fdt

[∫ +∞

u

(

1√
2F

+
q2
2

√
2F

)

e−
1
2

∫+∞
t q2fdsdt− 1

N

]

−e−
1
2

∫

+∞
u

q2fdt

[∫ +∞

u

(

1√
2F

+
q1
2

√
2F

)

e−
1
2

∫+∞
t q1fdsdt− 1

N

])

To simplify the above expression, we write ei = e−
1
2

∫

+∞
u

qifdt. We obtain

dg1
du

− dg2
du

∼ −N − 1

N3

√
2F

(

e1

[
∫ +∞

u

(

1√
2F

+
q2
2

√
2F

)

e2dt− 1

N

]

−e2

[
∫ +∞

u

(

1√
2F

+
q1
2

√
2F

)

e1dt− 1

N

])

=
N − 1

N4

√
2F (e1 − e2)− N − 1

N3

√
2F×

(

e1

[∫ +∞

u

(

1√
2F

+
q2
2

√
2F

)

e2dt

]

− e2

[∫ +∞

u

(

1√
2F

+
q1
2

√
2F

)

e1dt

])

=
N − 1

N4

√
2F (e1 − e2)− N − 1

N3

√
2F×

(

(e1 − e2)

[
∫ +∞

u

(

1√
2F

+
q2
2

√
2F

)

e2dt

]

+

e2

[∫ +∞

u

(

1√
2F

+
q1
2

√
2F

)

e1dt−
∫ +∞

u

(

1√
2F

+
q2
2

√
2F

)

e2dt

])

Cancelling lower order terms in the above expression and noting that
e2 ∼ 1, we obtain

dg1
du

− dg2
du

∼ N − 1

N4

√
2F (e1 − e2)− N − 1

N3

√
2F×

[∫ +∞

u

(

1√
2F

+
q1
2

√
2F

)

e1dt−
∫ +∞

u

(

1√
2F

+
q2
2

√
2F

)

e2dt

]
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The right-hand side in the above expression can be rewritten as

N − 1

N4

√
2F (e1 − e2)− N − 1

N3

√
2F×

[
∫ +∞

u

1√
2F

(e1 − e2) dt+
1

2

∫ +∞

u

√
2F (q1e1 − q2e2) dt

]

∼ N − 1

N4

√
2F (e1 − e2)− N − 1

2N3

√
2F

∫ +∞

u

√
2F (q1e1 − q2e2) dt

=
N − 1

N4

√
2F (e1−e2)−N − 1

2N3

√
2F

∫ +∞

u

√
2F (q1(e1−e2)+e2(q1−q2))dt

Since ei ∼ 1, we have, using the mean value formula,

(40) e1 − e2 ∼ −1

2

∫ +∞

u

(q1 − q2)fdt.

In addition, by (35),

qi ∼ gi
F 2

and q1 − q2 ∼ g1 − g2
F 2

.

So,

e1 − e2 ∼ −1

2

∫ +∞

u

(g1 − g2)
f

F 2
dt

and it follows that

dg1
du

− dg2
du

∼ −1

2

N − 1

N4

√
2F

∫ +∞

u

(g1 − g2)
f

F 2
dt−

N − 1

2N3

√
2F

∫ +∞

u

√
2F

(

−1

2

g1
F 2

∫ +∞

t

(g1 − g2)
f

F 2
ds+

g1 − g2
F 2

)

dt

Hence,

∣

∣

∣

∣

dg1
du

− dg2
du

∣

∣

∣

∣

≤ C
√
2F

(∫ +∞

u

|g1 − g2| f

F 2
dt+

∫ +∞

u

G

F 3/2

∫ +∞

t

|g1 − g2| f

F 2
ds dt+

∫ +∞

u

|g1 − g2|
(2F )3/2

dt

)

≤ C
√
2F

(∫ +∞

u

|g1 − g2| f

F 2
dt+

∫ +∞

u

|g1 − g2|
(2F )3/2

dt

)

,

where G′ =
√
2F . We want to estimate further each of the two terms

on the right-hand side of the above inequality. Since gi = O(G), one can
easily check that all integrals are convergent. In particular, we may always
find U > u so large that

∫ +∞

U

|g1 − g2| f

F 2
dt ≤

∫ U

u

|g1 − g2| f

F 2
dt,

∫ +∞

U

|g1 − g2|
(2F )3/2

dt ≤
∫ U

u

|g1 − g2|
(2F )3/2

dt.
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It follows that

∣

∣

∣

∣

dg1
du

− dg2
du

∣

∣

∣

∣

≤ C
√
2F

(∫ U

u

|g1 − g2| f

F 2
dt+

∫ U

u

|g1 − g2|
(2F )3/2

dt

)

≤ C

(

sup
t∈[u,U ]

|g1 − g2|
)

(

1√
2F

+
√
2F

∫ +∞

u

dt

(2F )3/2

)

≤ C√
2F

sup
t∈[u,U ]

|g1 − g2|

Integrating the above expression between a given constant u0 and u, we
obtain

|g1 − g2|(u) ≤ |g1 − g2|(u0) + C

(

sup
t∈[u0,U ]

|g1 − g2|
)

∫ u

u0

dt√
2F

Choose now u0 so large that C
∫ +∞
u0

dt√
2F

< 1/2. It follows that

sup
t∈[u0,U ]

|g1 − g2| ≤ 2|g1 − g2|(u0) = C0.

