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 and others and we end our work by giving a third result which generalizes results of Mbarki [8] and others.

Historical introduction and new definitions

Let (X , d) be a metric space and let f and g be two maps from (X , d) into itself. f and g are commuting if f gx = gf x for all x in X .

To generalize the notion of commuting maps, Sessa [START_REF] Sessa | On a weak commutativity condition in fixed point considerations[END_REF] introduced the concept of weakly commuting maps. He defines f and g to be weakly commuting if d(f gx, gf x) ≤ d(f x, gx) 1 for all x ∈ X . Obviously, commuting maps are weakly commuting but the converse is not true. In 1986, Jungck [START_REF] Jungck | Compatible mappings and common fixed points[END_REF] gave more generalized commuting and weakly commuting maps called compatible maps. f and g above are called compatible if [START_REF] Aliouche | A common fixed point theorem for weakly compatible mappings in compact metric spaces satisfying an implicit relation[END_REF] lim n→∞ d(f gx n , gf x n ) = 0 whenever (x n ) is a sequence in X such that lim n→∞ f x n = lim n→∞ gx n = t for some t ∈ X . Clearly, weakly commuting maps are compatible, but the implication is not reversible (see [START_REF] Jungck | Compatible mappings and common fixed points[END_REF]).

Afterwards, the same author with Murthy and Cho [START_REF] Jungck | Compatible mappings of type (A) and common fixed points[END_REF] made another generalization of weakly commuting maps by introducing the concept of compatible maps of type (A). Previous f and g are said to be compatible of type (A) if in place of [START_REF] Aliouche | A common fixed point theorem for weakly compatible mappings in compact metric spaces satisfying an implicit relation[END_REF] we have two following conditions:

lim n→∞ d(f gx n , g 2 x n ) = 0 and lim n→∞ d(gf x n , f 2 x n ) = 0.
It is clear to see that weakly commuting maps are compatible of type (A), from [START_REF] Jungck | Compatible mappings of type (A) and common fixed points[END_REF] it follows that the implication is not reversible.

In their paper [START_REF] Pathak | Compatible mappings of type (B) and common fixed point theorems of Greguš type[END_REF], Pathak and Khan extended type (A) maps by introducing the concept of compatible maps of type (B) and compared these maps with compatible and compatible maps of type (A) in normed spaces. To be compatible of type (B), f and g above have to satisfy, in lieu of condition [START_REF] Aliouche | A common fixed point theorem for weakly compatible mappings in compact metric spaces satisfying an implicit relation[END_REF], the inequalities: It is clear that compatible maps of type (A) are compatible of type (B), to show that the converse is not true (see [START_REF] Pathak | Compatible mappings of type (B) and common fixed point theorems of Greguš type[END_REF]). Further, in 1998, Pathak et al. [START_REF] Pathak | Compatible mappings of type (C) and common fixed point theorems of Greguš type[END_REF] introduced another generalization of compatibility of type (A) by giving the concept of compatible maps of type (C). f and g are said to be compatible of type (C) if they satisfy the two inequalities:

lim n→∞ d(f gx n , g 2 x n ) ≤ 1 
lim n→∞ d(f gx n , g 2 x n ) ≤ 1 3 lim n→∞ d(f gx n , f t) + lim n→∞ d(f t, f 2 x n ) + lim n→∞ d(f t, g 2 x n ) and lim n→∞ d(gf x n , f 2 x n ) ≤ 1 3 lim n→∞ d(gf x n , gt) + lim n→∞ d(gt, g 2 x n ) + lim n→∞ d(gt, f 2 x n ) .
The same authors gave some examples to show that compatible maps of type (C) need not be neither compatible nor compatible of type (A) (resp. type (B)).

In [START_REF] Pathak | Fixed point theorems for compatible mappings of type (P ) and applications to dynamic programming[END_REF] the concept of compatible maps of type (P ) was introduced and compared with compatible and compatible maps of type (A). f and g are compatible of type (P ) if instead of (1) we have

lim n→∞ d(f 2 x n , g 2 x n ) = 0.
Note that compatibility, compatibility of type (A) (resp. (B), (C) and (P )) are equivalent if f and g are continuous.

