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Abstract

We prove that functions f : F2m → F2m of the form f(x) =
x−1 + g(x) where g is any non-affine polynomial are APN on at most
a finite number of fields F2m . Furthermore we prove that when the
degree of g is less then 7 such functions are APN only if m ≤ 3 where
these functions are equivalent to x3.

1 Introduction

For a given integer m denote by q = 2m and let Fq be the finite field with q
elements. We study functions f : Fq → Fq given by their polynomial repre-
sentation. Such a function, or polynomial, is called almost perfect nonlinear
(APN) if for every non-zero a ∈ Fq and every b ∈ Fq the equation

f(x) + f(x + a) = b

admits at most two solutions x ∈ F2m. Amongst others, APN functions have
applications in cryptography. Namely, when used as an S-box in a block
cipher being APN ensures a good resistance against differential attacks.

Until 2006, there where only very few APN functions known and all of
them where power mappings. It was even conjectured that any APN function
is equivalent to one of the known APN power functions. Here equivalence is
usually defined by saying that two functions f, g : F2m → F2m are equivalent
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if there exist an affine permutation on F2m×F2m such that the graph of f , i.e.
the set {(x, f(x)) : x ∈ F2m}, is mapped to the graph of g. This equivalence
is called CCZ-equivalence (see [6]) and preserves the APN property.

In [8] the first APN function which was not equivalent to any power func-
tion was found. Shortly after this, several infinite families of APN functions
have been discovered, see for example [1, 2, 3, 4, 5].

The problem of classifying all APN functions seems elusive today. Even
the problem of classifying all APN power functions is an open problem and
not a lot progress has been made here. However, there are possible steps that
can be taken towards a full classification. One approach that already proved
to be successful is to show that certain polynomials are not APN for infinitely
many extensions of F2. So here one first fixes a finite field Fq and a function
f : Fq → Fq given as a polynomial in Fq[x] and poses the question if this
function can be APN on infinitely many extensions of Fq. There is a variety
of classes of functions for which it can be shown that each function is APN
at most for a finite number of extensions. For example, Jedlicka [10] studied
the case of power functions and Voloch [15] focused on binomials. Moreover,
Rodier studied general polynomials with the same approach in [12, 13].

2 Our Results

So far the above question has only be treated when the polynomial description
of f does not depend on n. In this paper we tackle the question if a given
class of functions can be APN infinitely many often for functions of the form

f : Fq → Fq

f(x) = xq−2 + g(x)

where g is a fixed polynomial. The description of those functions clearly
depends on q, and so these functions do not fall into the classes considered
so far. However for every nonzero x ∈ Fq we have

f(x) = x−1 + g(x)

and so the equation
xf(x) = 1 + xg(x)

actually does not depend on q anymore, a fact we will use below. Functions
of the form f(x) = xq−2 + g(x) are in particular interesting for cryptography
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as another important criterion for functions used in symmetric ciphers is a
high algebraic degree and functions of the studied form provide the maximal
degree possible for a balanced function. Moreover, it turns out that these
functions are in particular suitable for the question posed above.

The main idea to prove that a given polynomial is APN only for finitely
many extensions involves the estimation of the number of points on the fol-
lowing surface X ′ of the affine equation

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2) = 1

associated to a function f . There are three major steps to derive these
estimations.

The first, and for most of the classes of functions studied so far the most
involved step, is to show that the number of points of the associated surface
can be bounded by applying the Weil bound (or improvements of this bound).
The second step is the observation that the number of Fq-rational points on
a certain surface associated to an APN function can be upper bounded.
The third step consists of applying the Weil bound (or improvements of this
bound) to get a lower bound on the number of points on the same surface.
These bounds will involve the field size q. Moreover, if q is large enough,
the derived lower bound exceeds the upper bound for APN functions and
this in turn applies that the function can only be APN up to a certain field
size. This is the approach taken by all the papers that deal with this kind of
questions.

