N
N

N

HAL

open science

Towards a Statistical Methodology to Evaluate Program
Speedups and their Optimisation Techniques
Sid Touati

» To cite this version:

Sid Touati. Towards a Statistical Methodology to Evaluate Program Speedups and their Optimisation

Techniques. 2009. hal-00356529v1

HAL Id: hal-00356529
https://hal.science/hal-00356529v1
Preprint submitted on 30 Jan 2009 (v1), last revised 6 Jul 2009 (v8)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00356529v1
https://hal.archives-ouvertes.fr

Towards a Statistical Methodology to Evaluate Program Spesdups
and their Optimisation Techniques

Sid-Ahmed-Ali TOUATI

University of Versailles Saint-Quentin en Yvelines, Franc
Si d. Touati @vsq. fr
January 2009

Abstract. The community of program optimisation and analysis, codéop@ance evaluation, par-
allelisation and optimising compilation has publishedceimany decades hundreds of research and
engineering articles in major conferences and journalssglarticles study efficient algorithms, strate-
gies and techniques to accelerate programs execution,tonegptimise other performance metrics
(MIPS, code size, energy/power, MFLOPS, etc.). Many speedue published, but nobody is able to
reproduce them exactly. The non-reproducibility of ouresgsh results is a dark point of the art, and
we cannot be qualified a®mputer scientists if we do not provide rigorous experimental methodology.
This article provides a first effort towards a correct stat#d protocol for analysing and measuring
speedups. As we will see, some common mistakes are done bgrtiraunity inside published articles,
explaining part of the non-reproducibility of the resul@air current article is not sufficient by its own to
deliver a complete experimental methodology, furtherrésfmust be done by the community to decide
about a common protocol for our future experiences. Anyway,community should take care about
the aspect of reproducibility of the results in the future.

Keywords: Program optimisation, Statistical Performance Evalumatio

1 Introduction

The community of program optimisation and analysis, codéopmance evaluation, parallelisation and
optimising compilation has published since many decadadi®as of research and engineering articles in
major conferences and journals. These articles studyesiticlgorithms, strategies and techniques to ac-
celerate programs execution times, or optimise other pedace metrics (MIPS, code size, energy/power,
MFLOPS, etc.). The efficiency of a code optimisation techriis generally published according to two
principles, non necessarily disjoint. The first princimed provide a mathematical proof given a theoret-
ical model that the published research result is correenargfficient: this is the hard part of research in
computer science, since if the model is too simple, it wowdtrapresent real world, and if the model is too
close to real world, mathematics become too complex to tigesecond principle is to propose and imple-
ment a code optimisation technique and to practice it on afsgtosen benchmarks in order to evaluate its
efficiency. This article concerns this last point: how canagavince the community by rigorous statistics
that the experimental study publishes correct and faidte8u

1.1 Non-Reproducible Experimental Results

Hard natural sciences such as physics, chemistry and lyiotggpse strict experimental methodologies and
rigorous statistical measures in order to guarantee thedepibility of the results. The reproducibility of
the experimental results in our community is, namely, ouk g@int. Given a research article, it is in prac-
tice impossible or too difficult to reproduce the publishedfprmance. If our results are not reproducible,
we cannot say that we are doing science! Some aspects makeaaiate article non-reproducible:

— Non using precise scientific languages such as mathemialgzgly, mathematics must always be pre-
ferred to describe ideas, if possible, with an accessilflieuliy.

— Non available software, non released software, non comeatet precise data.

— Not providing formal algorithms or protocols make impossito reproduce exactly the ideas. For in-
stance, the authors i04) spent large efforts to reempint some branch predictor algorithms
based on the published research articles, but they failgoodeice the initial results of the authors.
Simply because the initial articles describing the brarreldjgtors are not formal, so they can be inter-
preted differently.

— Hide many experimental details. As demonstrated[by (MD$H®9nging small modification on the
execution environment brings contradictory experimereaults. For instance, just changing the size
of the linux shell variables or the order of linking an apption alter the conclusions. As pointed by
the authors in[(MDSHQ9), a lot of published articles in majonferences hide these details, meaning
that their experimental results are meaningless.

