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Optical precursors in transparent media
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CNRS et Université Lille 1, 59655 Villeneuve d’Ascq, France
(Dated: September 9, 2009)

We theoretically study the linear propagation of a stepwise pulse through a dilute dispersive
medium when the frequency of the optical carrier coincides with the center of a natural or elec-
tromagnetically induced transparency window of the medium (slow-light systems). We obtain fully
analytical expressions of the entirety of the step response and show that, for parameters repre-
sentative of real experiments, Sommerfeld-Brillouin precursors, main field and second precursors
(“postcursors”) can be distinctly observed, all with amplitudes comparable to that of the incident
step. This behavior strongly contrasts with that of the systems generally considered up to now.

PACS numbers: 42.25.Hz, 42.25.Kb, 42.25.Lc

As far back as 1914, Sommerfeld and Brillouin theoret-
ically studied the propagation of a stepwise pulse through
a linear dispersive medium [1, 2, 3]. They showed in
particular [2] that the arrival of the main signal is pre-
ceded by that of two successive transients they named
forerunners. The first one (now called the Sommerfeld
precursor) arrives with the velocity c of light in vacuum.
Its instantaneous frequency, initially higher than the fre-
quency ωC of the optical carrier, decreases as a function
of time whereas that of the second one (the Brillouin pre-
cursor), initially lower than ωC , evolves in the opposite
direction. Sommerfeld and Brillouin considered a single-
resonance Lorentz medium and made their calculation
by using the newly developed saddle-point method of in-
tegration. Revisited by various methods, this problem
has become a canonical problem in electromagnetics and
optics [4, 5, 6]. Different models of medium have obvi-
ously been considered and the theoretical literature on
precursors is very abundant. See [7] for a recent review.

As intuitively expected, the precursors will be observed
only if the rise-time of the incident step is short compared
to the response time of the medium [8]. Most of the the-
oretical papers consider dense media with very short re-
sponse time (< 1 fs) and the fulfillment of the previous
condition raises serious experimental difficulties. This
explains the dramatic dearth of papers reporting direct
demonstrations of precursors. A first experiment was
achieved in the microwave region with waveguides whose
dispersion mimics that of the Lorentz medium [9]. In the
optical domain, Aavikssoo et al. studied the propaga-
tion of single-ended exponential pulses through a GaAs
crystal [10]. Associated with an exciton line, the precur-
sors then appear as a spike superimposed on the main
pulse (see also [11]). A discussion on the observability of
optical precursors in dense media can be found in [12].

Much more favorable time scales are obtained by ex-
ploiting the narrowness of atomic or molecular lines in
vapors or gases. The switching times of the incident field
may then be very long compared to the optical period

without washing out the transients. In such conditions,
the slowly varying envelope approximation (SVEA) is ab-
solutely justified. The medium is fully characterized by
its system function H(Ω) connecting the Fourier trans-
forms of the envelopes of the transmitted and incident
fields [13]. Ω designates the deviation of the current op-
tical frequency ω from the carrier frequency ωC and the
envelope of the optical step response reads

a(t) =

∫

Γ

H(Ω) exp (iΩt)dΩ/2iπΩ (1)

where the contour Γ is a straight line parallel to the real
axis passing under the pole at Ω = 0. Eq.(1) can always
be numerically solved by means of fast Fourier transform
(FFT) but, generally, has no analytical solution. For-
tunately enough, such a solution exists in the reference
case of a medium with a single Lorentzian absorption-
line (see, e.g., [14]). On resonance and for large optical

thickness, a(t) takes the simple form

a(t ≥ 0) = e−γtJ0

(

√

2αLγt
)

(2)

where L is the medium thickness, t (as in all the fol-
lowing) is a local time (real time minus L/c), α is the
resonant absorption-coefficient for the intensity (α/2 for
the amplitude) and γ is the half width at half maximum
of the line. For t ≥ t1 = 1

2αLγ , the asymptotic form of J0

may be used and a(t) approximately reads

a(t ≥ t1) ≈
√

2

π
e−γt cos

(√
2αLγt− π/4

)

(2αLγt)
1/4

(3)

Experimentally evidenced in [15], the transient given by
Eq.(2) and Eq.(3) may be formally analyzed in terms of
Sommerfeld and Brillouin precursors, which are tempo-
rally superimposed in dilute media [16, 17]. However we
remark that these “precursors” precede nothing since the
medium is then opaque for the “main field”. In order to
obtain true precursors we examine in this letter the much



2

richer case where the medium is (nearly) transparent at
ωC . Our main purpose is to establish aproximate analyt-
ical expressions of the step response of such media, FFT
being used to check the validity of the approximations.