For the first step, i.e. for the Weil bound to be applicable to X ′, the
surface X ′ has to fulfill certain properties. One possibility is to show that
the surface is absolutely irreducible. For most of the classes studied so far
the question of absolute irreducibility was the part where one had to make
further restrictions on the studied functions which where not always fully
satisfactory. However, for the functions we study the question of absolute
irreducibility can be answered completely, see the Theorem below.

Theorem 2.1 Let g ∈ Fq[x] be any non-affine polynomial. The surface X ′

defined by the affine equation

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2) = 1

is absolutely irreducible.
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The proof of this Theorem can be found in Section 3.
The second step, i.e. the upper bound on the number of Fq-rational points

on the surface X ′ is stated in the corollary below and proven in Section 4.

Corollary 2.1 If the polynomial mapping f(x) = xq−2 + g(x) (g of degree
d ≥ 3) is APN than the projective surface X ′ with affine equation

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2) = 1

has at most 4dq + 4q + 8 rational points.

The final, and straight forward step, is a lower bound on the number of points
on X ′. One possible lower bound is given below.

Corollary 2.2 The projective surface X ′ with affine equation

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2) = 1

has at least q2 + q + 1 − d(d − 1)q3/2 − 18(d + 4)4q rational points.

Proof. As it is proven in Theorem 2.1 that X ′ is absolute irreducible we can
apply a result of Lang-Weil [11] improved by Ghorpade-Lachaud ([9, section
11]), and deduce

|X ′(Fq) − q2 − q − 1| ≤ d(d − 1)q3/2 + 18(d + 4)4q.

Hence
−X ′(Fq) + q2 + q + 1 ≤ d(d − 1)q3/2 + 18(d + 4)4q.

that is
X ′(Fq) ≥ q2 + q + 1 − d(d − 1)q3/2 − 18(d + 4)4q.

⊔⊓

These results are put together in the next theorem.

Theorem 2.2 Let g be a polynomial from Fq to Fq, d its degree. Then, if
d < 0.45q1/4 − 3.5 and d ≥ 5 , f is not APN.
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Proof. From the above it follows that if q2+q+1−d(d−1)q3/2−18(d+4)4q >
4dq+4q+8, then X ′(Fq) > 4dq+4q+8, and thus f is not APN. This condition
can be written as

q2 − d(d − 1)q3/2 − (18(d + 4)4 + 4d + 3)q + 1 > 0

or

q − d(d − 1)q1/2 − (18(d + 4)4 + 4d + 3) +
1

q
> 0

This condition is fulfilled for q1/2 > 70 + 33.15d + 4.773d2. Or for d <
0.45q1/4 − 3.5 and d ≥ 5. ⊔⊓

Our main result is a corollary of this.

Corollary 2.3 Let g be any fixed non-affine polynomial function in Fq[x].
Then the functions

f : Fqn → Fqn

f(x) = xqn
−2 + g(x)

are APN on at most a finite number of fields Fqn.

2.1 Special cases

If we fix the degree of g a closer analysis of the surface X ′ allows to derive
better bounds on the maximal field size such that the given function can be
APN. If this maximal size is not too big it can be checked with the help of
computers if f of the given form can ever be APN by just checking up to the
maximal possible extension. Following this approach to combine theoretical
results and computer experiments we prove the following theorem as shown
in Section 5.

Theorem 2.3 Let m > 3 and q = 2m be given. Furthermore, let g be any
non-affine polynomial of degree at most 6 in Fq[x]. Then the function

f : Fq → Fq

f(x) = xq−2 + g(x)

is not APN.

5



Another special case is the case of binomials, i.e. the case where g is
a monomial axd. This case is particularly suitable for checking the APN
property with the help of computers, as there are at most gcd(d, q − 1) non
equivalent functions of the form xq−2 + axd. This in turn implies that one
can check all functions of the form at least for field sizes smaller or equal to
224 within hours on a standard PC. For this case Theorem 2.2 states that if d
is smaller than 30 the function xq−2 + axd can be APN only on fields up to a
size of 224. The following result therefor is again a combination of computer
search on fields up to that size and Theorem 2.2.