— Usage of deprecated machines, deprecated OS, exotic emérd, etc. If we take a research article
published five years after the experiences for instancee tisea high chance that the workstations
that served the experiences have already died or alreadgetaheir behaviour (usury of hardware,
software patches, etc.).

With the huge amount of published articles in the code op@tion community, with the impressive
published speedups, an external reviewer of our commuagytie right to ask the following naive question:
If we combine all the published speedups (accelerations) on the well known public benchmarks since four
decades, why don’t we observe execution times approaching to zero ? This question is justified, and brings
a reforming malaise to us. Now, we are asked to be clear ahwstatistics, some initiatives start to collect
published performance data in order to compare them(F})Te09

The malaise raised by the above question is not a suspic@g@efieratheating in research. We believe
that our community is honest in publishing data, but the igshed observed speedups are sometiraes
events far from what we could observe if we redo the expeegsmuultiple times. Even if we take an
ideal situation where we use exactly the original experitalemachines and software, it is too difficult to
reproduce exactly the same performance numbers again ant agperience after experience. Usually,
published speedups are computed with bias describing/paett events. Frankly, if a computer scientist
succeeds in reproducing the performance numbers of hisazples (with a reasonable error ratio), it would
be equivalent to what rigorous probabilists and statestisicall asurprise.

1.2 Why Program Execution Times Vary

What makes a binary program execution time to vary, even ifigeethe same data input, the same binary,
the same execution environment?

— Background tasks, concurrent jobs, OS process scheduling;

— Interrupts;

— Input/output;

— Starting loader address;

— Branch predictor initial state;

— Cache effects;

— Non deterministic dynamic instruction scheduler;

— Temperature of the room (dynamic voltage/frequency sgaervice)

One of the reasons of the non-reproducibility of the ressiltise variation of execution times of the same
program given the same input and the same experimentaloamént. With the massive introduction of
multicore architectures, we believe that the variationsxafcutions times will become exacerbated because
of the complex dynamic features influencing the executioreads scheduling policy, synchronisation bar-
riers, resource sharing between threads, hardware mechsifor speculative execution, etc. Consequently,
if you execute a program (with a fixed input and environméntimes, it is possible to obtaih distinct
execution times. The mistake here is to assume that theis¢ioas are minor, and are stable in general. The
variation of execution times is something that we obserezyalay, we cannot neglect it. An usual error in
the community is to replace all thieexecution times by one value, such that the minimum, the roetire
maximum. Doing that would produsexier speedups to publish, but does not reflect the reality with fai
numbers.

1.3 Why Don’t we Consider the Minimum Execution Time?
Considering the minimum value of tikeobserved execution times is unfair because:

— nothing guarantees that this minimum execution time is aalidxecution of the program.

— nothing guarantees that this minimum execution time is aeqguence of the optimisation technique
under study. Maybe this minimum execution time is an acdidara consequence of dynamic voltage
scaling, or anything else.

— if this minimal execution time is a rare event, all your sthtis describe rare speedups. So, they become
non-reproducible easily.

1.4 What is Inside this Article, What are its Limitations

We base our reasoning here on common well known results fistgta, especially on some results ex-
plained in the book of Raj Jai91). We propose a firgt tsteards a rigorous statistical methodology
to evaluate program optimisation techniques. This artietalls some common mistakes in performance
evaluation, explains which statistics should be used inrthiqodar situation, and provide practical examples.
Furthermore, we show how to use the free software called Rrgpate these statistics (CGH}08).

Our article is organised to help computer scientists (armbafse PhD students) willing to make correct
and rigorous statistical study of their code optimisatiatimod. The question is how to convince real experts
by statistics, provided a confidence levek]0%, 100%], that your code optimisation technique is really
efficient in practice. Sectioﬂ 2 explains when we can deciniba speedup of a program and how we
can measure it using observations of execution times. Having a setadfistinct independent programs
(considered as a set of benchmarks), Secﬂon 3 explains bl@erhpute an average speedup (while it
is a bad idea to synthesise a set of speedups in by a uniquagayeetting a speedup (acceleration)
inside a sample ofi benchmarks does not guarantee you that you can get a speedupiher program.
Consequently, Secti(ﬂ 4 shows how we can estimate the chizaitdbe code optimisation would provide a
speedup on a program non belonging to the initial sample m¢fmmarks used for experiences.