This begin true for U arbitrarily large, we finally deduce that g1 − g2 is
bounded, as desired. �

Completion of the proof of Theorem 3.2
Let u1, u2 denote two solutions of (26). By (30), each ui, i = 1, 2,

solves
dui/dr

√

2(F (ui)− gi)
= 1.

Integrating, we obtain

∫ +∞

u1

1
√

2(F (t)− g1)
dt = 1− r =

∫ +∞

u2

1
√

2(F (t)− g2)
dt.

Without loss of generality, for a given r we may assume u2(r) ≥ u1(r).
Split the left-hand side integral :

∫ +∞
u1

=
∫ u2

u1
+
∫ +∞
u2

. It follows that

∫ u2

u1

1
√

2(F (t)− g1)
dt =

∫ +∞

u2

(

1
√

2(F (t)− g2)
− 1
√

2(F (t)− g1)

)

dt

=

∫ +∞

u2

√

2(F (t)− g1)−
√

2(F (t)− g2)
√

2(F (t)− g1)
√

2(F (t)− g2)
dt

=

∫ +∞

u2

g2 − g1
√

2(F (t)− g1)
√

2(F (t)− g2)
(

√

2(F (t)− g1) +
√

2(F (t)− g2)
) dt

Recall that by Lemma 3.4, gi = o(F ) as t → +∞. Recall also that g2− g1
is bounded. So, for sufficiently large values of u2, we deduce

(41)

∫ u2

u1

1
√

2F (t)
dt ≤ C

∫ +∞

u2

dt

F (t)3/2
.
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Since F is increasing, it follows that

0 ≤ u2 − u1
√

F (u2)
≤ C

∫ u2

u1

1
√

2F (t)
dt ≤ C

∫ +∞

u2

dt

F (t)3/2

≤ C
√

F (u2)

∫ +∞

u2

dt

F (t)
.

Hence,

0 ≤ u2 − u1 ≤ C

∫ +∞

u2

dt

F (t)
,

as stated in Theorem 3.2. It remains to prove (5). Without loss of gener-
ality, we assume u1(r) ≤ u2(r) so

∫ u2

u1

dt
√

F (t)
=

∫ +∞

u1

dt
√

F (t)
−
∫ +∞

u2

dt
√

F (t)

=

∫ +∞

u2

dt
√

F (t− (u2 − u1))
−
∫ +∞

u2

dt
√

F (t)

=

∫ +∞

u2

√

F (t)−
√

F (t− (u2 − u1))
√

F (t)F (t− (u2 − u1))
dt

=

∫ +∞

u2

F (t)− F (t− (u2 − u1))
√

F (t)F (t− (u2 − u1))
(

√

F (t) +
√

F (t− (u2 − u1))
) dt

≥ (F (u2)− F (u1))

∫ +∞

u2

dt

F (t)3/2
.

Recalling (41), (5) follows. �

4 Gradient estimates

Proof of Theorem 1.2. Let w = u1 − u2 denote the difference of
two solutions. Without loss of generality, we may assume that u2 is the
minimal solution of (1), so that u1 ≥ u2 and u2 is radial.

Step 1 : estimate of tangential derivatives
We begin by proving that any tangential derivative of w is bounded.
Since the problem is invariant under rotation and since u2 is radial, we
need only show that ∂u1

∂x2
(r, 0, . . . , 0) remains bounded as r → 1−. Given

x = (x1, x2, x
′) ∈ B and θ > 0 small, we denote by xθ = (x1 cos θ −

x2 sin θ, x1 sin θ+x2 cos θ, x
′) the image of x under the rotation of angle θ

above the x1-axis in the (x1, x2) plane. By the rotation invariance of the
Laplace operator, the function uθ defined for x ∈ B by uθ(x) = u1(xθ),
solves (1). Using (4) and assumption (6), we deduce that wθ = u1 − uθ

solves

(42)

{

∆wθ +Kwθ = f̃(u1)− f̃(uθ) in B,

wθ = 0 on ∂B.
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By the Maximum Principle on small domains, there exists R0 ∈ (0, 1) such
that the operator L = ∆+K is coercive on B \ BR0

. As a consequence,
we claim that there exists a constant C > 0 such that for all x ∈ B \BR0

,

(43) |wθ(x)| ≤ C sup
∂BR0

|wθ| .

Let indeed ζ > 0 denote the solution of











∆ζ +Kζ = 0 in B \ BR0

ζ = 1 on ∂BR0

ζ = 0 on ∂B.