Theorem 2.4 Let q = 2m and d a nonzero integer not a power of 2 be given.
Then the function

f : Fq → Fq

f(x) = xq−2 + axd

is not APN for a ∈ F∗

q and d ≤ 29.

3 Proof of Theorem 2.1: Irreducibility of X ′

As stated above, one key tool is to apply the Weil bound, or variants, on the
number of points on certain surfaces. In order for this bound to be applicable
the surface has to fulfill certain properties. The purpose of this section is to
show that the surface X ′ defined by the affine equation

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2) = 1

is absolutely irreducible where g is any fixed polynomial.
Assume that X ′ is not absolutely irreducible and denote

φ(x0, x1, x2) =
g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
.

Then one may write, with Pi (resp. Qi) polynomials in 2 (resp. 3) variables:

1 + φ(x0, x1, x2)x0x1x2(x0 + x1 + x2)

= (P1(x1, x2) + x0Q1(x0, x1, x2))(P2(x1, x2) + x0Q2(x0, x1, x2))

= P1(x1, x2)P2(x1, x2)

+x0(Q1(x0, x1, x2)P2(x1, x2) + Q2(x0, x1, x2)P1(x1, x2)) +

+x2

0Q1(x0, x1, x2)Q2(x0, x1, x2)
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One has P1(x1, x2)P2(x1, x2) = 1 so P1(x1, x2) is a nonzero constant, and one
can suppose that P1(x1, x2) = 1 and P2(x1, x2) = 1. Consequently

1 + φ(x0, x1, x2)x0x1x2(x0 + x1 + x2)

= 1 + x0(Q1(x0, x1, x2) + Q2(x0, x1, x2)) + x2

0Q1(x0, x1, x2)Q2(x0, x1, x2)

= 1 + x0(Q1(0, x1, x2) + Q2(0, x1, x2)) +

x2

0

(

Q1(0, x1, x2) + Q2(0, x1, x2) + Q1(x0, x1, x2) + Q2(x0, x1, x2)

x0

)

+

x2

0Q1(x0, x1, x2)Q2(x0, x1, x2)

and

1 + φ(x0, x1, x2)x0x1x2(x0 + x1 + x2)

= 1 + φ(0, x1, x2)x0x1x2(x1 + x2) + φ(0, x1, x2)x
2

0x1x2 +

x2

0x1x2(x0 + x1 + x2)

(

φ(x0, x1, x2) + φ(0, x1, x2)

x0

)

where the fractions with denominators x0 are actually polynomials. Hence

Q1(0, x1, x2) + Q2(0, x1, x2) = φ(0, x1, x2)x1x2(x1 + x2)

and

Q1(0, x1, x2) + Q2(0, x1, x2) + Q1(x0, x1, x2) + Q2(x0, x1, x2)

x0

+

Q1(x0, x1, x2)Q2(x0, x1, x2)

= x1x2(x0 + x1 + x2)
φ(x0, x1, x2) + φ(0, x1, x2)

x0

+ φ(0, x1, x2)x1x2

Let d be the degree of g. Remark that the degree of φ(0, x1, x2) is equal to
d − 3 (see Lemma 4.2). Hence

d = deg(φ(0, x1, x2)x1x2(x1 + x2)) ≤ sup(deg Q1, Q2)

and deg Q1 + deg Q2 ≤ 3 + d − 3 − 1. If deg Q1 ≥ deg Q2, one has

d ≤ sup(deg Q1, Q2) ≤ deg Q1 ≤ deg Q1 + deg Q2 ≤ d − 1

We obtain a contradiction to the assumption that X ′ is reducible.
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4 Proof of Corollary 2.1: The Upper Bound

The purpose of this section is to give a proof of Corollary 2.1, i.e. to show
that the number of rational points on the surface X ′ can be upper bounded
if f is APN. The main tool is the following Lemma (see for example [12]).