In his paper [START_REF] Jungck | Common fixed points for noncontinuous nonself maps on nonmetric spaces[END_REF], Jungck generalized the compatibility, the compatibility of type (A) (resp. type (B), (C) and (P )) by introducing the concept of weak compatibility. He defines f and g to be weakly compatible if f t = gt for some t ∈ X implies that f gt = gf t.

It is known that all of the above compatibility notions imply weakly compatible notion, however, there exist weakly compatible maps which are neither compatible nor compatible of type (A), (B), (C) and (P ) (see [START_REF] Aliouche | A common fixed point theorem for weakly compatible mappings in compact metric spaces satisfying an implicit relation[END_REF]).

Recently, Al-Thagafi and Shahzad [START_REF] Al-Thagafi | Generalized I-nonexpansive selfmaps and invariant approximations[END_REF] weakened the concept of weakly compatible maps by giving the new concept of occasionally weakly compatible maps (owc). Two self-maps f and g of a set X to be owc if and only if there is a point x in X which is a coincidence point of f and g at which f and g commute; i.e., there exists a point x in X such that f x = gx and f gx = gf x.

In this paper, we weaken the above notion by introducing a new concept called subcompatible maps.

1.1 Definition Let (X , d) be a metric space. Maps f and g : X → X are said to be subcompatible if and only if there exists a sequence (x n ) in X such that lim n→∞ f x n = lim n→∞ gx n = t, t ∈ X and which satisfy lim

n→∞ d(f gx n , gf x n ) = 0.
Obviously, two owc maps are subcompatible, however the converse is not true in general. The example below shows that there exist subcompatible maps which are not owc.

Example

Let X = [0, ∞[ with the usual metric d. Define f and g as follows:

f x = x 2 and gx = x + 2 if x ∈ [0, 4]∪]9, ∞[, x + 12 if x ∈]4, 9]. Let (x n ) be a sequence in X defined by x n = 2 + 1 n for n ∈ N * = {1, 2, . . .}. Then, lim n→∞ f x n = lim n→∞ x 2 n = 4 = lim n→∞ gx n = lim n→∞ (x n + 2), and 
f gx n = f (x n + 2) = (x n + 2) 2 → 16 when n → ∞ gf x n = g(x 2 n ) = x 2 n + 12 → 16 when n → ∞ thus, lim n→∞ d(f gx n , gf x n ) = 0;
that is, f and g are subcompatible.

On the other hand, we have f x = gx if and only if x = 2 and

f g(2) = f (4) = 4 2 = 16 gf (2) = g(4) = 4 + 2 = 6 then, f (2) = 4 = g(2) but f g(2) = 16 = 6 = gf (2)
, hence maps f and g are not owc.

Clearly, we can resume implications between previous notions by the following list:

• Commuting maps ⇒ Weakly commuting maps In his paper [START_REF] Pant | A common fixed point theorem under a new condition[END_REF], Pant introduced the concept of reciprocally continuity as follows: Self-maps f and g of a metric space (X , d) are reciprocally continuous if and only if lim n→∞ f gx n = f t and lim n→∞ gf x n = gt whenever (x n ) ⊂ X is such that lim n→∞ f x n = lim n→∞ gx n = t ∈ X . Clearly, any continuous pair is reciprocally continuous but, the converse is not true in general.

•
Our second objective here is to introduce a new concept called the notion of subsequentially continuous maps which weakens the concepts of continuity and reciprocally continuity given above.

Definition

Two self-maps f and g of a metric space (X , d) are said to be subsequentially continuous if and only if there exists a sequence (

x n ) in X such that lim n→∞ f x n = lim n→∞ gx n = t for some t in X and satisfy lim n→∞ f gx n = f t and lim n→∞ gf x n = gt.
If f and g are both continuous or reciprocally continuous then they are obviously subsequentially continuous. The next example shows that there exist subsequentially continuous pairs of maps which are neither continuous nor reciprocally continuous.

Example

Let X be [0, ∞[ endowed with the usual metric d and define f and g : X → X by

f x = 1 + x if 0 ≤ x ≤ 1 2x -1 if 1 < x < ∞, gx = 1 -x if 0 ≤ x < 1 3x -2 if 1 ≤ x < ∞.
Obviously, f and g are discontinuous at x = 1.

Let us consider the sequence x n = 1 n for n = 1, 2, . . .. We have

f x n = 1 + x n → 1 = t when n → ∞, gx n = 1 -x n → 1 when n → ∞, and 
f gx n = f (1 -x n ) = 2 -x n → 2 = f (1), gf x n = g(1 + x n ) = 1 + 3x n → 1 = g(1)
, therefore f and g are subsequentially continuous.

