
HAL Id: hal-00356529
https://hal.science/hal-00356529v7

Preprint submitted on 2 Apr 2009 (v7), last revised 6 Jul 2009 (v8)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Statistical Methodology to Evaluate Program
Speedups and their Optimisation Techniques

Sid Touati

To cite this version:
Sid Touati. Towards a Statistical Methodology to Evaluate Program Speedups and their Optimisation
Techniques. 2009. �hal-00356529v7�

https://hal.science/hal-00356529v7
https://hal.archives-ouvertes.fr


Towards a Statistical Methodology to Evaluate Program Speedups
and their Optimisation Techniques

Sid-Ahmed-Ali TOUATI

Sid.Touati@uvsq.fr
University of Versailles Saint-Quentin en Yvelines, France

April 2009

Abstract

The community of program optimisation and analysis, code performance evaluation, parallelisation
and optimising compilation has published since many decades hundreds of research and engineering
articles in major conferences and journals. These articlesstudy efficient algorithms, strategies and tech-
niques to accelerate programs execution times, or optimiseother performance metrics (MIPS, code size,
energy/power, MFLOPS, etc.). Many speedups are published,but nobody is able to reproduce them ex-
actly. The non-reproducibility of our research results is adark point of the art, and we cannot be qualified
ascomputer scientistsif we do not provide rigorous experimental methodology.

This article provides a first effort towards a correct statistical protocol for analysing and measuring
speedups. As we will see, some common mistakes are done by thecommunity inside published articles,
explaining part of the non-reproducibility of the results.Our current article is not sufficient by its own to
deliver a complete experimental methodology, further efforts must be done by the community to decide
about a common protocol for our future experiences. Anyway,our community should take care about
the aspect of reproducibility of the results in the future.

Keywords: Program optimisation, Statistical Performance Evaluation

1 Introduction

The community of program optimisation and analysis, code performance evaluation, parallelisation and op-
timising compilation has published since many decades hundreds of research and engineering articles in
major conferences and journals. These articles study efficient algorithms, strategies and techniques to ac-
celerate programs execution times, or optimise other performance metrics (MIPS, code size, energy/power,
MFLOPS, etc.). The efficiency of a code optimisation technique is generally published according to two
principles, non necessarily disjoint. The first principle is to provide a mathematical proof given a theoret-
ical model that the published research result is correct or/and efficient: this is the hard part of research in
computer science, since if the model is too simple, it would not represent real world, and if the model is too
close to real world, mathematics become too complex to digest. A second principle is to propose and imple-
ment a code optimisation technique and to practice it on a setof chosen benchmarks in order to evaluate its
efficiency. This article concerns this last point: how can weconvince the community by rigorous statistics
that the experimental study publishes correct and fair results ?

1



1.1 Non-Reproducible Experimental Results

Hard natural sciences such as physics, chemistry and biology impose strict experimental methodologies and
rigorous statistical measures in order to guarantee the reproducibility of the results. The reproducibility of
the experimental results in our community is, namely, our dark point. Given a research article, it is in practice
impossible or too difficult to reproduce the published performance. If our results are not reproducible, we
cannot say that we are doing science! Some aspects make a research article non-reproducible:

• Non using precise scientific languages such as mathematics.Ideally, mathematics must always be
preferred to describe ideas, if possible, with an accessible difficulty.

• Non available software, non released software, non communicated precise data.

• Not providing formal algorithms or protocols make impossible to reproduce exactly the ideas. For
instance, the authors in (PMT04) spent large efforts to re-implement some branch predictor algorithms
based on the published research articles, but they fail to reproduce the initial results of the authors.
Simply because the initial articles describing the branch predictors are not formal, so they can be
interpreted differently.

• Hide many experimental details. As demonstrated by (MDSH09), bringing small modification on the
execution environment brings contradictory experimentalresults. For instance, just changing the size
of the linux shell variables or the order of linking an application alter the conclusions. As pointed by
the authors in (MDSH09), a lot of published articles in majorconferences hide these details, meaning
that their experimental results are meaningless.

• Usage of deprecated machines, deprecated OS, exotic environment, etc. If we take a research article
published five years after the experiences for instance, there is a high chance that the workstations
that served the experiences have already died or already changed their behaviour (usury of hardware,
software patches, etc.).