Let f be a a polynomial mapping from Fq to itself which has no terms of
degree a power of 2.

Proposition 4.1 The function f : Fq → Fq is APN if and only if the
surface f(x0) + f(x1) + f(x2) + f(x0 + x1 + x2) = 0 has all of its rational
points contained in the surface (x0 + x1)(x2 + x1)(x0 + x2) = 0.

Before we prove Corollary 2.1, remark that the polynomial f(x0)+f(x1)+
f(x2) + f(x0 + x1 + x2) is divisible by (x0 + x1)(x2 + x1)(x0 + x2), therefore
the quotient

f(x0) + f(x1) + f(x2) + f(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)

defines a polynomial which is the affine equation of a surface X if the polyno-
mial is not constant,that is if f is not a q-affine polynomial or a polynomial
of degree 3.

We will make use of the following lemmata.

Lemma 4.1 If d is not a power of 2 and at least 3, and an integer c at least
2 then the polynomial

∑c
i=1 xd

i + (
∑c

i=1 xi)
d is non zero, hence of degree d.

Proof. Write d = 2ab with b odd. The polynomial can be written (
∑c

i=1 xb
i +

(
∑c

i=1 xi)
b)2a

. The inner polynomial contains a monomial (say bx1x
b−1
2 ) of

degree b. Hence the conclusion. ⊔⊓

Lemma 4.2 If deg g = d is not a power of 2, then

φ(x0, x1, x2) =
g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)

is a polynomial of degree d − 3.

Proof. Denote by φd the term of highest degree of φ . As it is nonzero and
as φd is a rational homogeneous fraction, φd is of degree d − 3. ⊔⊓
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Now we can prove Corollary 2.1: Let the polynomial mapping f(x) =
xq−2 + g(x) (g of degree d ≥ 3) be APN and X ′ be the surface with affine
equation

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2) = 1

Due to Theorem 2.1 X ′ is absolutely irreducible. We have to show that the
corresponding projective surface has at most 4dq + 4q + 8 rational points.

If the surface X ′ contained the plane x0 + x1 = 0, it would contain also
the planes x2 + x1 = 0 and x0 + x2 = 0 by symmetry, which is impossible as
the surface X ′ is irreducible. So its intersection with the plane x0 +x1 = 0 is
a curve of degree d + 1. This curve has at most (d + 1)q + 1 rational points
from Serre [14]. The same argument works for the plane at l’infinity.

If f is APN, the affine surface X has no other rational points than those
of the surface (x0 + x1)(x2 + x1)(x0 + x2) = 0, which is union of a plane
x0 + x1 = 0 and of its symmetrical plane.

The set X
′

(Fq) decomposes as follows:

X
′

(Fq) = X ′

x0
∪ X ′

x1
∪ X ′

x2
∪ X ′

x0+x1+x2
∪ X∗

aff
∪ X∗

∞

where X ′

a = X
′

(Fq)∩(a = 0), and X∗

aff
is the affine complement. The equation

of surface X ′ may be written as follows

x−1
0 + g(x0) + x−1

1 + g(x1) + x−1
2 + g(x2) + (x0 + x1 + x2)

−1 + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)

×x0x1x2(x0 + x1 + x2) = 0.

It means that for x0x1x2(x0 + x1 + x2) 6= 0, the element of the set X∗

aff
fulfill

f(x0) + f(x1) + f(x2) + f(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
× x0x1x2(x0 + x1 + x2) = 0

which proves that X∗

aff
is contained in X(Fq) hence, as f is APN, in the union

of the three planes (x0 + x1)(x2 + x1)(x0 + x2) = 0. Therefore the number of
points in X∗

aff
is bounded by 3((d + 1)q + 1).