Now, let (x n ) = 1 + 1 n for n = 1, 2, . . .. We have f x n = 2x n -1 → 1 = t, gx n = 3x n -2 → 1 = t, and 
f gx n = f (3x n -2) = 6x n -5 → 1 = 2 = f (1)
, so f and g are not reciprocally continuous. Now, we show the interest of these two definitions by giving three main results.

A general common fixed point theorem

We begin by a general common fixed point theorem which improves a result of [START_REF] Jungck | Fixed point theorems for occasionally weakly compatible mappings[END_REF].

Theorem Let f , g, h and k be four self-maps of a metric space (X , d).

If pairs of maps (f, h) and (g, k) are subcompatible and reciprocally continuous, then (a) f and h have a coincidence point; (b) g and k have a coincidence point. Further, let ϕ : (R + ) 6 → R be a continuous function satisfying the following condition: (ϕ 1 ) : ϕ(u, u, 0, 0, u, u) > 0 ∀u > 0. We suppose that (f, h) and (g, k) satisfy, for all x and y in X , (ϕ 2 ) : ϕ(d(f x, gy), d(hx, ky), d(f x, hx), d(gy, ky), d(hx, gy), d(ky, f x)) ≤ 0. Then, f , g, h and k have a unique common fixed point.

Proof

Since pairs of maps (f, h) and (g, k) are subcompatible and reciprocally continuous, then, there exist two sequences (x n ) and (y n ) in X such that lim Therefore f t = ht and gz = kz; that is, t is a coincidence point of f and h and z is a coincidence point of g and k. Now, we prove that t = z. Indeed, by inequality (ϕ 2 ), we have

ϕ(d(f x n , gy n ), d(hx n , ky n ), d(f x n , hx n ), d(gy n , ky n ), d(hx n , gy n ), d(ky n , f x n )) ≤ 0.
Since ϕ is continuous, taking the limit as n → ∞ yields

ϕ(d(t, z), d(t, z), 0, 0, d(t, z), d(z, t)) ≤ 0 which contradicts (ϕ 1 ) if t = z. Hence t = z. Also, we claim that f t = t. If f t = t, using (ϕ 2 ), we get ϕ(d(f t, gy n ), d(ht, ky n ), d(f t, ht), d(gy n , ky n ), d(ht, gy n ), d(ky n , f t)) ≤ 0.
Since ϕ is continuous, at infinity, we obtain ϕ(d(f t, t), d(f t, t), 0, 0, d(f t, t), d(t, f t)) ≤ 0 contradicts (ϕ 1 ). Hence t = f t = ht. Again, suppose that gt = t, using inequality (ϕ 2 ), we get ϕ(d(f t, gt), d(ht, kt), d(f t, ht), d(gt, kt), d(ht, gt), d(kt, f t)) = ϕ(d(t, gt), d(t, gt), 0, 0, d(t, gt), d(gt, t)) ≤ 0 contradicts (ϕ 1 ). Thus t = gt = kt. Therefore t = f t = gt = ht = kt; i.e., t = z is a common fixed point of maps f , g, h and k. Finally, suppose that there exists another common fixed point w of maps f , g, h and k such that w = t. Then, by inequality (ϕ 2 ), we have d(t,w),d(w,t)) ≤ 0 which contradicts (ϕ 1 ). Hence w = t.

ϕ(d(f t, gw), d(ht, kw), d(f t, ht), d(gw, kw), d(ht, gw), d(kw, f t)) = ϕ(d(t, w), d(t, w), 0, 0,
If we let in Theorem 2.1, f = g and h = k, we get the next corollary:

2.2 Corollary Let f and h be self-maps of a metric space (X , d) such that f and h are subcompatible and reciprocally continuous, then, maps f and h have a coincidence point. Further let ϕ : (R + ) 6 → R be a continuous function satisfying condition (ϕ 1 ) and ϕ(d(f x, f y), d(hx, hy), d(f x, hx), d(f y, hy), d(hx, f y), d(hy, f x)) ≤ 0 for every x and every y in X , then there exists a unique point t ∈ X such that f t = ht = t.