With the huge amount of published articles in the code optimisation community, with the impressive
published speedups, an external reviewer of our community has the right to ask the following naive question:
If we combine all the published speedups (accelerations) onthe well known public benchmarks since four
decades, why don’t we observe execution times approaching to zero ?This question is justified, and brings
a reforming malaise to us. Now, we are asked to be clear about our statistics, some initiatives start to collect
published performance data in order to compare them(FuTe09).

The malaise raised by the above question is not a suspicion ofa generalcheatingin research. We believe
that our community is honest in publishing data, but the published observed speedups are sometimesrare
events far from what we could observe if we redo the experiences multiple times. Even if we take an
ideal situation where we use exactly the original experimental machines and software, it is too difficult to
reproduce exactly the same performance numbers again and again, experience after experience. Usually,
published speedups are computed with bias describing pretty rare events. Frankly, if a computer scientist
succeeds in reproducing the performance numbers of his colleagues (with a reasonable error ratio), it would
be equivalent to what rigorous probabilists and statisticians call asurprise.

1.2 Why Program Execution Times Vary

What makes a binary program execution time to vary, even if weuse the same data input, the same binary,
the same execution environment?

2



• Background tasks, concurrent jobs, OS process scheduling;

• Interrupts;

• Input/output;

• Starting loader address;

• Branch predictor initial state;

• Cache effects;

• Non deterministic dynamic instruction scheduler;

• Temperature of the room (dynamic voltage/frequency scaling service)

One of the reasons of the non-reproducibility of the resultsis the variation of execution times of the same
program given the same input and the same experimental environment. With the massive introduction of
multicore architectures, we believe that the variations ofexecutions times will become exacerbated because
of the complex dynamic features influencing the execution: threads scheduling policy, synchronisation bar-
riers, resource sharing between threads, hardware mechanisms for speculative execution, etc. Consequently,
if you execute a program (with a fixed input and environment)k times, it is possible to obtaink distinct
execution times. The mistake here is to assume that these variations are minor, and are stable in general.
The variation of execution times is something that we observe everyday, we cannot neglect it. An usual error
in the community is to replace all thek execution times by one value, such that the minimum, the meanor
the maximum. Doing that would producesexierspeedups to publish, but does not reflect the reality with
fair numbers.

1.3 Why Don’t we Consider the Minimum Execution Time?

Considering the minimum value of thek observed execution times is unfair because:

• nothing guarantees that this minimum execution time is an ideal execution of the program.

• nothing guarantees that this minimum execution time is a consequence of the optimisation technique
under study. Maybe this minimum execution time is an accident, or a consequence of dynamic voltage
scaling, or anything else.

• if this minimal execution time is a rare event, all your statistics describe rare speedups. So, they
become non-reproducible easily.

1.4 What is Inside this Article, What are its Limitations

We base our reasoning here on common well known results in statistics, especially on some results ex-
plained in the book of Raj Jain (Jain91). We propose a first step towards a rigorous statistical methodology
to evaluate program optimisation techniques. This articlerecalls some common mistakes in performance
evaluation, explains which statistics should be used in a particular situation, and provide practical examples.
Furthermore, we show how to use the free software called R to compute these statistics (CGH+08; R D08).

Our article is organised to help computer scientists (and ofcourse PhD students) willing to make correct
and rigorous statistical study of their code optimisation method. The question is how to convince real

3



experts by statistics, provided a confidence levelα ∈]0%, 100%[, that your code optimisation technique is
really efficient in practice. Section 2 explains when we can decide about a speedup of a program and how
we can measure it usingk observations of execution times. Having a set ofn distinct independent programs
(considered as a set of benchmarks), Section 3 explains how to compute an average speedup (while it is a bad
idea to synthesise a set of speedups in by a unique average). Getting a speedup (acceleration) inside a sample
of n benchmarks does not guarantee you that you can get a speedup on another program. Consequently,
Section 4 shows how we can estimate the chance that the code optimisation would provide a speedup on a
program non belonging to the initial sample of benchmarks used for experiences.