We consider first a medium with a natural trans-
parency window between two identical absorption-lines of
intensity optical thickness αL/2 ≫ 1 located at ωC ±∆.
Such a medium has proved to be a very efficient slow-
light system [18, 19, 20, 21]. Its system function reads
[22, 23]

H(Ω) = exp

{

−αLγ

4

[

1

γ + i (Ω + ∆)
+

1

γ + i (Ω − ∆)

]}

(4)
A good transparency at Ω = 0 is achieved if γ ≪
∆ and αLγ2/∆2 < 1. The group delay then reads
τg = αLγ/2∆2 [22] and H(0) = exp

(

−αLγ2/2∆2
)

=
exp (−γτg). Fig.1 shows the step response obtained for
parameters representative of the slow-light experiments
achieved on a cesium vapor in the near infrared [20]. The
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Figure 1: Step-response a(t) of a medium with a natural
transparency window. The analytical (•) and numerical (full
line) forms are respectively obtained by asymptotic calcula-
tions (see text) and by the means of a FFT involving 223

points with a time resolution of 1.2 · 10−5τg. The step of
amplitude H(0) retarded by τg is given for reference (dotted
line). Inset : enlargement of the precursors. The parameters
are ∆ = 28.9 ns−1, γ = 0.0164 ns−1 and αL = 2 · 105, leading
to τg = 1.96ns, H(0) = exp(−γτg) = 0.968 and b = 5.22ns−1.

analytical form is obtained by taking advantage of the
large value of αL. We note first that, in its very far
wings, H(Ω) equals the system function of a medium
with a single line of intensity optical thickness αL and,
as expected, the short time behavior of a(t) is well de-
scribed by Eq.(2). For t ≥ t1 = 1

2αLγ = 1
4∆2τg

, a(t) can

be entirely calculated by the saddle point method [24, 25].
The significant contributions to a(t) originates in the rel-
evant saddle points and, eventually, in the pole at Ω = 0.
Introducing the phase function Ψ(Ω) = iΩt + ln [H (Ω)],

Eq.(1)) reads

a(t) =

∫

Γ

exp [Ψ (Ω)] dΩ/2iπΩ (5)

The integral is calculated by deforming Γ in a contour Γ′

traveling along lines of steepest descent of the function
Ψ(Ω) from the saddle points where Ψ′(Ω) = 0 . The
contribution of a non degenerate saddle point at ΩS to
the integral reads

aS(t) =
(

iΩS

√

2π |Ψ′′(ΩS)|
)−1

exp [Ψ (ΩS) + iθS ] (6)

where θS is the angle of the direction of steepest descent
with the real axis. Note that the instantaneous frequency
of aS(t), defined as d (ImΨ) /dt , equals Re (ΩS).

In the present problem, the equation Ψ′(Ω) = 0 giving
the saddle points can be reduced to a biquadratic equa-
tion with exact analytic solutions. The latter can be
regrouped in two pairs Ω±

n (t) = iγ ±Ωn (t) with n = 1, 2
and

Ωn(t) = ∆

√

1 +

[

1 − (−1)
n

√

1 + 8t/τg

]

τg

2t
(7)

At every time, Ω1 (t) is real and very large compared to γ,
decreasing from ∆

√

τg/t for t ≪ τg to ∆ for t → ∞. The
corresponding saddle points are always non-degenerate
and their contribution a1 (t) = a+

1 (t) + a−

1 (t) to a(t) is
easily derived from Eq.(6) with θ±1 = ±π/4. It reads

a1(t) ≈
√

2

π
e−γt cos

{

Ω1t + ∆2τgΩ1/
(

Ω2
1 − ∆2

)

− π/4
}

Ω1∆

√

τg

[

(Ω1 + ∆)
−3

+ (Ω1 − ∆)
−3

]

(8)
As expected, a1(t) tends to a(t) given by Eq.(3) when
t ≪ τg. More generally, Ω2 is purely imaginary for t < τg

and the contribution of the corresponding saddle points is
negligible, except in the vicinity of τg. So, in a wide time-
domain, a1(t) is actually the only significant contribution
to a(t). The corresponding optical field reads E1(t) =
E+

1 (t)+E−

1 (t) where E±

1 (t) = Re
[

a±

1 (t) exp (iωCt)
]

have

instantaneous frequencies ω±

1 (t) = ωC ± Ω1 (t). Due
to the time dependence of these frequencies, E+

1 (t) and
E−

1 (t) may be identified respectively to the Sommer-
feld precursor and to the Brillouin precursor [17]. The
rise of a (t) around t = τg originates from the saddle
points at Ω±