The intersection of the surface X
′

with the plane x0 = 0 is the line x0 = 0
in the plane at infinity, which has q + 1 rational points.
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The equation of the intersection of the surface X
′

with the plane at infinity
is

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2) = 0

It contains the lines x0x1x2(x0 + x1 + x2) = 0, for which we have already
taken in consideration the points, and the curve

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

which has at most (d − 3)q + 1 rational points.
So

#X
′

(Fq) = #X ′

x0
+ #X ′

x1
+ #X ′

x2
+ #X ′

x0+x1+x2
+ X∗

aff
+ #X∗

∞

= 4(q + 1) + 3((d + 1)q + 1) + (d − 3)q + 1

= 4dq + 4q + 8

which proves the result.

5 Improvements in specific cases

Under certain conditions, we can obtain a better bound on the dimension.

Theorem 5.1 Let g a polynomial mapping from F2m to itself, d its degree.
Let us suppose that the surface X ′ defined by

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2) = 1

of degree d′ = d + 1 has only isolated singular points. Then if d ≥ 3 and
d < q1/4 , f is not APN.

Proof.

From an improvement of a result of Deligne [7] by Ghorpade-Lachaud
([9], corollaire 7.2), we deduce

|X ′(Fq) − q2 − q − 1| ≤ b′1(2, d
′)q3/2 + (b2(3, d

′) + 1)q

≤ (d′ − 1)(d′ − 2)q3/2 + (d′3 − 4d′2 + 6d′ − 1)q

≤ d(d − 1)q3/2 + (2 + d − d2 + d3)q
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where b′1 and b2(3, d
′) are Betti numbers (see [9]). Hence

X ′(Fq) ≥ q2 + q + 1 − d(d − 1)q3/2 − (2 + d − d2 + d3)q

Therefore if

q2 + q + 1 − d(d − 1)q3/2 − (2 + d − d2 + d3)q > 4dq + 4q + 8,

then X ′(Fq) > 4dq + 4q + 8, and f is not APN due to Corollary 2.1. This
condition can be rewritten as

q − d(d − 1)q1/2 − (5 + 5d − d2 + d3) − 7/q > 0.

It is fulfilled if q > d4 as soon as d ≥ 3. ⊔⊓

5.1 Polynomials g of small degree

As stated in the introduction the APN property is invariant under the so
called CCZ-equivalence. As adding affine functions is a special case of CCZ-
equivalence it is clear that given two functions f and g that differ by an affine
function f is APN if and only if g is APN. Moreover, multiplying an APN
polynomial function by a constant or replacing x by any non-constant linear
polynomial yields again an APN polynomial. These well known observations
are summarized in the proposition below.

Proposition 5.1 A polynomial function f is APN if and only if the poly-
nomial f0 obtained by removing all monomials of degree a power of 2 and
by removing the constant term is APN. Moreover, if f is APN then for any
nonzero a, c ∈ F2m and any element b ∈ F2m the polynomial function

cf(ax + b)

is APN.

This proposition will be used in the reminder of the paper to simplify the
polynomials we have to study.
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Polynomials of degree 3 We first focus on polynomials of degree 3. Here,
the general form of f is

f(x) = xq−2 + a3x
3 + a2x

2 + a1x + a0

where a3 6= 0 which is clearly equivalent to

f(x) = xq−2 + a3x
3.

Moreover, replacing x by a
−1/4

3 x and multiplying across by a
1/4

3 we see that
f is in any case equivalent to

f(x) = xq−2 + x3.

In this case the affine equation for X ′ becomes

1 +
g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 + x1 + x2)

= 1 +
((x3

0 + x3
1 + x3

2 + (x0 + x1 + x2)
3)x0x1x2(x0 + x1 + x2))

(x0 + x1)(x2 + x1)(x0 + x2)

= 1 + x0x1x2(x0 + x1 + x2)

The search of singular points on the surface z4 + x0x1x2(x0 + x1 + x2) = 0
gives a finite number of points.

Polynomials of degree 5 Next, we study polynomials of degree 5. The
general form of f (up to adding affine equivalence) is given by

f(x) = xq−2 + a5x
5 + a3x

3.