The limitations of this article are: we do not study the variation of execution times due to changing the
program input. We consider real executions, not emulation/simulation nor executions on virtual machines.
We also consider a fixed (universal ?) experimental environment.

2 Computing a Speedup Factor for a Single Program with a Single Data
Input

Let P be an initial program, letP ′ be a transformed version after applying the code optimisation technique
under study. If you execute the programP k times, it is possible to obtaink distinct execution times
(especially if the program is short):t1, · · · , tk. The transformed programP ′ can be executedm times
producingm execution times toot′1, · · · , t′m. The unit of measure here is the mili-second in general, so we
can consider a timing precision in seconds with three digitsafter the coma. Below is a list of elementary
recommendations before starting statistics:

1. P andP ′ must be executed with the same data input insimilar experimental environment. The
community of code optimisation has not decided yet on the exact semantics ofsimilar, since many
unknown/hidden factors may influence the experiences.

2. Statistically, it is not necessary thatk = m. However, it isstrongly recommended thatk ≥ 30
andm ≥ 30. 30 runs may seem quite prohibitive, but this is the practical limits of the number of
observations used in statistics if you want to have a preciseStudent test that we will explain later.
If the number of observations is below 30, computing the confidence intervals of the mean time
becomes more complex: we should first check the normality of the distribution (using the normality
test of Shapiro-Wilk for instance). If the normality check succeeds, then the test of Student can be
applied. Otherwise, the confidence intervals of the mean execution times must be computed using
complex bootstrap methods (DaHi97) instead of the test of Student. We highly recommend 30 runs
per program to ensure the validity of the Student test. If theprogram execution time is too large to
consider 30 executions, you can do less executions but you should follow the method we just described
(either a normality check followed by a Student test, or by using bootstrap methods).

3. It is important that the repetitive executions of the sameprogram should be independent. For instance,
it is not fair to use a single loop around a code kernel that repeat the executionk times. This is
because repeating a programP inside a loop makes them to execute inside the same application.
Consequently, the operating system does not behave as if youexecute the programk times from the
shell. Furthermore, the caches are warmed by the repetitiveexecutions of the code kernels if they
belong to the same application.

4. Anyway, even if we execute a programk times from the shell, the executions are not necessarily inde-
pendent, especially if they are executed back-to-back: theseek time of the disk is altered by repetitive

4



Normality check OK ?

Normality check OK ?

Perform 30 runs of P

1) Execution Times for P and P’

Stop statistics, something is going wrong !

Perform 30 runs of P’

INPUTS:

no

yes

yes

no

no

yes

no

yes

yes

no

yes

no

yes

no

yes

no

Perform 100 runs of P and P’

k < 100 or m < 100 ?

k < 30 or m < 30 ?

0 ∈ confidence interval ?

k < 30 ?

m < 30 ?

T = t1, · · · , tk

T ′ = t′1, · · · , t′
m

2) Confidence level0 < α < 100

Perform Student-test with confidence levelα

Perform normality check forT ′

with confidence levelα

with confidence levelα

No Speedup with confidence levelα
Got a Speedup with confidence levelα

ComputeH(T ) andH(T ′)

H(T ) < 0.5 or H(T ′) < 0.5 ?

H(T ) < 0.5 or H(T ′) < 0.5 ?

Perform normality check forT

s(P ) = median(T )

median(T ′)

Figure 1: Statistical Protocol for Asserting and Computinga Speedup with Confidence Levelα

executions, some data are cached on the disk by applicationsand benefit from repetitive executions.
Recently, we have been told that branch predictors are also influenced by separate applications: this
seems strange, but we should stay careful with hardware mechanisms. As you can see, it is not easy
to guaranteek independent executions!

We have remarked a common mistake in computing speedups in presence of program execution time
variance: assuming that the variations in execution times are not really a problem, because caused by exter-
nal factors, these variations may be neglected and smoothed. Consequently, we may be asked to compute
the speedup resulted from transformingP into P ′ by using one of the following fractions:mini=1,k ti

minj=1,m t′j
,

maxi=1,k ti
maxj=1,m t′j

, or µ(P)
µ(P ′) . Here,µ is the usual notation of the sample arithmetic mean:µ(P) =

P

i=1,k ti
k ,

µ(P ′) =
P

i=1,m t′i
m . If one of the previous speedups is higher than 1, than peopleconclude victory. The mis-

take here is to assume thatk observed execution times represent any future execution time of the program,
even with the same data input. Statistically, we are wrong ifwe do not consider confidence intervals. To be
rigorous, we can follow the four major steps described belowto assert a high confidence in the computed
speedup. The whole detailed protocol is illustrated in Figure 1.