We shall prove that z± := wθ − ± sup∂BR0
|wθ| ζ are respectively non-

positive and nonnegative, which implies that (43) holds for the constant
C = ‖ζ‖∞. We work with z+ and assume by contradiction that the open
set ω = {x ∈ B\BR0

: z+(x) > 0} is non-empty. Restricting the analysis
to a connected component, we have

{

∆z+ +Kz+ = f̃(u1)− f̃(uθ) ≥ 0 in ω

z+ ≤ 0 on ∂ω.

By the Maximum Principle, we conclude that z+ ≤ 0 in ω, a contradiction.
We have thus proved (43). Since u1 ∈ C1(BR0

), we deduce that for some
constant C > 0 and all x ∈ B \BR0

,

|wθ(x)| ≤ Cθ.

Applying the above inequality at the point x = (r, 0, . . . , 0), r ∈ (R0, 1)
and letting θ → 0, we finally deduce that

∣

∣

∣

∣

∂u1

∂x2
(r, 0, . . . , 0)

∣

∣

∣

∣

≤ C for all r ∈ (R0, 1),

as desired.
Step 2 : estimate of the radial derivative

It remains to control ∂w/∂r. Fix R ∈ (0, 1). Let GR(x, y) denote Green’s
function in the ball of radius R. Then, for x ∈ BR,

(44)
w(x) =

∫

∂BR

∂GR

∂νy
(x, ·)w dσ +

∫

BR

GR(x, ·)(f(u1)− f(u2)) dy

=: w1(x) + w2(x).

We want to let R → 1 in the above identity. To do so, we first observe
that w1 is harmonic. By the Maximum Principle, |w1| ≤ ‖w‖L∞(∂BR).
By estimate (4), we conclude that w1 → 0 as R → 1. To estimate w2, we
need the following crucial estimate :

Lemma 4.1 Assume (6). Then,

sup
θ∈SN−1

∫ 1

0

|f(u1)− f(u2)| (r, θ) dr < +∞.
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We shall also need the following elementary estimates.

Lemma 4.2 There exists a constant C > 0 such that for all 1/2 < r,R <
1 and all x, y ∈ BR,

(45) GR(x, y) = R2−NG1

( x

R
,
y

R

)

(46)















∫

∂Br

G1(x, ·) dσ ≤ 1

∫

∂Br

∣

∣

∣

∣

∂G1

∂ |x|(x, ·)
∣

∣

∣

∣

dσ ≤ C

We postpone the proofs of the above two lemmas and return to (44).
Using polar coordinates,

w2(x) =

∫

BR

GR(x, ·)(f(u1)− f(u2)) dy

=

∫ R

0

(
∫

∂Br

GR(x, ·)(f(u1)− f(u2))dσ

)

dr

By Lemmas 4.1 and 4.2, we may easily pass to the limit in the above
expression as R → 1, so

w(x) =

∫

B

G1(x, ·)(f(u1)− f(u2)) dy

Using again Lemmas 4.1 and 4.2, we also have that w is differentiable in
the r = |x| variable and

∂w

∂r
(x) =

∫

B

∂G1

∂ |x| (x, ·)(f(u1)− f(u2)) dy

Using polar coordinates again and Lemmas 4.1 and 4.2, we finally obtain

∣

∣

∣

∣

∂w

∂r

∣

∣

∣

∣

≤ C+

+ sup
r∈(1/2,1)

(
∫

∂Br

∣

∣

∣

∣

∂G1

∂ |x|(x, ·)
∣

∣

∣

∣

dσ

)

sup
θ∈SN−1

(
∫ 1

0

|(f(u1)− f(u2)| (r, θ) dr
)

≤ C.

It only remains to prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. We first deal with the case where u1, u2 are radial
and u1 ≥ u2. By assumption (6), we have

∫ 1

0

|f(u1)− f(u2)| dr ≤
∫ 1

0

(

f̃(u1)− f̃(u2)
)

dr +K‖u1 − u2‖L∞(B).

Using (4), we see that u1 − u2 is bounded and so it remains to estimate
f̃(u1)− f̃(u2). By (30), each ui, i = 1, 2, solves

dui/dr
√

2(F (ui)− gi)
= 1.
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We also know by Lemma 3.4 that gi = o(F (ui)). So,

lim
r→1

dui/dr
√

2F (ui)
= 1.

Using this fact, as well as Lemma 3.5 and (5), we obtain for R ∈ (1/2, 1),

∫ R

0

(f̃(u1)− f̃(u2)) dr ≤
∫ R

0

(f(u1)− f(u2)) dr +K‖u1 − u2‖L∞(B)

≤ C

∫ R

0

(f(u1)− f(u2))
du1/dr
√

2F (u1)
dr + C

≤ C

∫ R

0

(

f(u1)
du1/dr
√

2F (u1)
− f(u2)

du2/dr
√

2F (u2)

)

dr+

+ C

∫ R

0

f(u2)

(

du2/dr
√

2F (u2)
− du1/dr
√

2F (u1)

)

dr + C

≤ C
(

√

F (u1)−
√

F (u2)
)

(R) + C+

+ C

∫ R

0

f(u2)

(

√

2(F (u2)− g2)
√

2F (u2)
−
√

2(F (u1)− g1)
√

2F (u1)