2 , which are then quasi degenerate and lo-
cated in the vicinity of the pole at Ω = 0. The calcu-
lation of the contribution ad(t) to a(t) of these three
points requires to use an uniform asymptotic method
[24]. It is convenient to determine ad(t) through the cor-
responding contribution hd(t) to the impulse response

h (t) =
∫ +∞

−∞
exp [Ψ (Ω)] dΩ/2π. Following the procedure

of [24, 25], we get hd(t) ≈ be−γtAi [−b (t − τg)] where
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Ai (x) is the Airy function and b =
(

∆2/3τg

)1/3
. Finally

ad(t) =
∫ t

−∞
hd(x)dx reads

ad(t) = e−γτg

∫ b(t−τg)

−∞

e−γx/bAi (−x) dx

≈ e−γt

∫ b(t−τg)

−∞

Ai (−x) dx (9)

the 2nd form holding when γ ≪ b [26]. ad(t) attains its
absolute maximum at the first zero of Ai (−x) , that is
for x ≈ 2.3 or t = t2 = τg + 2.3/b. For t1 < t < t2, a(t)
is well fitted by a1(t) + ad(t) (Fig.1). For t > t2, Ω2 is
real and the frequencies Ω±

2 are well separated (Ω2 ≫ γ).
The contribution a2(t) of the two saddle points to a(t)
can then again be derived from Eq.(6) with θ±2 = ∓π/4.
It reads

a2(t) ≈ −
√

2

π
e−γt cos

{

Ω2t + ∆2τgΩ2/
(

Ω2
2 − ∆2

)

+ π/4
}

Ω2∆

√

−τg

[

(Ω2 + ∆)
−3

+ (Ω2 − ∆)
−3

]

(10)
The steepest descent contour Γ′ passing through the four
saddle points is now such that Γ+Γ′ encircles the pole in
Ω = 0. The contributions a1(t) and a2(t) should then be
completed by the corresponding residue, namely H(0) =
e−γτg . For t > t2, we get thus a(t) = e−γτg + a1(t) +
a2(t). Again the agreement with the exact result is very
good (Fig.1). The optical fields associated with a2(t)
may be considered as second precursors but, since they
arrive after the rise of the main field , we suggest to name
them postcursors. Contrary to those of the precursors,
their instantaneous frequencies ω±

2 (t) = ωC ± Ω2 (t) are
initially close to ωC before deviating from this frequency.
Note that the oscillations in the falling tail of the pulses,
observed in the experiments [20], are clearly related to
our postcursors.

We will now examine more briefly the case of a medium
with an electromagnetically induced transparency (EIT)
window [27, 28, 29]. In such a medium, precursors have
been indirectly demonstrated in an experiment of two-
photon coincidence [30]. We consider the simplest Λ ar-
rangement with a resonant control field. If the coher-
ence relaxation rate for the forbidden transition is small
enough, the medium may be transparent at ωC and its
system function reads

H (Ω) = exp

{ −αLγ/2

iΩ + γ + Ω2
r/4iΩ

}

(11)

where Ωr is the modulus of the Rabi frequency of the
coupling field [22, 29]. We get then τg = 2αLγ/Ω2

r. Fig.2
shows the step responses a (t) obtained for different Ωr

and for a value of αL intermediate between those of the
celebrated experiments achieved on a lead vapor [27] and
on an ultracold gas of atomic sodium [28]. As previously
and for the same reasons, the very short term behavior
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Figure 2: Same as Fig.1 for a medium with an electromag-
netically induced transparency window. The parameters are
αL = 600 and Ωr/γ = (a) 4.60 (b) 14.0 (c) 34.6, leading to (a)
γτg = 56.7 (b) γτg = 6.12 and b = 1.39γ (c) γτg = 1.00 and
b = 4.64γ. Note that the group delays and thus the absolute
time-scales are several orders larger than in the case of the
natural frequency window.

of a (t) (up to t1 = 1
2αLγ = 1

Ω2
r
τg

) is given by Eq.(2).

In general, the 4th degree equation giving the saddle
point frequencies has no simple solutions but the follow-
ing properties are easily demonstrated. Irrespective of
Ωr, Ω−

2 (τg) = 0 and, for t → 0, Ω±

1 (t) → iγ ± Ωr

√

τg/4t
while Ω±

2 (t) → ±iΩr/2. When Ωr < γ, Ω+
2 (t) and Ω−

2 (t)
keep non degenerate and purely imaginary at every time.
If on the contrary Ωr > γ, these two frequencies coalesce
at a time td > τg in Ωd = iΩr sin

[

sin−1 (γ/Ωr) /3
]

. For

Ωr > 4γ, Ωd ≈ iγ/3 and td = τg

(

1 + 4γ2/3Ω2
r

)

. Explicit
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analytical expressions of a(t) can be obtained when Ωr/γ
is moderate or large.