The limitations of this article are: we do not study the vaoia of execution times due to changing the
program input. We consider real executions, not emulaionlation nor executions on virtual machines.
We also consider a fixed (universal ?) experimental enviemtm

2 Computing a Speedup Factor for a Single Program with a Singd Data Input

Let P be an initial program, IeP’ be a transformed version after applying the code optintea#échnique
under study. If you execute the programk times, it is possible to obtaik distinct execution times
(especially if the program is short)i, - - - , tx. The transformed prograrR’ can be executed times
producingm execution times tod,, - - - , ¢ . The unit of measure here is the mili-second in general, so we
can consider a timing precision in seconds with three dajisr the coma. Below is a list of elementary
recommendations before starting statistics:

1. P andP’ must be executed with the same data inpudimilar experimental environment. The com-
munity of code optimisation has not decided yet on the exagtasitics ofsimilar, since many un-
known/hidden factors may influence the experiences.

2. Statistically, it is not necessary that= m. However, it isstrongly recommended that > 30 andm >
30. 30 runs may seem quite prohibitive, but this is the prattiodts of the number of observations
used in statistics if you want to have a precise Studenthestie will explain later. If the number of
observations is below 30, computing the confidence intstwithe mean time becomes more complex:
we should first check the normality of the distribution (gsthe normality test of Shapiro-Wilk for
instance). If the normality check succeeds, then the teStedent can be applied. Otherwise, the
confidence intervals of the mean execution times must be otedusing complex bootstrap methods
() instead of the test of Student. We highly recomm@&@duns per program to ensure the
validity of the Student test. If the program execution tireédo large to consider 30 executions, you
can do less executions but you should follow the method wedieiscribed (either a normality check
followed by a Student test, or by using bootstrap methods).

3. Itis important that the repetitive executions of the samogram should be independent. For instance,
it is not fair to use a single loop around a code kernel thaaaethe executioh times. This is because
repeating a prograrR inside a loop makes them to execute inside the same applic&@bnsequently,
the operating system does not behave as if you execute theapnb times from the shell. Furthermore,
the caches are warmed by the repetitive executions of the kerhels if they belong to the same
application.

4. Anyway, even if we execute a prograntimes from the shell, the executions are not necessaril-ind
pendent, especially if they are executed back-to-backséled time of the disk is altered by repetitive
executions, some data are cached on the disk by applicaimhbenefit from repetitive executions.
Recently, we have been told that branch predictors are afieenced by separate applications: this
seems strange, but we should stay careful with hardwareanérhs. As you can see, it is not easy to
guaranteé independent executions!

We have remarked a common mistake in computing speedupg$emee of program execution time
variance: assuming that the variations in execution time®at really a problem, because caused by exter-
nal factors, these variations may be neglected and smadffmtsequently, we may be asked to compute

the speedup resulted from transformiRginto P’ by using one of the following fractions%,
HT;:;:I?J or ﬁﬁ(@). Here,z is the usual notation of the sample arithmetic mea(?) = Z:T”“t

(P = Z%’”t/ If the speedup computed is higher than 1, than people cdedlictory. The mistake

here is to assume thatobserved execution times represent any future executiwndf the program, even
with the same data input. Statistically, we are wrong if wendbconsider confidence intervals. To be rig-
orous, we can follow the four major steps described belowsse@ a high confidence in the computed
speedup. The whole detailed protocol is illustrated in Fe@

INPUTS:
1) Execution Times for P and P’
T=ty, -tk
T =t1, -+ ,tm

2) Confidence leved) < o < 100 -
yes | Perform normality check fof™,
l —<_k <307 with confidence leved
‘ ComputeH (T) and H (T%) ‘ no yes #
l T Normality check OK-2

yes no
H(T1) < 0.50r H(T>) < 0.5%
1 Perform 30 runs of P

no

no

kE < 100orm < 10072

yes

‘Perform 100 runs of P and‘ P’

yes

k<30orm < 307

yes i
m <},_} Perform normality check for

with confidence level

¢

no

yes

Stop statistics, something is going wrong !