If we put h = k, we get the following result: Now, using the recurrence on n, we get the following theorem: 2.5 Theorem Let h, k and {f n } n∈N * be maps from a metric space (X , d) into itself such that pairs of maps (f n , h) and (f n+1 , k) are subcompatible and reciprocally continuous, then (a) (f n , h) have a coincidence point; (b) (f n+1 , k) have a coincidence point. Suppose that maps f n , f n+1 , h and k satisfy the inequality:

(ϕ 2 ) ϕ(d(f n x, f n+1 y), d(hx, ky), d(f n x, hx), d(f n+1 y, ky), d(hx, f n+1 y), d(ky, f n x)) ≤ 0
for all x and y in X , for every n ∈ N * , where ϕ is as in Theorem 2.1, then, h, k and {f n } n∈N * have a unique common fixed point.

Proof

By letting n = 1, we get the assumptions of Theorem 2.1 for maps h, k, f 1 and f 2 with the unique common fixed point t. Now, t is a common fixed point of h, k, f 1 and of h, k, f 2 . Otherwise, if z is another common fixed point of h, k and f 1 , then by inequality (ϕ 2 ), we have

ϕ(d(f 1 z, f 2 t), d(hz, kt), d(hz, f 1 z), d(kt, f 2 t), d(hz, f 2 t), d(kt, f 1 z)) = ϕ(d(z, t), d(z, t), 0, 0, d(z, t), d(t, z)) ≤ 0 contradicts (ϕ 1 ), then z = t.
By the same manner, we prove that t is the unique common fixed point of maps h, k and f 2 . Now, letting n = 2, we obtain the hypotheses of Theorem 2.1 for maps h, k, f 2 and f 3 and then, they have a unique common fixed point z. Analogously, z is the unique common fixed point of h, k, f 2 and of h, k, f 3 . Thus z = t. Continuing by this method, we clearly see that t is the required element.

Remark

We can also have common fixed point by using only four distances instead of six. The next theorem shows this fact.

Theorem

Let f , g, h and k be self-maps of a metric space (X , d). If pairs of maps (f, h) and (g, k) are subcompatible and reciprocally continuous, then, (a) f and h have a coincidence point; (b) g and k have a coincidence point. Let ψ : (R + ) 4 → R be a continuous function such that (ψ 1 ) : ψ(u, u, u, u) > 0 ∀u > 0. Suppose that (f, h) and (g, k) satisfy the following inequality (ψ 2 ), for all x and y in X , (ψ 2 ) : ψ(d(f x, gy), d(hx, ky), d(hx, gy), d(ky, f x)) ≤ 0. Then, f , g, h and k have a unique common fixed point.

Proof

First, proof of (a) and (b) is similar to proof of first part of Theorem 2.1. Now, suppose that d(t, z) > 0, then, using inequality (ψ 2 ), we get

ψ(d(f x n , gy n ), d(hx n , ky n ), d(hx n , gy n ), d(ky n , f x n )) ≤ 0.
Since ψ is continuous, we obtain at infinity ψ(d(t,z),d(t,z),d(t,z),d(z,t)) ≤ 0 which contradicts (ψ 1 ), therefore z = t. If d(f t, t) > 0, by inequality (ψ 2 ), we have

ψ(d(f t, gy n ), d(ht, ky n ), d(ht, gy n ), d(ky n , f t)) ≤ 0.
Since ψ is continuous, when n tends to infinity, we get ψ(d(f t, t), d(f t, t), d(f t, t), d(t, f t)) ≤ 0 which contradicts (ψ 1 ), hence t = f t = ht. Similarly, we have t = gt = kt. The uniqueness of the common fixed point t follows easily from inequality (ψ 2 ) and condition (ψ 1 ).

A type Greguš common fixed point theorem

In 1998, Pathak et al. [START_REF] Pathak | Compatible mappings of type (C) and common fixed point theorems of Greguš type[END_REF] introduced an extension of compatibility of type (A) by giving the notion of compatibility of type (C) and they proved a common fixed point theorem of Greguš type for four compatible maps of type (C) in a Banach space. Further, Djoudi and Nisse [START_REF] Djoudi | Greguš type fixed points for weakly compatible mappings[END_REF] generalized the result of [START_REF] Pathak | Compatible mappings of type (C) and common fixed point theorems of Greguš type[END_REF] by weakening compatibility of type (C) to weak compatibility without continuity. In 2006, Jungck and Rhoades [START_REF] Jungck | Fixed point theorems for occasionally weakly compatible mappings[END_REF] extended the result of Djoudi and Nisse by using an idea called occasional weak compatibility of Al-Thagafi and Shahzad [START_REF] Al-Thagafi | Generalized I-nonexpansive selfmaps and invariant approximations[END_REF] which will be published in 2008.