5



2.1 Step 1: Compute Hurst Factor of Execution Times

This step is optional. Hurst factor (noted byH) is used to quantify thesimilarity between values of the
same random variable. For instance,H(t1, · · · , tk) compute a value between 0 and 1. IfH > 0.5, then we
conclude that the execution times ofP aresimilar. Idem forP ′. If both the Hurst factors of the executions
times ofP andP ′ are> 0.5, we can continue the statistics to step 2. Otherwise, we are faced to a real
difficulty because of the reasons we explain below. Anyway, if the similarity between execution times of
the same application with the same data input is not an issue,the user may skip this step and go directly to
Step 2.

If the Hurst factor is below the limit 0.5, this means that thephenomena you are studying may beauto-
similar, that is it may not have a theoretical mean, which really annoying. This may arise in situations
where accidents or errors occur during the experiences, or even they could occur in theory. For instance, if
the program execution makes a trap that is corrected on the fly, the program execution would finish correctly
but the execution time would be altered. Computing Hurst factor is a first filter to stop doing any statistics
in situations of abnormal executions for instance.

Indeed, if the computed Hurst factor is below 0.5, and if the number of observations is below 100, we
cannot say anything. We should make at least 100 observations of the execution times. If the Hurst factor
of more than 100 observations is below 0.5, then no statistics are possible because thenoiseis important. If
the Hurst factor of more than 100 observations is greater than 0.5, then we can continue to step 2.

2.2 Step 2: If the Number of Runs is Below 30, Check the Normality

As said before, if the number of runs is at least 30, you can skip this step. If the number of runs of a program
is below 30, we should check if the values(t1, · · · , tk) and(t′1, · · · , t′m) follow a normal distribution. In
practice, we can use the Shapiro-Wilk normality test providing a confidence level. The user should fix a
confidence level (sayα = 95%), and the Shapiro-Wilk test can determine (with1 − α = 5% chance of
error) that the values follow a normal distribution. A laterexample will show how to practice this using the
R software. If the normality check fails, you can either run more executions till 30, or use complex bootstrap
method (that we will not explain here).

2.3 Step 3: Perform a Student Test to Decide if a Speedup Occurs

The Student test allows to statistically check if all the future executions of the programP ′ are faster than
the executions ofP with a fixed confidence levelα (0 < α < 100). The Student test allows to say that we
haveα% of chance that the mean execution time ofP ′ is faster than the mean execution time ofP by just
analysing then + m observations. This test estimates the confidence interval of the difference between the
mean execution times ofP andP ′. If the value zero is inside the confidence interval, then theStudent test
does not guarantee with a confidence levelα that the programP ′ is faster in average than the programP.
That is, if 0 belongs to confidence interval of the Student test, no speedup can be concluded for the program
P.

Let [a, b] be the confidence interval computed by the Student test. If0 < a then we can say thatP ′

would be faster in average thanP in α% of the future executions (considering the same data input and
experimental environment). An example is illustrated later.

6



2.4 Step 4: If the Student Test Concedes a Speedup, We then CanMeasure it

The speedup factor for the programP ′ can be defined as the fraction between the sample mean times,

as follows: µ(P)
µ(P ′) . Here, µ is the usual notation of the sample arithmetic mean:µ(P) =

P

i=1,k ti
k ,

µ(P ′) =
P

i=1,m t′i
m . The problem with this definition of speedup is that it is sensitive to outliers. Indeed, the

distributions of the values of(t1, · · · , tk) and(t′1, · · · , t′m) may be biased.
For the above reasons, we prefer using the median as suggested by (Jain91) instead of the sample mean

of the execution times1. Consequently, the speedup becomes

s(P ′) =
mediani=1,kti
medianj=1,mt′j

Remember that this speedup has no sense if the Student test fails to determine if 0 is outside the confi-
dence interval. For the remaining part of the article, we note bym(P) andm(P ′) the observed median of
the execution times of the programP andP ′ resp.