)

dr

≤ C

(

F (u1)− F (u2)
√

F (u1) +
√

F (u2)

)

(R) + C+

+ C

∫ R

0

f(u2)

√

F (u2)F (u1)− g2F (u1)−
√

F (u1)F (u2)− g1F (u2)
√

F (u2)F (u1)
dr

≤ C
√

F (u1(R))
‖F (u1)− F (u2)‖L∞(B) + C+

+ C

∫ R

0

f(u2)
√

F (u2)F (u1)

g1F (u2)− g2F (u1)
√

F (u2)F (u1)
dr

≤ C + C

∫ R

0

f(u2)
√

F (u2)F (u1)

(g1 − g2)F (u2) + g2(F (u2)− F (u1))
√

F (u2)F (u1)
dr

≤ C + C‖g1 − g2‖L∞(B)

∫ R

0

f(u2)

F (u2)
dr+

+ C‖F (u1)− F (u2)‖L∞(B)

∫ R

0

g2
F (u2)

dr

≤ C + C

∫ R

1/2

f(u2)

F (u2)

du2/dr
√

2F (u2)
dr + C

≤ C + C
(

F−1/2(1/2) − F−1/2(R)
)

≤ C.

This proves the lemma for radial solutions. To obtain the estimate in the
general case, we may always assume that u2 is the minimal solution of
(1), so that u2 ≤ u1 and u2 is radial. By Lemma 2.4, up to replacing f by
f̃ given by Remark 2.1, there exists another radial solution V such that
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V ≥ u1 ≥ u2. Using assumption (6), we have

∫ 1

0

|f(u1)− f(u2)| dr ≤
∫ 1

0

(

f̃(u1)− f̃(u2)
)

dr +K‖u1 − u2‖L∞(B)

≤
∫ 1

0

(

f̃(V )− f̃(u2)
)

dr +K‖u1 − u2‖L∞(B)

≤
∫ 1

0

(f(V )− f(u2)) dr + 2K‖u1 − u2‖L∞(B)

By (4), u1 − u2 is bounded and the result follows from the radial case. �

Proof of Lemma 4.2. (45) is standard : write the representation formula
(44) both in BR and in B1, change variables in the B1 integral and identify
the kernels. Next, we prove that given any r ∈ (0, 1),

∫

∂Br
G1(x, ·)dσ ≤ 1.

It suffices to show that for any φ ∈ Cc(0, 1),

(47)

∫ 1

0

φ(r)

(
∫

∂Br

G1(x, ·)dσ
)

dr ≤ ‖φ‖L1(0,1).

By definition of Green’s function, the left-hand side of the above inequality
is the function v solving

{

−∆v = φ in B,

v = 0 on ∂B.

The above equation can also be integrated directly :

v′(r) = r1−N

∫ r

0

φ(t)tN−1 dt,

whence |v′| ≤ ‖φ‖L1(0,1) and |v| ≤ ‖φ‖L1(0,1) i.e. (47) holds. This proves
that

∫

∂Br
G1(x, ·)dσ ≤ 1.

We turn to the second estimate in (46). Recall that the Green’s func-
tion in the unit ball is expressed for x, y ∈ B, x 6= y, by
(48)

G1(x, y) = Γ
(

(

R2 + r2 − 2Rr cosϕ
)1/2

)

−Γ
(

(

1 +R2r2 − 2Rr cosϕ
)1/2

)

,

where R = |x|, r = |y|, ϕ is the angle formed by the vectors x and y and Γ
is the fundamental solution of the Laplace operator. Differentiating with
respect to R, we obtain for some CN > 0,

(49) CN
∂G1

∂ |x| (x, y) =

R− r cosϕ

(R2 + r2 − 2Rr cosϕ)N/2
− Rr2 − r cosϕ

(1 +R2r2 − 2Rr cosϕ)N/2
=

R − r + r(1− cosϕ)

((R − r)2 + 2Rr(1− cosϕ))N/2
− Rr2 − r + r(1− cosϕ)

((1−Rr)2 + 2Rr(1− cosϕ))N/2
= A−B

.
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We estimate A and leave the reader perform similar calculations for B.
Clearly, given ε > 0, the expression (49) remains uniformly bounded in
the range 1/2 < R, r < 1, ε < ϕ < 2π − ε. Hence,

∫

∂Br

|A| dσ ≤ Cε +C

∫

∂Br∩[0<ϕ<ε]

|A|dσ.

For y ∈ ∂Br ∩ [0 < ϕ < ε], let z = z(y) denote the intersection of the
line (Oy) and the hyperplane P passing through x and tangent to the
hypersphere ∂BR. Then, there exists constants c1, c2 > 0 such that for
all y ∈ ∂Br ∩ [0 < ϕ < ε],

c1(1− cosφ) ≤ |z − x|2 ≤ c2(1− cos φ).