‘—fPerform 30 runs of Ff

‘ Perform Student-test with confidence Iexzel‘

|

0 € confidence interval 2> ————

Got a Speedup with confidence level

_ dian(Ty)
s(P) = ::dzZZ(T;)

‘ No Speedup with confidence leve|

Fig. 1. Statistical Protocol for Asserting and Computing a Speediitip Confidence Level

2.1 Step 1: Compute Hurst Factor of Execution Times

Hurst factor (noted by) is used to quantify thamilarity between values of the same random variable. For
instanceH (¢4, - - - ,t;) compute a value between 0 and 1Hf> 0.5, then we conclude that the execution
times of P aresimilar. Idem forP’. If both the Hurst factors of the executions timesandP’ are> 0.5,
we can continue the statistics to step 2. Otherwise, we aeglfto a real difficulty because of the reasons
we explain below

If the Hurst factor is below the limit 0.5, this means that firenomena you are studying mayago-
similar, that is it may not have a theoretical mean, which really gmw This may arise in situations
where accidents or errors occur during the experiencesgor they could occur in theory. For instance, if
the program execution makes a trap that is corrected on thedlprogram execution would finish correctly

but the execution time would be altered. Computing Hurdbfieis a first filter to stop doing any statistics
in situations of abnormal executions for instance.

Indeed, if the computed Hurst factor is below 0.5, and if tbenber of observations is below 100, we
cannot say anything. We should make at least 100 obsergatifaihe execution times. If the Hurst factor
of more than 100 observations is below 0.5, then no statistie possible because th@se is important. If
the Hurst factor of more than 100 observations is greater @, then we can continue to step 2.

2.2 Step 2: If the Number of Runs is Below 30, Check the Normatly

As said before, if the number of runs is at least 30, you cgntks step. If the number of runs of a program
is below 30, we should check if the valufs, - - - ,t;) and (¢}, -- ,¢.,) follow a normal distribution. In
practice, we can use the Shapiro-Wilk normality test primgcda confidence level. The user should fix a
confidence level (sayw = 95%), and the Shapiro-Wilk test can determine (with- « = 5% chance of
error) that the values follow a normal distribution. A lagsample will show how to practice this using the
R software. If the normality check fails, you can either ruorenexecutions till 30, or use complex bootstrap
method (that we will not explain here).

2.3 Step 3: Perform a Student Test to Decide if a Speedup Occsir

The Student test allows to statistically check if all theufetexecutions of the progra® are faster than
the executions oP with a fixed confidence level (0 < a < 100). The Student test allows to say that we
havea% of chance that the mean execution timeRfis faster than the mean execution timefoby just
analysing thex + m observations. This test estimates the confidence intefthkdlifference between the
mean execution times @ andP’. If the value zero is inside the confidence interval, thenShealent test
does not guarantee with a confidence levehat the progran®’ is faster in average than the progrén
That s, if 0 belongs to confidence interval of the Studertt tesspeedup can be concluded for the program
P.

If the value zero is not included inside the confidence commbly the Student test, then we can say
that P’ would be faster tharP in a% of the future executions if we consider the same data inpdt an
experimental environment. An example is illustrated later

2.4 Step 4: If the Student Test Concedes a Speedup, We then Cisieasure it

The speedup factor for the progrém can be computed as follows{P’) = % We prefer using

the median instead of the mean because the execution timestdawcessarily follow a normal distribu-
tion, so the distribution may be biased. Furthermore, utfiegmedian is used by the SPEC benchmarks
for instance. Remember that this speedup has no sense ifullers test computes a confidence interval
including 0. For the remaining part of the article, we notenb{/®) the observed median of the execution
times of the prograr.

Example 1. Let P be a initial program with its "representative” data inpute e willing to statistically
demonstrate with a confidence level= 95% that an optimisation technique transforms it ifR6 and
produces benefit in terms of execution speed. For doingltktspuld executé® andP’ at least 30 times.
For the sake of the example, | consider here only 5 execufmr® and 6 executions foP’. This is not
good of course, but it is sufficient to illustrate, and we ievxhe reader to be more rigorous than the author.
Using the software R, | introduce the values of executiorsirfin seconds) gP andP’ as two vectord
andT; resp.