Example 2.1 LetP be a initial program with its ”representative” data input. We are willing to statistically
demonstrate with a confidence levelα = 95% that an optimisation technique transforms it intoP ′ and
produces benefit in terms of execution speed. For doing this,I should executeP andP ′ at least 30 times.
For the sake of the example, I consider here only 5 executionsfor P andP ′. Using the software R, I introduce
the values of execution times (in seconds) ofP andP ′ as two vectorsT1 andT2 resp.

> library(stats)
> T1<- c(2.799, 2.046, 1.259, 1.877, 2.244)
> T2 <- c(1.046, 0.259, 0.877, 1.244, 1.799)

We must not hurry to conclude and to publish the following result: the resulted speedup for this program
is equal tomin(T1)/min(T2) = 4.86. Publishing such performance gain (acceleration of factorequal to
4.86) is a statistical mistake. In order to have a correct result, we should compute the Hurst factor first to
analyse the similarity between the values.

> library(FGN)
HurstK(T1)
0.7032736

> HurstK(T2)
0.7032736

Both Hurst factors are above 0.5, so I can carry on (my values are similar). Now, since we have only 5
observations instead of 30, we should check the normality ofthe values ofT1 andT2 resp. using the test of
Shapiro-Wilk.

> shapiro.test(T1)
Shapiro-Wilk normality test
data: T1
W = 0.9862, p-value = 0.9647

1Keeping the median execution time is currently used by the SPEC benchmarks for instance

7



The test of Shapiro-Wilk on the dataT1 computes here a valueW = 0.9862. In order to say that the test
succeeds with confidence levelα, the valueW must be greater or equal to theW value of the Shapiro-
Wilk table (this table can be found on Internet for instance). I use here a confidence levelα = 95%. The
Shapiro-Wilk table forn = 5 (number of values) andα = 0.95 indicates the value of 0.986. Consequently,
the normality test succeeds forT1. Idem forT2.

> shapiro.test(T2)
Shapiro-Wilk normality test
data: T2
W = 0.9862, p-value = 0.9647

SinceW = 0.9862 ≥ 0.986, the values ofT2 follows a normal distribution with a confidence level of
α = 0.95. It is important to notice here that if the normality test fails for a program (T1 or T2), we must run
it at least 30 times. I can now continue with the Student test to check ifP ′ is faster thanP with a very high
confidence levelα = 99%.

> t.test(T1,T2, alternative="greater", conf.level=0.99)
Welch Two Sample t-test
...
99 percent confidence interval:
-0.02574667 Inf
...

The obtained confidence interval for the difference betweenthe mean execution times is[−0.02,+∞]. This
interval includes 0. Consequently, we cannot assert with99% confidence level thatP ′ is faster in average
thanP. I have the choice by either rejecting the obtained speedup (too hard), or reduce my confidence level.
I check withα = 95% instead of95%

> t.test(T1,T2, alternative="greater", conf.level=0.95)
...
95 percent confidence interval:
0.3414632 Inf

...

The confidence interval is[0.34,+∞], it does not include 0. Consequently, we can assert with 95% confi-
dence level that we obtained a speedup. In other words, the risk (of error) of not obtaining an acceleration
for the future executions is equal to 5%. The obtained speedup iss(P) = m(P)

m(P ′) = 2.046
1.046 = 1.95.

Remark: Speedup with Low Confidence Level

If the confidence level used for the Student test is too low, itis not impossible that we reach a situation where
the Student test detects a speedup while the computed speedup is ¡ 1. The following example shows that
low confidence levels may bring incoherent speedup measure.

Example 2.2 Let take the same previous example withT1 andT2. We apply a Student Test with a confidence
level equal to 1% to ensure thatP ′ is slower thanP. In the previous example, we showed the contrary with
a confidence level equal to 95%.

8



> t.test(T2, T1, alternative="greater", conf.level=0.01)
...
1 percent confidence interval:
0.02574667 Inf

...