Hence, letting BN−1(x, ρ) ⊂ P denote the N−1-dimensional ball of radius
ρ > 0 centered at x, we obtain

∫

∂Br

|A| dσ ≤ C

(

1 +

∫

BN−1(x,R sin ε)

|R − r|+ Cr |z − x|2
(

|R − r|2 + c |z − x|2
)N/2

dz

)

≤ C

(

1 +

∫

BN−1(O,Rε)

|R − r|+ C |z|2
(

|R − r|2 + c |z|2
)N/2

dz

)

≤ C

(

1 +

∫

BN−1
(

O,
Rε

|R−r|

)

|R − r|+C |R− r|2 |z|2

|R − r|N
(

1 + c |z|2
)N/2

|R − r|N−1 dz

)

≤ C

(

1 +

∫

RN−1

1
(

1 + c |z|2
)N/2

dz + |R − r|
∫

BN−1
(

O,
Rε

|R−r|

)

|z|2−N dz

)

≤ C.

Working similarly with the B term in (49), we finally obtain the desired
estimate (46). �

5 Asymptotics to all orders

This section is devoted to the proof of Theorem 1.9. Our first task consists
in applying the Fixed Point Theorem to the functional N defined for
v ∈ B(v0, ρ), u ∈ I by

(50) [N (v)](u) =

√

2

(

F (u)− (N − 1)

∫ u

U0

v

r
dt

)

,

where r is given by (13). Let us check first that N (B(v0, ρ)) ⊂ B(v0, ρ).
Take v ∈ B(v0, ρ). Then,

(51) 1 ≥ r ≥ 1− 1

1− ρ

∫ +∞

U0

1

v0
dt = 1− 1

1− ρ

∫ +∞

U0

1√
2F

dt.

By (3), it follows that for ρ < 1/4 and U0 sufficiently large, 1 ≥ r ≥ 1/2.
Hence,

∣

∣

∣

∣

∫ u

U0

v

r
dt

∣

∣

∣

∣

≤ C

∫ u

U0

√
2F dt = o(F (u)),
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where we used Lemma 3.4. So for U0 large and u ≥ U0,
∣

∣

∣

∣

N − 1

F (u)

∫ u

U0

v

r
dt

∣

∣

∣

∣

≤ ρ.

We deduce that

(52)

∣

∣

∣

∣

N (v)− v0
v0

∣

∣

∣

∣

= 1−
√

1− N − 1

F (u)

∫ u

U0

v

r
dt ≤ 1

2

∣

∣

∣

∣

N − 1

F (u)

∫ u

U0

v

r
dt

∣

∣

∣

∣

< ρ.

Next, we prove that N is contractive. Given v1, v2 ∈ B(v0, ρ), let r1 =
r(u, v1), r2 = r(u, v2) (where r is given by (13)). Then, by estimate (51),
1/2 ≤ r1, r2 ≤ 1 and

∣

∣

∣

∣

N (v1)−N (v2)

v0

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

√

1− N − 1

F (u)

∫ u

U0

v1
r1

dt−
√

1− N − 1

F (u)

∫ u

U0

v2
r2

dt

∣

∣

∣

∣

∣

≤ C
N − 1

F (u)

∫ u

U0

∣

∣

∣

∣

v1
r1

− v2
r2

∣

∣

∣

∣

dt

≤ C

F (u)

(∫ u

U0

|v1 − v2| dt+
∫ u

U0

v0

∣

∣

∣

∣

1

r1
− 1

r2

∣

∣

∣

∣

dt

)

≤ C

F (u)

(

ρ

∫ u

U0

√
2F dt+

∫ u

U0

√
2F |r1 − r2| dt

)

≤ C

F (u)

(

ρ

∫ u

U0

√
2F dt+

∫ u

U0

√
2F

∣

∣

∣

∣

∫ +∞

t

(

1

v1
− 1

v2

)

ds

∣

∣

∣

∣

dt

)

≤ Cρ

F (u)

(∫ u

U0

√
2F dt+

∫ u

U0

√
2F

∣

∣

∣

∣

∫ +∞

t

1√
2F

ds

∣

∣

∣

∣

dt

)

≤ Cρ

F (u)

∫ u

U0

√
2F dt.

Using Lemma 3.4, we conclude that N is contractive in B(v0, ρ) if U0 was
chosen large enough in the first place. We may thus apply the fixed point
theorem.

So, it only remains to prove (16). We first observe that the sequence
(vk) defined by (14) is asymptotic i.e. vk+1(u) = vk(u)(1 + o(1)), as
u → +∞. Since vk+1 = N (vk), it suffices to prove that N (v0)−v0 = o(v0)
and iterate. By (52),

∣

∣

∣

∣

N (v0)− v0
v0

∣

∣

∣

∣

≤ C

F (u)

∫ u

U0

√
2F dt

and the claim follows by Lemma 3.4. So, the sequence (vk) is asymptotic
and so must be the sequence (uk) defined by (15). We are now in a position
to prove (16). By Theorem 1.1, we may restrict to the case where u is
radially symmetric. Let v = du/dr. By (26), v solves

dv

dr
+

N − 1

r
v = f(u)
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Use the change of variable u = u(r) to get

v
dv

du
+

N − 1

r
v = f(u).