> |ibrary(stats)
> Tl <- c¢(2.02, 2.25, 2.30, 2.251, 2.01)
> T2 <- ¢(1.02, 2.05, 2.30, 2.071, 1.05)

We must not hurry to conclude and to publish the followinguteshe resulted speedup for this program
is equal tomin(7'1)/ min(7'2) = 1.97. Publishing a performance gain of 97% is a statistical rkéstén
order to have a correct result, | should compute the Hursbffdicst (we assume that we passed this step).

> |ibrary(FGN)
> HurstK(T1)
[1] 0.965797
> HurstK(T2)
[1] 0.9634309

Both Hurst factors are above 0.5, so | can carry on. Since ¢ loaly 5 or 6 observations instead of 30, |
should check the normality of the valueskfandTs resp. using the test of Shapiro-Wilk.

>shapiro. test(T1)

Shapiro-WIk nornality test
data: T1
W= 0.7928, p-value = 0.07073

The test of Shapiro-Wilk on the dafial computes here a vali® = 0.792. In order to say that the test
succeeds with confidence lewe] the valuell’ must be greater than the value of the Shapiro-Wilk table
(this table can be found on Internet for instance). | use harenfidence levek = 95% (i.e., an error risk

of 5%). The Shapiro-Wilk table indicates the value of 0.768nsequently, the normality test succeeds for
T'1.Idem for72. | can now continue with the Student test to checRffis faster thar with a confidence
level o« = 95%.

> t.test(T1, T2, alternative="greater", conf.level =0.95)

95 percent confidence interval:
-0.1159828 | nf

The obtained confidence interval for the difference betwkemean execution times[is0.11, +oc]. This
interval includes 0. Consequently, we cannot assert Withh confidence level tha®’ is faster in average
thanP. | have the choice by either rejecting the obtained speewah@rd), or reduce my confidence level.
I check withar = 90% instead 005%

> t.test(T1, T2, alternative="greater", conf.level =0.9)

90 percent confidence interval:
0. 04434527 | nf

The confidence interval {§.044, +oc], it does not include 0. Consequently, we can assert with 98-
dence level that we obtained a speedup. In other words,skdaf error) of not obtaining an acceleration
for the future executions is equal to 10%. The obtained speesk(P) = Z((;D,)) = 222 — 1,0975. The
performance gain i8, 75%.

This section explained how to check with a confidence leviilat a code optimisation technique pro-
duces a faster transformed program (for a fixed data inpuéaperimental environment). We also provided
a formula for quantifying the speedup. The following sectéxplains how to compute an overall average
of speedups of a set of benchmarks.

3 Computing the Overall Speedup of a Set of Benchmarks

When we implement a code optimisation technique, we arergyasked to test it on a set of benchmarks,
not on a unique one. Let be the number of considered benchmarks. Ideally, the cotilmisation tech-
nigue should produce speedups onthrograms (at least no slowdown) with the same confidencédeve
Unfortunately, this situation is rare nowadays. Usualhlya fraction ofp programs among would bene-

fit from an acceleration. Le{(P;) be the obtained speedup for the progr&m While this is not correct in
statistics, some reviewers ask an average speedup of &etihmarks. In statistics, we cannot provide a
fair average because the programs are different, and tleghis are different too. So, asking for an overall
speedup for a set of benchmarks will highly bring unfair ealNeither an arithmetic mean, nor a geometric
or harmonic mean can be used to synthesise in a unique spekthgithe whole set of benchmarks.

The arithmetic mean does not distinguish between short angl programs: for instance, having a
speedup of de 105% on a program which lasts 3 days must nothagame impact as a speedup of 300%
obtained on a program which lasts 3 seconds. In the formesawe 5% of 3 days (=216 minutes), while
in the latter we save 200% of 3 seconds (=2 seconds). If wehgsarithmetic mean, we would obtain an
overall speedup equal to (105+300)/2=202%, this does fletteéhe reality with a fair number.