As you can see, the test of Student succeeds, so we have 1% of chance thatP ′ is slower thanP. The
computed speedup (either by considering the sample mean of the median) is as follows:

> mean(T2)/mean(T1)
[1] 0.5110024
> median(T2)/median(T1)
[1] 0.5112414

As you can see, the speedup here is below 1. Is this a contradiction ? No of course, remember that the
confidence level of this speedup is only 1%.

This section explained how to check with a confidence levelα that a code optimisation technique pro-
duces a faster transformed program (for a fixed data input andexperimental environment). We also provided
a formula for quantifying the speedup. The following section explains how to compute an overall average
of speedups of a set of benchmarks.

3 Computing the Overall Speedup of a Set of Benchmarks

When we implement a code optimisation technique, we are generally asked to test it on a set of benchmarks,
not on a unique one. Letn be the number of considered benchmarks. Ideally, the code optimisation tech-
nique should produce speedups on then programs (at least no slowdown) with the same confidence level α.
Unfortunately, this situation is rare nowadays. Usually, only a fraction ofp programs amongn would benefit
from an acceleration. Lets(Pj) be the obtained speedup for the programPj . While this is not correct in
statistics, some reviewers ask an average speedup of all thebenchmarks. In statistics, we cannot provide a
fair average because the programs are different, and their weights are different too. So, asking for an overall
speedup for a set of benchmarks will highly bring unfair value. Neither an arithmetic mean, nor a geometric
or harmonic mean can be used to synthesise in a unique speedupof the the whole set of benchmarks.

The arithmetic mean does not distinguish between short and long programs: for instance, having a
speedup of 105% on a program which lasts 3 days must not have the same impact as a speedup of 300%
obtained on a program which lasts 3 seconds. In the former, wesave 5% of 3 days (=216 minutes), while
in the latter we save 200% of 3 seconds (=2 seconds). If we use the arithmetic mean, we would obtain an
overall speedup equal to (105+300)/2=202%, this does not reflect the reality with a fair number.

The geometric mean cannot be applied here because we are not faced to a succession of accelerations
on the same program, but to accelerations to distinct programs. The harmonic mean in our case is not
meaningful too because the quantity1

s represents also a sort of speedup, so we can provide the same criticism
as the arithmetic mean .

In order to computeG an overallperformance gain factor(not an overall speedup) that represents
the weights of the different programs, we can use the following method. The confidence level of this
performance gain factor is equal to the minimal value of confidence levels used in the Student tests to
validate individual speedups.

9



First, an interesting question is to decide if we should neglect then − p programs where no speedup
has been validated by the Student test. That is, the performance gain factor is computed for a subsetp of
programs, not on all then benchmarks. We believe we neglect then − p programs that fail in the Student
test if we study afterwards (in the next section) the confidence interval of the proportionpn : studying this
proportion helps us to decide if the reported overall gain ismeaningful. If we decide to include all then
programs for computing the overall performance gain factor, this is also fair, but the reported gain may be
negative since it includes the slowdowns.

Second, we associate a weightW (Pj) to each programPj . The general characteristics of a weight
function is

∑

j W (Pj) = 1. If not, we should normalise the weights so that they sum to 1.The weight of
each benchmark can be chosen by the community, by the benchmark organisation, by the user, or we can
simply decide to associate the same weight to all benchmarks. Also, it is legitimate to choose the weight
as the fraction between the observed execution time and the sum of all observed median execution times:
W (Pj) =

ExecutionTime(Pj)
P

i=1,p ExecutionTime(Pi)
. Here we choose to put ExecutionTime(Pj) = m(Pj), ie, the median

of all the observed execution times of the programPj . Someone would argue that this would give more
weight on long running time programs: the answer is yes, because what we want to optimise at the end is
the absolute execution time, not the relative one.

Third, transforming a programPj intoP ′
j allows to reduce the execution execution time by ExecutionTime(Pj)−

ExecutionTime(P ′
j). This absolute gain should not be considered as it is, but should be multiplied by the

weight of the program as follows:g(Pj) = W (Pj) × (ExecutionTime(Pj) − ExecutionTime(P ′
j)).