Integrating, it follows that for some constant C

(53)
v2

2
= F (u) + C −

∫ u

U0

N − 1

r
v dt.

Up to replacing F (u) by F̃ (u) = F (u) + C (which is harmless from the
point of view of asymptotics), we may assume C = 0. So it suffices to
prove that v ∈ B(v0, ρ) to conclude that v coincides with the unique fixed
point of N , whence (16) will follow. By (53) (with C = 0), v ≤ v0 and so

0 ≤ v0 − v ≤
√

2F (u) −
√

2

(

F (u)−
∫ u

U0

N − 1

r
v0 dt

)

≤ C

∫ u

U0

√
2F dt

√

2F (u)
.

By Lemma 3.4, it follows that

0 ≤ v0 − v

v0
≤ v0 − v < ρ

and v ∈ B(v0, ρ) as desired. �

6 Universal blow-up rate

In this section, we prove Theorem 1.10, that is we characterize nonlinear-
ities for which the blow-up rate is universal.

Proof of Theorem 1.10 .
Step 1. We begin by establishing the theorem when Ω = B is the

unit ball. In light of Theorem 1.1, it suffices to prove (19) for one given
solution u of (1), which we may therefore assume to be radial. By (30),
we have after integration that

(54)

∫ +∞

u

1
√

2(F (t)− g)
dt = 1− r.

By definition of u0, we also have

(55)

∫ +∞

u0

1
√

2F (t)
dt = 1− r.

Observe that u ≥ u0, split the integral in (55) as
∫ +∞
u0

=
∫ u

u0
+
∫ +∞
u

and
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equate (54) and (55). It follows that

∫ u

u0

1
√

2F (t)
dt =

∫ +∞

u

(

1
√

2(F (t)− g)
− 1
√

2F (t)

)

dt

=

∫ +∞

u

√

2F (t)−
√

2(F (t)− g)
√

2F (t)
√

2(F (t)− g)
dt

=

∫ +∞

u

g
√

2F (t))
√

2(F (t)− g)
(

√

2F (t) +
√

2(F (t)− g)
) dt

Recall that by Lemma 3.4, g = o(F ) as t → +∞ and g(u) ∼ (N−1)G(u) =
(N − 1)

∫ u

0

√
2F dt. So, for sufficiently large values of u, we deduce

(56)

∫ u

u0

1
√

2F (t)
dt ≤ C

∫ +∞

u

∫ t

0

√
2F ds

(2F (t))3/2
dt.

Since F is nondecreasing, it follows that

0 ≤ u− u0
√

2F (u)
≤
∫ u

u0

1
√

2F (t)
dt ≤ C

∫ +∞

u

∫ t

0

√
2F ds

(2F (t))3/2
dt.

Hence,

0 ≤ u− u0 ≤ C
√

2F (u)

∫ +∞

u

∫ t

0

√
2F ds

(2F (t))3/2
dt,

and (19) follows from (18).
Step 2. Next, we prove that (19) holds for general domains Ω. To this

end, we combine a standard approximation argument by inner and outer
spheres (see e.g. [9]) and the comparison technique of [6]. Let u denote a
solution of (17) and take a point x0 ∈ ∂Ω. Let B ⊂ Ω denote a ball which
is tangent to ∂Ω at x0. Shrink B somewhat by letting Bε = (1 − ε)B,
ε > 0. Observe that u ∈ C(Bε) is a subsolution of

(57)

{

∆U = f(U) in Bε,

U = +∞ on ∂Bε,

By Lemma 2.3, there exists a solution Vε of (57), such that Vε ≥ u in Bε.
Furthermore, Vε can be chosen to be the minimal solution of (57) such that
Vε ≥ u in Bε. In particular, Vε is radial and ε → Vε is nondecreasing. In
addition, ε → Vε is uniformly bounded on compact subsets of B (working
as in the proof of Lemma 2.3), so Vε converges as ε → 0, to a solution V
of (1) such that V ≥ u in B. By Step 1,

lim
x→x0
x∈B

V (x)− u0(1− dB(x)) = 0,

where dB denotes the distance to ∂B. Since V ≥ u and since the above
discussion is valid for any point x0 ∈ ∂Ω, we finally obtain

(58) lim sup
x→∂Ω

[u(x)− u0(1− d(x))] ≤ 0,
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where d(x) is the distance to ∂Ω. Choose now an exterior ball B ⊂ R
N \Ω

which is tangent to ∂Ω at x0. For ε > 0 small and R > 0 large, the annulus
Aε = RB \ (1 − ε)B contains Ω. Let Uε denote a large solution on Aε,
which we may assume to be minimal, radial and bounded above on Ω
by u. Again Uε → U as ε → 0 where U is a radial large solution in
A = RB \ B ⊃ Ω. Repeating the analysis of Step 1. (which was purely
local) for the case of a radial solution defined on an annulus rather than
a ball, we easily deduce that

lim
x→x0
x∈B

U(x)− u0(1− dB(x)) = 0.

