Yamen El Touati 
email: yamen.eltouati@yahoo.fr
  
Moez Yeddes 
email: yeddes@yahoo.fr
  
Nejib Ben 
email: nejibbha@yahoo.com
  
Hadj Alouane 
  
Hassane Alla 
email: hassane.alla@lag.ensieg.inpg.fr
  
  
Du réseau de Petri temporel étendu vers les automates hybrides linéaires pour l'analyse des systèmes

Keywords: Réseau de Petri temporel, système dynamique hybride, modélisation, supervision, automate hybride linéaire

Ce travail

I. Introduction

Dans le cadre de notre étude, nous nous intéressons à une catégorie des systèmes dynamiques hybrides ayant un aspect cumulatif et dont la composante discréte est celle qui pilote le systéme. Nous avons proposé dans [START_REF] Touati | Reseaux de petri temporel etendu[END_REF] de modélisér ces systèmes à l'aide des réseaux de petri temporels étendu (RdP-TE). Le RdP-TE, basé sur le réseau de Petri temporel (TPN) [START_REF] Berthomieu | Modeling and verification of time nets[END_REF], permet de modéliser certains phénomènes telque la préemption et la reprise des actions, ainsi que la dépendance des actions séquentielles. Le RdP-TE permet de modéliser, en plus de l'écoulement du temps, des variables continues par morceaux régies par des équations de type ẋ = k. Ainsi, nous pouvons modéliser une succession de traitements qui, éventuellement, peuvent être dépendants.

Dans le but d'appliquer des outils et théories existantes sur l'analyse des systèmes hybrides, nous proposons un algorithme permettant la transformation d'un RdP-TE en un automate hybride linéaire (AHL). On pourra par la suite utiliser les automates hybrides, obtenus suite à l'application de l'algorithme de transformation, pour la supervision et la synthése de la commande. Nous pouvons ainsi, utiliser certains logiciels [START_REF] Henzinger | Hytech : A model checker for hybrid systems[END_REF], [START_REF] Morari | Hybrid systems : Computation and control, 8th international workshop[END_REF], [START_REF] Frehse | Phaver : Algorithmic verification of hybrid systems past hytech[END_REF] pour l'analyse des systémes modélisés par les RdP-TE.

L'article est organisé de la façon suivante : dans la section 2, nous présentons formellement les modèles necessaires à la transformation : l'AHL et le RdP-TE. Cette section s'entame par un exemple illustratif d'un systéme de chauffe modélisé par un RdP-TE. Dans la section 3, nous construisons l'algorithme de transformation des RdP-TE vers les automates hybrides linéaires. Certaines analyses, à l'aide de l'outil PHAVer de l'exemple du système de chauffe, sont donnés à la section 5.

II. Présentation des modèles automate hybride et réseau de Petri temporel étendu

Dans cette section, nous introduisons le modèle automate hybride et réseau de Petri temporel étendu. Ceci est nécessaire pour illustrer par la suite le principe de la transformation des RdP-TE vers les AHL.

Définition 1: [START_REF] Henzinger | The theory of hybrid automata[END_REF], [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF] un automate hybride linéaire à dérivée constante est défini par A = (X, S, inv, dyn, E, garde, af f ) où :

-X est un ensemble fini de variables.

-L est un ensemble fini de sommets.

-inv est la fonction qui associe à chaque sommet s ∈ S un prédicat sur les variables appelé l'invariant de sommet. -dyn : S ×X -→ Q est la fonction qui décrit l'évolution des variables dans les sommets. l'évolution est toujours du type ẋ = k, k ∈ Q. -T est un ensemble fini de transitions. Chaque transition e = (s, s ′ ) ∈ T identifie un sommet de départ s ∈ S et un sommet d'arrivée s ′ ∈ S -garde est une fonction qui associe à chaque transition e = (s, s ′ ) un prédicat C e appelé garde. une transition e = (s, s ′ ) ne peut être exécutée que si la garde C e est vérifiée.

-af f est une fonction qui associe à chaque transition e = (s, s ′ ) une relation af f e appelée affectation. Elle est utilisée pour la mise à jours des valeurs des variables aprés l'exécution de la transition. ✷ Dans un AHL l'évolution des variables est toujours du type ẋ = k.

A. Le modéle RdP-TE

Avant de définir un RdP-TE, nous commençons par la notion de tâche. Pour plus de détail, le lecteur peut se référer à [START_REF] Touati | Reseaux de petri temporel etendu[END_REF]. Une tâche est un réseau de Petri particulier délimité par une transition source et une transition puits, représentant le début et la fin de la tâche. Une tâche permet de modéliser l'évolution d'une variable continue par morceau. Une instance de la variable est créée lors de la sensibilisation de la transition de début de tâche. La valeur est conservée à travers le(s) jeton(s) causant la validation. Dans ce sens, l'étendu de la variable est considéré global par rapport à la tâche. Cette notion sera utilisée pour définir le modéle RdP-TE.