Fourth and last, the overall performance gain factor is defined as the fraction between weighted gains

and the sum of weighted initial execution times:G =
P

j=1,p g(Pj)
P

j=1,p W (Pj)×ExecutionTime(Pj ) . By simplification, we

obtain:

G = 1 −

∑

j=1,p W (Pj)ExecutionTime(P ′
j)

∑

j=1,p W (Pj)ExecutionTime(Pj)

By definition, the overall gainG < 1, since the execution times of the optimised programs are hopefully
non zero values (ExecutionTime(P ′

j) 6= 0).

Example 3.1 Let a program P1 that initially lasts 3 seconds. Assume we succeed to accelerate it with
a factor of 300% with a confidence levelα1 = 95%. Thus, its new median execution time becomes 1
second. Let P2 be a program that initially lasts 1 hour and hasbeen accelerated with a factor of 105%
with a confidence levelα2 = 80%. Thus, its new median execution time becomes 3428 seconds. The
arithmetic mean of these two speedups is 202.5%, the geometric mean is 177.48% and the harmonic mean
is 155.56%. None of these means is suggested for publications as explained before. The weights of the
programs P1 and P2 are resp.W (P1) = 3/(3600 + 3) = 0.0008 and W (P2) = 3600/(3600 + 3) =
0.9991. The obtained weighted gain for each program is:g(P1) = 0.001 andg(P2) = 171.85. The overall
performance gain factor is thenG = 1 − 0.0008×1+0.9991×3428

0.0008×3+0.9991×3600 = 4.77% and the confidence level is equal
to α = min(α1, α2) = 80%. If we consider that the weights are unit,W (P1) = W (P2) = 1, then the
overall performance gain factor is thenG = 1 − 1+3428

3+3600 = 4.82% and the confidence level is still equal to
α = min(α1, α2) = 80%. As can be remarked, there is not a direct comparison betweenthe overall gain
and the individual speedups.

The following section gives a method to evaluate the qualityof a code optimisation method. Precisely,
we want to evaluate the chance that a code optimisation technique produces a speedup on a program that
does not belong to the initial set of experimented benchmarks.

10



4 A Qualitative Evaluation of a Code Optimisation Method

Computing the overall performance gain for a sample ofn programs does not allow to estimate the quality
nor the efficiency of the code optimisation technique. In fact, within then programs, only a fraction ofp
benchmarks have got a speedup, andn − p programs got a slowdown. If we take this sample ofn program
as a basis, we can measure the chance of getting the fraction of accelerated programs aspn . The higher is
this proportion, better would be the quality of the code optimisation. In fact, we want to estimate if the
code optimisation technique is beneficial for a large fraction of programs. The proportionC = p

n has been
observed on a sample ofn programs. The confidence interval for this proportion (witha confidence levelα)

is given by the equationC ∓ r, wherer = z(1+α)/2 ×

√

C(1−C)
n . In other words, the confidence interval of

the proportion is equal toI = [C − r, C + r]. Here,z(1+α)/2 represents the value of the(1 + α)/2 quartile
of the unit normal form. This value is available in a known table (table A.2 in (Jain91)). The confidence
level α is equal to the minimal value of confidence levels used in the Student tests to validate individual
speedups. We should notice that the previous formula of the confidence interval of the proportionC is valid
only if n.C ≥ 10. If n.C < 10, computing the confidence interval becomes too complex according to
(Jain91).

Example 4.1 Having n = 30 benchmarks, we obtained a speedup on onlyp = 17 cases. We want to
compute the confidence interval for the proportion C=17/30=0.5666 with a confidence levelα = 0.9 =
90%. The quantityn.C = 17 ≥ 10, I can then easily estimate the confidence interval ofC using the R
software as follows.

> prop.test(17, 30, conf.level=0.90)
...
90 percent confidence interval:
0.4027157 0.7184049

...

The above test allows us to say that we have 90% of chance that the proportion of accelerated programs is
between40.27% and71.87%. If this interval is too wide for the purpose of the study, we can reduce the
confidence level as a first straightforward solution. For instance, if I considerα = 50%, the confidence
interval of the proportion becomes[49.84%, 64.23%]. Or, if we do not want to reduce the confidence level,
we need to do more experiences on more benchmarks.