Furthermore we can assume without loss of generality that x3 ∈ F2. We have
to study the surface

X ′ = 1+

(

a3

x3
0 + x3

1 + x3
2 + (x0 + x1 + x2)

3

(x0 + x1)(x0 + x2)(x1 + x2)

+a5

x9
0 + x3

1 + x9
2 + (x0 + x1 + x2)

9

(x0 + x1)(x0 + x2)(x1 + x2)

)

x0x1x2(x0 + x1 + x2)

and show that there are only a finite number of singular points. The lengthy
– but straight forward – computation for showing this can be found in Ap-
pendix A.
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Polynomials of degree 6 Next, we study polynomials of degree 6. The
general form of f (up to adding affine equivalence) is given by

f(x) = xq−2 + a6x
6 + a5x

5 + a3x
3.

Furthermore we can assume without loss of generality that x3 ∈ F2.
In this case we have to study the surface

X ′ = 1+

(

a3

x3
0 + x3

1 + x3
2 + (x0 + x1 + x2)

3

(x0 + x1)(x0 + x2)(x1 + x2)

+a6

x6
0 + x3

1 + x6
2 + (x0 + x1 + x2)

6

(x0 + x1)(x0 + x2)(x1 + x2)

+a5

x9
0 + x3

1 + x9
2 + (x0 + x1 + x2)

9

(x0 + x1)(x0 + x2)(x1 + x2)

)

x0x1x2(x0 + x1 + x2)

and show that there are only a finite number of singular points. We refer to
Appendix B for the proof.

Conclusion As we have seen above for any non-affine polynomial of degree
less than 6 the corresponding surface contains only isolated singularities.
Therefore, Proposition 5.1 applies. Thus if f is APN it holds that q =
2m ≤ 64 which implies m ≤ 10. It can easily be checked that functions form
xq−2 + a6x

6 + a5x
5 + a3x

3 are APN only if m ≤ 3. Note that, for m ≤ 3 the
APN functions are quadratic and moreover for m ≤ 3 all APN functions are
CCZ equivalent to x3. These considerations finally prove Theorem 2.3 stated
above.
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A Singular points for g of degree 5

We have to study the surface

X ′ = 1+

(

a3

x3
0 + x3

1 + x3
2 + (x0 + x1 + x2)

3

(x0 + x1)(x0 + x2)(x1 + x2)

+a5

x9
0 + x3

1 + x9
2 + (x0 + x1 + x2)

9

(x0 + x1)(x0 + x2)(x1 + x2)

)

x0x1x2(x0 + x1 + x2)

and show that there are only a finite number of singular points. For this we
compute the derivatives of the projective version of X ′

X ′ = a5x2x1x0(x0 + x1 + x2)(x
2

0 + x0x1 + x0x2 + x2

1 + x1x2 + x2

2)

+a3z
2x2x1x0(x0 + x1 + x2)

+z6

The derivatives of the projective version of X ′ are as follows

∂X ′

∂x0

= x2x1(x1 + x2)P (x1, x2, z)

∂X ′

∂x1

= x0x2(x0 + x2)P (x0, x2, z)

∂X ′

∂x2

= x0x1(x0 + x1)P (x0, x1, z)

∂X ′

∂z
= 0

where
P (x, y, z) = a5(x

2 + xy + y2) + a3z
2

To study the singular points of these equations, we make some case distinc-
tion.

Case x0 = 0: In this case X ′ simplifies to z = 0 and we have

∂X ′

∂x0

(0, x1, x2, 0) = a5x2x1(x1 + x2)(x
2

1 + x1x2 + x2

2)

which, up to equivalence, implies a finite number of singularities .
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Case x1 = 0 or x2 = 0: Due to symmetries the cases can be handled
exactly like the first case.