Since u ≥ U and since the above discussion is valid for any point x0 ∈ ∂Ω,
we obtain

(59) lim inf
x→∂Ω

[u(x)− u0(1− d(x))] ≥ 0.

So, by (59) and (58), we have that (19) holds in any smoothly bounded
domain Ω.

Step 3. It only remains to prove that (19) fails when (20) holds. We
use Theorem 1.9 to compute the second term in the asymptotic expansion
of a solution. By (14),

v1(u) =

√

2

(

F (u)− (N − 1)

∫ u

0

√
2F dt(1 + o(1))

)

=
√

2F (u)

(

1− (N − 1)

∫ u

0

√
2F dt

2F (u)
(1 + o(1))

)

,

whence

1

v1
=

1
√

2F (u)

(

1 + (N − 1)

∫ u

0

√
2F dt

2F (u)
(1 + o(1))

)

=
1

√

2F (u)
+ (N − 1)

∫ u

0

√
2F dt

(2F (u))3/2
(1 + o(1)).

Integrating (15) for k = 1, it follows that for r close enough to 1,

(60)

∫ +∞

u1

dt√
2F

+ (N − 1)(1 + o(1))

∫ +∞

u1

∫ t

0

√
2F ds

(2F )3/2
dt = 1− r.

Recall (55), split the integral in (55) as
∫ +∞
u0

=
∫ u

u0
+
∫ +∞
u

and equate

(60) and (55) to get

∫ u1

u0

dt√
2F

= (N − 1)(1 + o(1))

∫ +∞

u1

∫ t

0

√
2F ds

(2F )3/2
dt.

Since F is nondecreasing, we deduce that

(61)
u1 − u0
√

2F (u0)
≥ (N − 1)(1 + o(1))

∫ +∞

u1

∫ t

0

√
2F ds

(2F )3/2
dt.
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Note also that

(62)

∫ u1

u0

∫ t

0

√
2F ds

(2F )3/2
dt ≤

∫ u1

u0

t

2F
dt ≤ (u1 − u0)

2

4F (u0)
.

Assume by contradiction that limr→1−(u1−u0)(r) = 0. Then, (62) implies
that

∫ u1

u0

∫ t

0

√
2F ds

(2F )3/2
dt = o

(

u1 − u0
√

2F (u0)

)

.

Using this information in (61), we obtain that

u1 − u0
√

2F (u0)
≥ (N − 1)(1 + o(1))

∫ +∞

u0

∫ t

0

√
2F ds

(2F )3/2
dt.

But (20) would then lead us to a contradiction with the assumption
limr→1−(u1 − u0)(r) = 0. So we must have

lim inf
r→1−

(u1 − u0) > 0.

and so (19) fails. �

7 The first three singular terms

In the previous section, we characterized nonlinearities for which only one
term in the expansion is singular. In the present section, we calculate
implicitly the next two terms in the expansion. We have not tried to
characterize those f for which all remaining terms are nonsingular, but
this can certainly be achieved. We leave the tenacious reader try her/his
hand at this computational problem.

We begin by calculating the leading asymptotics of v1, v2. By (14),
we have

v21
2

= F − (N − 1)

∫ u √
2F (1 + o(1)) dt.

So,

v1√
2
=

√
F

(

1− (N − 1)

∫ u √
2F dt

F
(1 + o(1))

)1/2

=

=
√
F − N − 1

2

∫ u √
2F dt√
F

(1 + o(1)).

In other words,

v1 =
√
2F − (N − 1)

∫ u √
2F dt√
2F

(1 + o(1)).

To calculate v2, we introduce some notation. Given a positive measurable
function v, set

Pv =

∫ u

v dt, Qv =
Pv

v
, Rv =

∫ +∞

u

dt

v
,
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and
Tv = (N − 1)PQv + P (vRv).

v1 is then expressed by

v1 = v0 − (N − 1)(1 + o(1))Qv0,

while v2 is given by

v22
2

= F − (N − 1)

∫ u v1

1−
∫ +∞
t

ds
v0
(1 + o(1))

dt =

= F − (N − 1)

∫ u

(v0 − (N − 1)Qv0 + o(Q(v0))(1−Rv0 + o(Rv0)) dt =

= F − (N − 1)Pv0 + (N − 1)Tv0(1 + o(1)).

So,

v2 = (2F − 2(N − 1)Pv0 + 2(N − 1)Tv0(1 + o(1)))1/2 =

= v0

(

1− (N − 1)
Pv0
F

+ (N − 1)
Tv0
F

(1 + o(1))

)1/2

=

= v0

(

1− N − 1

2

Pv0
F

+
N − 1

2

Tv0
F

− 3

8
(N − 1)2

(

Pv0
F

)2

+

+ o(Tv0/F + (Pv0/F )2)
)

.