The next formula gives the minimal numbern of benchmarks requested if we want to estimate the
confidence interval with a precision equal tor% with a confidence levelα:

n ≥ (z(1+α)/2)
2 ×

C(1 − C)

r2

Example 4.2 In the previous example, we have got an initial proportion equal to C = 17/30 = 0.5666.
If I want to estimate the confidence interval with a precisionequal to 5% with a confidence level of 95%,
I put r = 0.05 and I read in the quartiles tablesz(1+0.95)/2 = z0.975 = 1.960. The minimal number of

benchmarks to observe is then equal to:n ≥ 1.9602 ×
0.566×(1−0.566)

0.052 = 377.46. We need to experiment
378 benchmarks in order to assert that we have 95% of chances that the proportions of accelerated programs
are in the interval0.566 ∓ 5%.

11



The discussion that we can have here is on the quality or on therepresentativeness of the sample of
n benchmarks. This is outside the scope of the paper! Until now, we do not know what does a set of
representative programs means.

5 Conclusion

Program performance evaluation and their optimisation techniques suffer from the disparity of the published
results. It is of course very difficult to reproduce exactly the experimental environment since we do not
always know all the details or factors influencing it. This article treats a part of the problem by recalling
some principles in statistics allowing to consider the variance of program execution times. The variance of
program execution times is not a chaotic phenomena to neglect or to smooth; we should keep it under control
and incorporate it inside the statistics we publish. This would allows us to assert with a certain confidence
level that the results we publish are reproducible under similar experimental environment.

Using simulators instead of real executions provide reproducible results, since simulators are determin-
istic: usually, simulating a program multiple times shouldalways produce the same performance numbers.
This article assumes that the observations have been done onthe physical machine not by simulation. If the
physical machine does not exist, the observations based on simulation cannot be studied exactly with the
methods described in this article. The study should more be concentrated on the statistical quality of the
simulator. As far as we know, it does not exist yet a simulatorthat has been rigorously validated by statistics
as described in (Jain91). Usual error ratios reported by simulators are not sufficient alone to judge about
their quality.

This article does not treat performance evaluation with multiple data inputs of a program. In fact, the
speedups defined in this article are computed for a unique setof data input. Experimenting multiple sets of
data input to measure a speedup is let for a future work.

We conclude with a short discussion about the confidence level we should use in this sort of statistical
study. Indeed, there is not a unique answer to this crucial question. In each context of code optimisation
we may be asked to be more or less confident in our statistics. In the case of hard real time applications,
the confidence level should be high enough (more than 95% for instance), requiring more experiments
and benchmarks. In the case of soft real time applications (multimedia, mobile phone, GPS, etc.), the
confidence level can be more than 80%. In the case of desktop applications, the confidence level should not
be necessarily high. In any case, the used confidence level for statistics must be declared for publication.

References

[Jain91] Raj Jain. The Art of Computer Systems Performance Analysis : Techniques for Experimental
Design, Measurement, Simulation, and Modelling. John Wiley and Sons, Inc., New York, 1991.

[CGH+08] Pierre-André Cornillon, Arnaud Guyader, François Husson, Nicolas Jégou, Julie Josse, Maella
Kloareg.Éric Matzner-Lober, Laurent Rouviére.Statistiques avec R. Presses universitaires de Rennes,
Société Française de statistique, 2008.

[R D08] R Development Core Team.R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

[FuTe09] Grigori Fursin and Olivier Temam.Collective Optimization. The 4th International Conference
on High Performance and Embedded Architectures and Compilers (HIPEAC).

12



[DaHi97] A. C. Davison and D. V. HinkleyBootstrap Methods and Their ApplicationCambridge University
Press. 1997

[MDSH09] Todd Mytkowicz et Amer Diwan et Peter F. Sweeney et Mathias HauswirthProducing wrong
data without doing anything obviously wrong!To appear in ASPLOS 2009.

[PMT04] Daniel Gracia Pérez and Gilles Mouchard and Olivier Temam.MicroLib: A Case for the Quanti-
tative Comparison of Micro-Architecture Mechanisms.MICRO 2004: 43-54

Acknowledgement

We would like to thank Sebastien BRIAIS from the University of Versailles Saint-Quentin en Yvelines for
his helpful remarks to improve this document.

13