Case x1 = x2: Here we are left with the following system of equations

a5x
2

2x
2

0(x0 + x2)
2 + a3z

2x2

2x
2

0 + z6 = 0

x0x2(x0 + x2)(a5(x
2

0 + x0x2 + x2

2) + a3z
2) = 0

Now if x0 = x2 the first of this equation becomes

(a3x
4

0 + z4)z2 = 0 (1)

If a3 = 0 then z = 0 and there are, up to equivalence, at most two points
(1, 1, 1, 0) and (0, 0, 0, 0). For a3 6= 0 we can assume a3 = 1, see above. Now,
if z 6= 0 then x0 = z and, up to equivalence, there is only one point (1, 1, 1, 1).

The case z = 0 and x0 = x1 = x2 correspond, up to equivalence to at
most two points (1, 1, 1, 0) and (0, 0, 0, 0).

For x0 = 0 or x2 = 0 see the first case above. Thus we are left with the
case

a5(x
2

0 + x0x2 + x2

2) + a3z
2 = 0

a5x
2

2x
2

0(x0 + x2)
2 + a3x

2

0x
2

2z
2 + z6 = 0

Computing the resultants of both equations with respect to x0 and x2 we get

a3

5Q(x0) = 0 and a3

5Q(x2) = 0

where

Q(x) = a3

5x
12 + a3a

2

5x
10z2 + a2

3a5x
8z4 + a3

3x
6z6 + a3a5x

4z8 + a5z
12.

The fact that Q is a non-zero polynomial (as a5 6= 0) implies only a finite
number of solutions (up to equivalence).

Case x0 = x2 or x0 = x1: Due to symmetries the cases can be handled
exactly like the case above.
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None of the above cases: Here we get the following equations.

X ′ = 0

P (x1, x2, z) = 0

P (x0, x2, z) = 0

P (x0, x1, z) = 0

In particular the singular points have to fulfil

P (x1, x2, z) + P (x0, x2, z) = a5(x0 + x1)(x0 + x1 + x2) = 0

P (x1, x2, z) + P (x0, x2, z) = a5(x0 + x2)(x0 + x1 + x2) = 0

P (x1, x2, z) + P (x0, x2, z) = a5(x1 + x2)(x0 + x1 + x2) = 0.

The cases x0 = x1 or x0 = x2 or x1 = x2 have been studied above. The case
x0 + x1 + x2 = 0 implies z = 0 (as X ′ = 0) and then

P (x0, x2, 0) = a5(x
2

0 + x0x1 + x2

1) = 0

which leaves only a finite number of singularities (up to equivalence).

B Singular points for g of degree 6

We have to study the surface

X ′ = 1+

(

a3

x3
0 + x3

1 + x3
2 + (x0 + x1 + x2)

3

(x0 + x1)(x0 + x2)(x1 + x2)

+a6

x6
0 + x3

1 + x6
2 + (x0 + x1 + x2)

6

(x0 + x1)(x0 + x2)(x1 + x2)

+a5

x9
0 + x3

1 + x9
2 + (x0 + x1 + x2)

9

(x0 + x1)(x0 + x2)(x1 + x2)

)

x0x1x2(x0 + x1 + x2)

and show that there are only a finite number of singular points. The compu-
tations and case distinctions are very similar to the case where g is of degree
5.

We compute the derivatives of the projective version of X ′

X ′ = a6x2x1x0(x1 + x2)(x0 + x2)(x0 + x1)(x0 + x1 + x2)

+a5zx2x1x0(x0 + x1 + x2)(x
2

0 + x0x1 + x0x2 + x2

1 + x1x2 + x2

2)

+a3z
3x2x1x0(x0 + x1 + x2)

+z7
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with respect to x0, x1, x2 and z. We get

∂X ′

∂x0

= x2x1(x1 + x2)P (x1, x2, z)

∂X ′

∂x1

= x0x2(x0 + x2)P (x0, x2, z)

∂X ′

∂x2

= x0x1(x0 + x1)P (x0, x1, z)

∂X ′

∂z
= a5x2x1x0(x0 + x1 + x2)(x

2

0 + x0x1 + x0x2 + x2

1 + x1x2 + x2

2)

+a3z
2x2x1x0(x0 + x1 + x2) + z6

where
P (x, y, z) = a6xy(x + y) + a5z(x2 + xy + y2) + a3z

3

To study the singular points of these equations, we make some case distinc-
tion.