The geometric mean cannot be applied here because we am@cedttb a succession of accelerations
on the same program, but to accelerations to distinct progirthe harmonic mean in our case is not mean-
ingful too because the quantiis—yrepresents also a sort of speedup, so we can provide the siticism as
the arithmetic mean .

In order to compute an overgerformance gain factor (not an overall speedup) that represents the
weights of the different programs, we can use the followireghod. First, we neglect the — p programs
where no speedup has been validated by the Student testisThhé performance gain factor will be
computed on a subsgtof the programs, not on all the benchmarhﬂs We associate a weight’ (P;) to
each progranP;. This weight can be chosen by the community, by the benchm@#nisation, by the
user, or we can simply put unit weights. For instance, it ggtimate to choose the weight as the fraction
between the observed median execution time and the sumadifselved median execution timég(P;) =

% Transforming a prograrR; into P’ ; allows to reduce the median execution timerbyP;) —
i=1,p i .

m(P’;). This absolute gain should not be considered as it is, butldhm® multiplied by the weight of the
program as followsy(P;) = W(P;) x (m(P) — m(P’)). Finally, the overall performance gain factor
is defined as the fraction between weighted gains and the $afhroedian initial execution timesz =

%. The confidence level of this performance gain factor is thalkest confidence level used for
j=1,p J

the Student tests that validate the speedups gb firegrams.

Example 2. Leta program P1 thatinitially lasts 3 seconds. Assume weemdtto accelerate it with a factor
of 300%. Thus, its new median execution time become 1 sed@idP2 be a program that initially lasts 1
hour and has been accelerated with a factor of 105%. Thugwsnedian execution time is 3420 seconds.
The arithmetic mean of these two speedups is 202.5%, theefdommean is 177.48% and the harmonic
mean is 155.56%. None of these means is suggested for pidiicas explained before. The weights of
the programs P1 and P2 are reBp(P1) = 3/(3600+ 3) = etW (P2) = 3600/(3600 + 3). The obtained
weighted gain for each program ig(P1) = 0.001 andg(P2) = 179.85. The overall performance gain
factor is thenG = (g(P1) + g(P2))/(3600 + 3) = 4.99%.

The following section gives a method to evaluate the qualitg code optimisation method. Precisely,
we want to evaluate the chance that a code optimisation iggedproduces a speedup on a program that
does not belong to the initial set of experimented benchmark

4 A Qualitative Evaluation of a Code Optimisation Method

Computing the overall performance gain for a sample pfograms does not allow to estimate the quality
nor the efficiency of the code optimisation technique. Ini,fagthin then programs, only a fraction qf
benchmarks have got a speedup, and p programs got a slowdown. If we take this sample:gifrogram

as a basis, we can measure the chance of getting the fradtimcelerated programs ds The higher is
this proportion, better would be the quality of the code mgation. In fact, we want to estimate if the
code optimisation technique is beneficial for a large faactf programs. The proportiafi = £ has been
observed on a sample efprograms. The confidence interval for this proportion (vétbonfidence level

«) is given by the equatiot’ F Zl_a/gy/w. Here,z(11q)/2 represents the value of ttie + «)/2

quartile of the unit normal form. This value is available ikreown table (table A.2 in[(JainP1)). We should
notice that the previous formula of the confidence inter¥&he proportionC' is valid only if n.C' > 10. If
n.C' < 10, computing the confidence interval becomes too complexrdamgto (Jaing).

Example 3. Havingn = 30 benchmarks, we obtained a speedup on pry17 cases. We want to compute
the confidence interval for the proportion C=17/30=0.5666 & confidence levek = 0.9 = 90%. The
quantityn.C' = 17 > 10, | can then easily estimate the confidence interval’afsing the R software as
follows.

! The next section will study the proportigh.

> prop.test (17, 30, conf.level =90)

90 percent confidence interval:
0. 4027157 0.7184049

The above test allows us to say that we have 90% of chancehihgroportion of accelerated programs
is betweend0, 27% and 71, 87%. If this interval is too wide for the purpose of the study, venaeduce
the confidence level as a first straightforward solution.ifstance, if | considetx = 50%, the confidence
interval of the proportion becomé$), 84%, 64, 23%]. Or, if we do not want to reduce the confidence level,
we need to do more experiences on more benchmarks.