In this part, we establish a common fixed point theorem for four subcompatible maps of Greguš type in a metric space which extends the results of [START_REF] Djoudi | Greguš type fixed points for weakly compatible mappings[END_REF], [START_REF] Jungck | Fixed point theorems for occasionally weakly compatible mappings[END_REF] and [START_REF] Pathak | Compatible mappings of type (C) and common fixed point theorems of Greguš type[END_REF].

Let F be the family of maps F from R + into itself such that F is upper semi-continuous and F (t) < t for any t > 0.

3.1 Theorem Let f , g, h and k be maps from a metric space (X , d) into itself. If pairs of maps (f, h) and (g, k) are compatible and subsequentially continuous, then, (a) (f, h) has a coincidence point; (b) (g, k) has a coincidence point. Moreover, suppose that the four maps satisfy the following inequality:

(2) d p (f x, gy) ≤ F (ad p (hx, ky) + (1a) max{αd p (f x, hx), βd p (gy, ky), d

p 2 (f x, hx)d p 2 (f x, ky), d p 2 (f x, ky)d p 2 (hx, gy), 1 2 (d p (f x, hx) + d p (gy, ky))})
for all x and y in X , where 0 < a < 1, {α, β} ⊂]0, 1], p ∈ N * and F ∈ F . Then f , g, h and k have a unique common fixed point.

Proof

Since pairs of maps (f, h) and (g, k) are compatible and subsequentially continuous, then, there exist two sequences (x n ) and (y n ) in X such that lim Therefore f t = ht and gz = kz; that is, t is a coincidence point of maps f and h and z is a coincidence point of g and k. Furthermore, we prove that t = z. Suppose that d(t, z) > 0, indeed by inequality (2) we have

d p (f x n , gy n ) ≤ F (ad p (hx n , ky n ) + (1 -a) max{αd p (f x n , hx n ), βd p (gy n , ky n ), d p 2 (f x n , hx n )d p 2 (f x n , ky n ), d p 2 (f x n , ky n )d p 2 (hx n , gy n ), 1 2 (d p (f x n , hx n ) + d p (gy n , ky n ))}).
By properties of F , we get at infinity 

d p (t, z) ≤ F (ad p (t, z) + (1 -a)d p (t, z)) = F (d p (t, z)) < d p (t,
a(t) + b(t) < 1 ∀t > 0.
Then f , g, h and k have a unique common fixed point.

Proof

First, proof of parts (a) and (b) is similar to proof of Theorem 2.1. Now, suppose that d(t, z) > 0, using inequality (3), we get

Φ(d(f x n , gy n )) ≤ a(d(hx n , ky n ))Φ(d(hx n , ky n )) +b(d(hx n , ky n )) min{Φ(d(hx n , gy n )), Φ(d(ky n , f x n ))}.
By properties of Φ, a and b, we get at infinity

Φ(d(t, z)) ≤ [a(d(t, z)) + b(d(t, z))]Φ(d(t, z)) < Φ(d(t, z))
which is a contradiction. Hence Φ(d(t, z)) = 0 which implies that d(t, z) = 0, thus t = z. Next, if f t = t, the use of condition [START_REF] Djoudi | Greguš type fixed points for weakly compatible mappings[END_REF] gives

Φ(d(f t, gy n )) ≤ a(d(ht, ky n ))Φ(d(ht, ky n )) +b(d(ht, ky n )) min{Φ(d(ht, gy n )), Φ(d(ky n , f t))}.
By properties of Φ, a and b, we get at infinity

Φ(d(f t, t)) ≤ [a(d(f t, t)) + b(d(f t, t))]Φ(d(f t, t)) < Φ(d(f t, t))
this contradiction implies that Φ(d(f t, t)) = 0 and hence t = f t = ht. Similarly, we have gt = kt = t. Now, assume that there exists another common fixed point w of maps f , g, h and k such that w = t. By inequality [START_REF] Djoudi | Greguš type fixed points for weakly compatible mappings[END_REF] As particular cases, we immediately obtain the two following corollaries: We end our work by giving the following result which concern a common fixed point of a sequence of maps. Its proof is easily obtained from Theorem 4.1 by recurrence. Then, h, k and all maps {f n } n∈N * have a unique common fixed point.