Case x0 = 0: Then ∂X′

∂z
(0, x1, x2) = 0 implies z = 0 and this simplifies to

∂X ′

∂x0

(0, x1, x2, 0) = a6x
2

2x
2

1(x1 + x2)
2

= 0

which for a6 6= 0 implies, up to equivalence, a finite number of singularities.

Case x1 = 0 or x2 = 0: Due to symmetries the cases can be handled
exactly like the first case.

Case x1 = x2: In this case we are left with only two non-zero equations,
namely

∂X ′

∂x1

(x0, x2, x2, z) = x0x2(x0 + x2)P (x0, x2, z)

∂X ′

∂z
(x0, x2, x2, z) = a5x

2

2x
2

0(x0 + x2)
2 + a3x

2

0x
2

2z
2 + z6

Now, if x0 = x2 then x0 = x1 = x2 and we get

∂X ′

∂z
(x0, x0, x0, z) = (a3x

4

0 + z4)z2.
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which has been studied already in the case of a degree 5 polynomial (see
Equation (1))

For x0 = 0 or x2 = 0 see the first case above. Thus we are left with the
case

P (x0, x2, z) = 0

a5x
2

2x
2

0(x0 + x2)
2 + a3x

2

0x
2

2z
2 + z6 = 0

For this we again distinguish two cases: z = 0 and z 6= 0. For z = 0 we get

P (x0, x2, 0) = a6x2x0(x0 + x2).

Thus we have either x0 = 0 or x2 = 0 which have been handled above, or
x0 = x2 which gives again at most two points up to equivalence, see above.

For z 6= 0 we can restrict, up to equivalence, to the case z = 1. In this
case we get

a6x0x2(x0 + x2) + a5(x
2

0 + x0x2 + x2

2) + a3 = 0

a5x
2

2x
2

0(x0 + x2)
2 + a3x

2

0x
2

2 + 1 = 0

Computing the resultant of these two equations with respect to x0 and x2

we get
Q(x0) = 0 and Q(x2) = 0

where

Q(x) = (a3a
3

5a
2

6 + a6

5)x
12 + (a2

3a
2

5a
2

6 + a3a
5

5)x
10 + (a3

3a5a
2

6 + a2

3a
4

5 + a3a
4

6)x
8

+(a4

3a
2

6 + a3

3a
3

5)x
6 + (a3a

4

5 + a4

6)x
4 + a4

5

For a5 6= 0 Q is a non-zero polynomial as its constant term is non-zero. For
a5 = 0 Q is non-zero as the degree 4 term is non-zero. Therefore, in any case
we get at most finitely many points.

Case x0 = x2 or x0 = x1: Due to symmetries the cases can be handled
exactly like the case above.

None of the above cases: In this case we have to study

P (x1, x2, z) = 0

P (x0, x2, z) = 0

P (x0, x1, z) = 0

∂X ′

∂z
= 0
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This implies that x0, x1, x2, z are solutions to the following set of equations:

P (x1, x2, z) + P (x0, x2, z) = (a6x2 + a5z)(x0 + x1)(x0 + x1 + x2) = 0

P (x1, x2, z) + P (x0, x2, z) = (a6x1 + a5z)(x0 + x2)(x0 + x1 + x2) = 0

P (x1, x2, z) + P (x0, x2, z) = (a6x0 + a5z)(x1 + x2)(x0 + x1 + x2) = 0

The cases x0 = x1 or x0 = x2 or x1 = x2 have been studied above. The case
x0 + x1 + x2 = 0 implies z = 0 (as X ′ = 0) and as seen above

P (x0, x2, 0) = a6x2x0(x0 + x2),

and we are back to cases studied before. Thus the only case left is

(a6x2 + a5z) = 0

(a6x1 + a5z) = 0

(a6x0 + a5z) = 0

which implies x0 = x1 = x2 and, up to equivalence, at most two points.
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