And so,

1

v2
=

1

v0

(

1 +
N − 1

2

Pv0
F

− N − 1

2

Tv0
F

+
5

8
(N − 1)2

(

Pv0
F

)2

+

+ o(Tv0/F + (Pv0/F )2)
)

=

=
1

v0
+ (N − 1)

Pv0
v30

+ (N − 1)

(

−Tv0
v30

+
5

4
(N − 1)

(Pv0)
2

v50

)

(1 + o(1)) =

=
1√
2F

+ (N − 1)

∫ u √
2F dt

(2F )3/2
+

+
(N − 1)

(2F )3/2

(

−
∫ u

(

(N − 1)

∫ t √
2F ds√
2F

+
√
2F

∫ +∞

u

ds√
2F

)

dt+

+
5(N − 1)

4

(

∫ u √
2F dt

)2

2F






(1 + o(1))
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Integrating once more, we finally obtain

1− r =

∫ +∞

u2(r)

du√
2F

+ (N − 1)

∫ +∞

u2(r)

∫ u √
2F dt

(2F )3/2
du+ (1 + o(1))×

× (N − 1)

∫ +∞

u2(r)

(

−
∫ u

(

(N − 1)

∫ t √
2F ds√
2F

+
√
2F

∫ +∞

u

ds√
2F

)

dt+

+
5(N − 1)

4

(

∫ u √
2F dt

)2

2F







du

(2F )3/2
.

This proves Proposition 1.14.

8 An example: f(u) = up, p > 1

Finding the n-th term in the expansion for abitrary n ∈ N is out of reach
for general f , simply because of the algorithmic complexity of calculations.
However, when additional information on f is available, one can guess the
general form of the expansion and then try to establish it. This is precisely
what we do in this section, with the nonlinearity f(u) = up, p > 1.

For notational convenience, we shall work with F (u) = 1
2
u2q , where

2q− 1 = p, which simply amounts to working with a constant multiple of
the original solution.

Recall (14) and (15). We want to prove inductively that there exists
numbers ak, bk depending on k, p,N only such that

vn = uq
n
∑

k=0

bku
−k(q−1) + o(uq−n(q−1)),(63)

un = d−
1

q−1

n
∑

k=0

akd
k + En(d

− 1
q−1

+n+1),(64)

where En(d
− 1

q−1
+n+1

) ∼ end
− 1

q−1
+n+1

for some en ∈ R, as d → 0+. We

have v0 =
√
2F = uq. Solving for u0 in (15) yields u0 = c d−

1
q−1 . So, (64)

and (63) hold for n = 0. Suppose now the result is true for a given n ∈ N.
In the computations below, the letter ck denotes a number depending on
k, p,N only, which value may change from line to line. By (63), we have

1

vn
= u−q

(

1 +
n
∑

k=1

bku
−k(q−1) + o(u−n(q−1))

)−1

=

= u−q

(

n
∑

k=0

cku
−k(q−1) + o(u−n(q−1))

)

.
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So,

∫ +∞

t

ds

vn
= t1−q

(

n
∑

k=0

ckt
−k(q−1)

)

+ o(t−(n+1)(q−1)) =(65)

=

n+1
∑

k=1

ckt
−k(q−1) + o(t−(n+1)(q−1)).(66)

It follows that

1

1−
∫ +∞
t

ds
vn

=
n+1
∑

k=0

ckt
−k(q−1) + o(t−(n+1)(q−1)).

Whence,

vn(t)

1−
∫ +∞
t

ds
vn

= tq
n
∑

k=0

ckt
−k(q−1) + o(tq−n(q−1)).

And so,

vn+1 =

√

2F − (N − 1)

∫ u vn

1−
∫ +∞
t

ds
vn

dt =

=

√

√

√

√u2q + uq+1

n
∑

k=0

cku−k(q−1) + o(u1+q−n(q−1)) =

= uq

(

1 +

n+1
∑

k=1

cku
−k(q−1) + o(u−(n+1)(q−1))

)1/2

=

= uq
n+1
∑

k=0

cku
−k(q−1) + o(uq−(n+1)(q−1)).

This proves (63). Integrating (15), we obtain

(67)

∫ +∞

un

du

vn
= d.

Now, vn+1 = vn + cn+1u
q−(n+1)(q−1)(1 + o(1)). So,

1

vn+1
=

1

vn
+ cn+1u

−q−(n+1)(q−1)(1 + o(1)).

It follows that

d =

∫ +∞

un+1

du

vn+1
=

∫ +∞

un+1

du

vn
+ cn+1u

−(n+2)(q−1)
n+1 (1 + o(1)).

In addition, vn ∼ v0, so un ∼ u0, and so u
−(q−1)
n+1 ∼ d. Using this in the

above equation, we get

d+ cn+1d
n+2(1 + o(1)) =

∫ +∞

un+1

du

vn
.
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Recalling that vn is defined by (67) and satisfies (64) by induction hy-
pothesis, we conclude that

vn+1 =
(

d+ cn+1d
n+2(1 + o(1)

)− 1
q−1

n
∑

k=0

ak

(

d+ cn+1d
n+2(1 + o(1)

)k

+ En(d
− 1

q−1
+n+1).

Expanding again the above expression, we finally obtain

vn+1 = d
− 1

q−1

n+1
∑

k=0

akd
k + En+1(d

− 1
q−1

+n+2
),

which proves (64). Proposition 1.15 follows.
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