•
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  n→∞ f x n = lim n→∞ hx n = t for some t ∈ X and which satisfy lim n→∞ d(f hx n , hf x n ) = d(f t, ht) = 0; lim n→∞ gy n = lim n→∞ ky n = z for some z ∈ X and which satisfy lim n→∞ d(gky n , kgy n ) = d(gz, kz) = 0.

2. 3 1 2

 31 Corollary Let f , g and h be three self-maps of a metric space (X , d). Suppose that pairs of maps (f, h) and (g, h) are subcompatible and reciprocally continuous, then, (a) f and h have a coincidence point; (b) g and h have a coincidence point. Let ϕ : (R + ) 6 → R be a continuous function satisfying condition (ϕ 1 ) and ϕ(d(f x, gy), d(hx, hy), d(f x, hx), d(gy, hy), d(hx, gy), d(hy, f x)) ≤ 0 for all x, y in X , then maps f , g and h have a unique common fixed point t ∈ X . Now, with different choices of the real continuous function ϕ, we obtain the following corollary which contains several already published results.2.4 CorollaryIf in the hypotheses of Theorem 2.1, we have instead of (ϕ 2 ) one of the following inequalities, for all x and y in X , then the four maps have a unique common fixed point (a) d(f x, gy) ≤ α max{d(hx, ky), d(hx, f x), d(gy, ky), (d(hx, gy) + d(ky, f x))} where α ∈]0, 1[, (b) d(f x, gy)(1 + αd(hx, ky)) ≤ α max{d(hx, f x)d(gy, ky), d(hx, gy)d(ky, f x)} +β max{d(hx, ky), d(hx, f x), d(gy, ky), 1 2 (d(hx, gy) + d(ky, f x))} where α ≥ 0 and 0 < β < 1, (c) d 3 (f x, gy) ≤ d 2 (hx, f x)d 2 (gy, ky) + d 2 (hx, gy)d 2 (ky, f x) 1 + d(hx, ky) + d(hx, f x) + d(gy, ky) , (d) d(f x, gy) ≤ ̥[max{d(hx, ky), d(hx, f x), d(gy, ky), 1 2 (d(hx, gy) + d(ky, f x))}] where ̥ : R + → R + is an upper semi-continuous function such that, for every t > 0, 0 < ̥(t) < t. Proof For proof of (a), (b), (c) and (d), we use Theorem 2.1 with the next functions ϕ which satisfy, for every case, hypothesis (ϕ 1 ). For (a): ϕ(d(f x, gy), d(hx, ky), d(f x, hx), d(gy, ky), d(hx, gy), d(ky, f x)) = d(f x, gy)α max{d(hx, ky), d(f x, hx), d(gy, ky),

1 2 1 2 1 2

 111 (d(hx, gy) + d(ky, f x))} this function ϕ is used by many authors, for example Example 1 of Popa [13]. For (b): ϕ(d(f x, gy), d(hx, ky), d(f x, hx), d(gy, ky), d(hx, gy), d(ky, f x)) = (1 + αd(hx, ky))d(f x, gy)α max{d(f x, hx)d(gy, ky), d(hx, gy)d(ky, f x)}β max{d(hx, ky), d(f x, hx), d(gy, ky), (d(hx, gy) + d(ky, f x))} for β = 1, we have Example 3 of Popa [14]. For (c): ϕ(d(f x, gy), d(hx, ky), d(f x, hx), d(gy, ky), d(hx, gy), d(ky, f x)) = d 3 (f x, gy) -d 2 (f x, hx)d 2 (gy, ky) + d 2 (hx, gy)d 2 (ky, f x) 1 + d(hx, ky) + d(f x, hx) + d(gy, ky) this function ϕ is the one of Example 5 of [13] with c = 1. For (d): ϕ(d(f x, gy), d(hx, ky), d(f x, hx), d(gy, ky), d(hx, gy), d(ky, f x)) = d(f x, gy) -̥[max{d(hx, ky), d(f x, hx), d(gy, ky), (d(hx, gy) + d(ky, f x))}].

  n→∞ f x n = lim n→∞ hx n = t for some t ∈ X and which satisfy lim n→∞ d(f hx n , hf x n ) = d(f t, ht) = 0; lim n→∞ gy n = lim n→∞ ky n = z for some z ∈ X and which satisfy lim n→∞ d(gky n , kgy n ) = d(gz, kz) = 0.