In the first case, γτg = 2αLγ2/Ω2
r ≫ 1 and the precur-

sors will have a short duration compared to τg. In this

time domain Ω±

1 (t) ≈ iγt ± Ωr (1 + 3t/2τg)
√

τg/4t and

a1(t) ≈
√

2

π
e−γt cos [Ωr (1 + t/2τg)

√
tτg − π/4]

(Ωr
√

tτg)
1/2

(12)

If γτg is extremely large, the term t/2τg may be ne-
glected and a1(t) again equals a(t) given Eq.(3). This
particular case is examined in [31]. When Ωr ≤ γ or
when Ωr > γ with γ (td − τg) ≫ 1 (Fig.2a), the only
other significant contribution to a (t) is a−

2 (t) associ-
ated with the saddle point at Ω−

2 (t) which tends to 0
for t → τg. We circumvent the difficulty due to the
coincidence of the saddle point with a pole by pass-
ing through the associated impulse response h−

2 (t). It

reads h−

2 (t) =
(
√

2π
∣

∣Ψ”
(

Ω−

2

)∣

∣

)−1

exp
[

Ψ
(

Ω−

2

)

+ iθ−2
]

with θ−2 = 0, Ψ
(

Ω−

2

)

≈ −
[

Ωr (t − τg) /4
√

γτg

]2
and

Ψ”
(

Ω−

2

)

≈ −8γτg/Ω2
r. We finally get

a−

2 (t) =
1

2

(

1 + erf
[

Ωr (t − τg) /4
√

γτg

])

(13)

where erf(x) is the error function. a−

2 (t) → 1 when
Ωr (t − τg) ≫ 4

√
γτg and a1 (t) + a−

2 (t) provides a good
approximation of the exact step response at every time
(Fig.2a).

When Ωr ≫ γ the coupling field splits the origi-
nal line in a doublet of lines approximately centered
at ωC ± Ωr/2. If, in addition, (Ωr/γ)

4 ≫ 8αL/3 ,
then γ (td − τg) ≪ 1 and the situation is analogous
(but not identical) to that encountered with a natu-
ral transparency window. The frequencies of the saddle
points approximately equal Ω±

n ≈ iγn (t) ± Ωn (t) where

γn (t) ≈ (γ/2)
[

1 − (−1)
n

(1 + 8t/τg)
−1/2

]

and where

Ωn (t) is given by Eq.(7), with ∆ = Ωr/2. The differ-
ent contributions to a (t) then read

a1(t) ≈
√

2
∣

∣πΨ”
(

Ω+
1

)∣

∣

Re

{

1

Ω+
1

e[Ψ(Ω+

1 )−iπ/4]
}

(14)

a2(t) ≈ −
√

2
∣

∣πΨ”
(

Ω+
2

)∣

∣

Re

{

1

Ω+
2

e[Ψ(Ω+

2 )+iπ/4]
}

(15)

ad (t) ≈
∫ b(t−τg)

−∞

Ai (−x) exp (−γx/3b)dx (16)

where b =
(

Ω2
r/12τg

)1/3
. As in the case of the natural

frequency window, a1 (t)+ad (t) and a1 (t)+a2 (t)+H(0)
fit very well the exact step response, respectively for

t1 < t < t2 = τg+2.3/b and for t > t2 (Fig.2b and Fig.2c).
The main difference is that a significant damping of the
precursors is now compatible with a good transparency
at ωC . For intermediate values of Ωr it is so possible
to observe both well developed precursors and postcur-
sors without overlapping (Fig.2b). On the contrary, the
tail of the precursors again partially interferes with the
postcursors for very large Ωr(Fig.2c).

To conclude, we have obtained, for the first time, fully
analytic expressions of the entirety of the step response
of linear media with a transparency window. Our re-
sults show that these media, contrary to those generally
considered, are well adapted to observe in a same exper-
iment the precursors, the main field and the postcursors,
all well distinguishable from each other and having com-
parable amplitudes. Insofar as the parameters used in
the calculations are representative of real experiments,
we think that our work might stimulate an experimen-
tal observation of these rich dynamics, which would, in
turn, stimulate new theoretical investigations on related
slow-light systems.
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[9] P. Pleshko and I. Palócz, Phys. Rev. Lett. 22, 1201

(1969).
[10] J. Aaviksoo, J. Kuhl, and K. Ploog, Phys. Rev. A 44,

R5353 (1991).
[11] M.Sakai et al., Phys.Rev.B 66, 033302 (2002).
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