The next formula gives the minimal numberof benchmarks requested if we want to estimate the
confidence interval with a precision equaltd with a confidence level:

C(1-0C)

n > (211a)2) X ——3

r

Example4. In the previous example, we have got an initial proportionado C' = 17/30 = 0.5666. If
| want to estimate the confidence interval with a precisionattp 5% with a confidence level of 95%, |

putr = 0,05 and | read in the quartiles tableg, 95,2 = 20,975 = 1,960. The minimal number of

benchmarks to observe is then equahtoz 1,960% x 2266xU1-0566) _ 377 46, wWe need to experiment

378 benchmarks in order to assert that we have 95% of chamatehie proportions of accelerated programs
are in the interval).566 T 5%.

The discussion that we can have here is on the quality or omejeesentativity of the sample of
n benchmarks. This is outside the scope of the paper! Until, mesvdo not know what does a set of
representative programs means.

5 Conclusion

Program performance evaluation and their optimisationriegies suffer from the disparity of the published
results. It is of course very difficult to reproduce exactig texperimental environment since we do not
always know all the details or factors influencing it. Thiscde treats a part of the problem by recalling
some principles in statistics allowing to consider the asace of program execution times. The variance
of program execution times is not a chaotic phenomena tcenegt to smooth; we should keep it under
control and incorporate it inside the statistics we publishis would allows us to assert with a certain
confidence level that the results we publish are reprodecibtier similar experimental environment.

Using simulators instead of real executions provide repedae results, since simulators are determin-
istic: usually, simulating a program multiple times shoaleiays produce the same performance numbers.
This article assumes that the observations have been dahe physical machine not by simulation. If the
physical machine does not exist, the observations basedmutasion cannot be studied exactly with the
methods described in this article. The study should moredneentrated on the statistical quality of the
simulator. As far as we know, it does not exist yet a simultitat has been rigorously validated by statistics
as described il). Usual error ratios reported bylsitors are not sufficient alone to judge about
their quality.

This article does not treat performance evaluation withtiplel data inputs of a program. In fact, the
speedups defined in this article are computed for a unique skeita input. Experimenting multiple sets of
data input to measure a speedup is let for a future work.

We conclude with a short discussion about the confidencéwevshould use in this sort of statistical
study. Indeed, there is not a unique answer to this cruciastipn. In each context of code optimisation
we may be asked to be more or less confident in our statistidhel case of hard real time applications,
the confidence level should be high enough (more than 95%hiétauice), requiring more experiments and
benchmarks. In the case of soft real time applications metiia, mobile phone, GPS, etc.), the confi-
dence level can be more than 80%. In the case of desktop afipiis, the confidence level should not be
necessarily high. In any case, the used confidence leveldistics must be declared for publication.

Bibliography

[Jain91] Raj Jain. The Art of Computer Systems Performance Analysis : Techniques for Experimental
Design, Measurement, Smulation, and Modelling. John Wiley and Sons, Inc., New York, 1991.

[CGH+08] Pierre-André Cornillon, Arnaud Guyader, FraisgHusson, Nicolas Jegou, Julie Josse, Maella
KIoaregEric Matzner-Lober, Laurent Rouviér8tatistiques avec R. Presses universitaires de Rennes,
Société Francaise de statistique, 2008.

[FuTe09] Grigori Fursin and Olivier TemantCollective Optimization. The 4th International Conference
on High Performance and Embedded Architectures and CoraH#PEAC).

[DaHi97] A. C. Davison and D. V. HinkleyBootstrap Methods and Their Application Cambridge Univer-
sity Press. 1997

[MDSHO09] Todd Mytkowicz et Amer Diwan et Peter F. Sweeney ettMas HauswirthProducing wrong
data without doing anything obviously wrong! To appear in ASPLOS 2009.

[PMTO04] Daniel Gracia Pérez and Gilles Mouchard and Ofifiemam.MicroLib: A Case for the Quan-
titative Comparison of Micro-Architecture Mechanisms. MICRO 2004: 43-54