4. 3

 3 Corollary Let f and h be self-maps of a metric space (X , d). Assume that pair of maps (f, h) is compatible and subsequentially continuous or subcompatible and reciprocally continuous, then, f and h have a coincidence point. Further, suppose that pair of maps (f, h) satisfies the inequality:Φ(d(f x, f y)) ≤ a(d(hx, hy))Φ(d(hx, hy)) +b(d(hx, hy)) min{Φ(d(hx, f y)), Φ(d(hy, f x))} for all x and y in X , where Φ, a and b are as in Theorem 4.1. Then, f and h have a unique common fixed point. 4.4 Corollary Let f , g, h : X → X be maps. If pairs of maps (f, h) and (g, h) are compatible and subsequentially continuous or subcompatible and reciprocally continuous, then, (a) f and h have a coincidence point; (b) g and h have a coincidence point. Moreover, suppose that maps f , g and h satisfy the following inequality: Φ(d(f x, gy)) ≤ a(d(hx, hy))Φ(d(hx, hy)) +b(d(hx, hy)) min{Φ(d(hx, gy)), Φ(d(hy, f x))} for all x and y in X , where Φ, a and b are as in Theorem 4.1, then, f , g and h have a unique common fixed point.

4. 5

 5 Theorem Let (X , d) be a metric space, h, k, {f n } n∈N * be maps from X into itself. If pairs of maps (f n , h) and (f n+1 , k) are compatible and subsequentially continuous or subcompatible and reciprocally continuous, then, (a) f n and h have a coincidence point; (b) f n+1 and k have a coincidence point. Let Φ be a continuous function of [0, ∞[ into itself such that Φ(t) = 0 if and only if t = 0 and satisfying the following inequality: Φ(d(f n x, f n+1 y)) ≤ a(d(hx, ky))Φ(d(hx, ky)) +b(d(hx, ky)) min{Φ(d(hx, f n+1 y)), Φ(d(ky, f n x))} for all x and y in X , where a and b : [0, ∞[→ [0, 1[ are upper semi-continuous and satisfying the condition a(t) + b(t) < 1 ∀t > 0.

  z) this contradiction implies that t = z. Now, if f t = t, the use of condition[START_REF] Al-Thagafi | Generalized I-nonexpansive selfmaps and invariant approximations[END_REF] givesd p (f t, gy n ) ≤ F (ad p (ht, ky n ) + (1a) max{αd p (f t, ht), βd p (gy n , ky n ), d (d p (f t, ht) + d p (gy n , ky n ))}).By properties of F , we obtain at infinityd p (f t, t) ≤ F (ad p (f t, t) + (1a)d p (f t, t)) = F (d p (f t, t)) < d p (f t, t)this contradiction implies that t = f t = ht. Similarly, we have gt = kt = t. Therefore t = z is a common fixed point of both f , g, h and k. Suppose that maps f , g, h and k have another common fixed point w = t. Then, by (2) we get d p (f t, gw) ≤ F (ad p (ht, kw) + (1a) max{αd p (f t, ht), βd p (gw, kw), d Theorem Let (X , d) be a metric space, f , g, h and k be maps from X into itself. If (f, h) and (g, k) are compatible and subsequentially continuous or
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Suppose that (f, h) satisfies the following inequality: d p (f x, f y) ≤ F (ad p (hx, hy) + (1a) max{αd p (f x, hx), βd p (f y, hy), d

for all x, y in X , where 0 < a < 1, {α, β} ⊂]0, 1], p ∈ N * and F ∈ F , then f and h have a unique common fixed point. for all x and y in X , where 0 < a < 1, {α, β} ⊂]0, 1], p ∈ N * and F ∈ F , then f , g and h have a unique common fixed point.

Corollary

Again, using the recurrence on n, we get the next theorem: 

Theorem

A near-contractive common fixed point theorem

We end our work by establishing the next result which especially improves the main result of [START_REF] Mbarki | A common fixed point theorem for near-contractive mappings[END_REF].