Définition 2: (T ache k ) Etant donné deux ensembles P = {P 1 , P 2 , . . . , P n } et T = {T 1 , T 2 , . . . , T m }, une tâche T ache k construite sur P et T est un 4-uplet (P k , T k , P ré k , P ost k ) telle que :

• P k ⊂ P : Ensemble des places de la T ache k • T k : Ensemble des transitions de la T ache k ,

T k = T i (k) ∪ {T s (k), T e (k)} où :
-T i (k) : Ensemble des transitions à l'intérieur de la T ache k . -T s (k) : Transition de début de la T ache k .

-T e (k) : Transition de fin de la T ache k . Notons de plus que :

T i (k) ∩ {T s (k), T e (k)} = φ, de plus, Si T s (k) = T e (k) alors T i(k) = φ • P ré k : Application d'incidence avant P ré k : P k × T k -→ {0, 1} • P ost k : Application d'incidence arriére P ost k : P k × T k -→ {0, 1}
✷ Toute transition de la T ache k appartient à un chemin qui a pour origine la transition de début de la tâche, T s (k), et pour extrémité la transition de la fin de la tâche, T e (k).

Pour définir le modèle RdP-TE [START_REF] Touati | Reseaux de petri temporel etendu[END_REF], nous allons utiliser les notations suivantes :

Notations :

• P t = k P k : Ensemble des places appartenant à toutes les tâches. • P = {P 1 , . . . , P n } ensemble fini non vide de places.

• T = {T 1 , . . . , T m } ensemble fini non vide de transitions. • T aches = {T ache 1 , . . . , T ache p } ensemble fini de tâches construites sur l'ensemble P et T conformément à la définition 2, tel que : ∀ T ache j , ∀ T ache k , P j ∩ P k = φ, T j ∩ T k = φ , k = j et k, j ∈ {1, . . . , p} • P ré : Application d'incidence avant :

P ré =        (P \ P t ) × (T \ T t ) -→ {0, 1}
P ré(p, t) app. d'incidence avant. P k × T k -→ {0, 1} (∀k ∈ {1, . . . , p}) P ré = P ré k , pour les arcs d'une tâche.

• P ost : Application d'incidence arriére : • M 0 : Marquage initial.

P ost =        (P \ P t ) × (T \ T t ) -→ {0
• D : Application qui définit la dynamique (voir remarque II.2) :

D =        T t -→ Q × Q × Q D(T i ) = (a, b, c), T i ∈ T ache k . T \ T t -→ Q × Q D(T i ) = (b, c), T i ∈ T ache k .
• Init : fonction d'initialisation Init : On associe pour une transition T i une expression EXP RESSION (T i ) en fonction des places en amont de la transition. ✷ Remarque II.1: Pour toute transition appartenant à une tâche donnée, nous associons une initialisation (affectation) sous forme d'expression mathématique construite sur l'ensemble des places en amont de la transition. Cette expression permet d'établir la valeur d'une variable soit par une constante, soit en fonction des valeurs déjà atteinte dans les éventuelles activités précédentes. Dans le cas de synchronisation, les places participant à cette synchronisation, doivent appartenir à une même tâche.

Remarque II.2: La fonction D définit la dynamique de la transition. Les dynamiques continues doivent appartenir à une tâche. On trouve les dynamiques temporelles au niveau des tâches et au niveau de toutes les transitions n'appartenant à aucune tâche. Ainsi, nous avons deux cas : Cas 1 :

D(T k ) = (a, b, c) avec T k ∈ T t .
- 

B. Etat d'un Réseau de Petri Temporel étendu

Un état d'un RdP-TE est le triplet E = (M, V, I)

1. M : vecteur du marquage identifiant le nombre de jetons pour chaque place. (∀P i ∈ P, M (P i ) ≥ 0).

2. V : Vecteur de validation, une composante V j = i si la transition T j est validée i fois. La composante V j = 0 si T j n'est pas validée.

3. I : Vecteur des ensembles des intervalles de franchissements, I j , j ∈ {1, . . . , m}, de T j . Le nombre de ces intervalles est égale à V j , c'est à dire au nombre de fois qu'elle est validée. Un élément de I j est soit l'intervalle de temps dans lequel elle peut être franchie si T j ∈ T \T dyn , soit l'intervalle des valeurs de la variable si T j ∈ T dyn . Pour illustrer cette notion nous considérons l'exemple de la figure 1, l'état initial du RdP-TE est E 0 = (M 0 , V 0 , I 0 ) avec :

-Le marquage M 0 = (1, 0, 0, 0) -La transition T 1 est une fois validée (une seule marque est présente dans P 1 ), donc V 0 = (1, 0, 0, 0) -I 0 1 = {[10, 20]} Définition 4: (Condition de franchissement d'une transition) Une transition T j ∈ T, j ∈ {1, . . . , m} est franchissable à un instant t depuis un état E = (M, V, I) si :

1. T j est validée par le marquage M. 2. (a) Si T j ∈ T \T dyn , il faut que t ∈ I j . (b) Si T j ∈ T dyn , il faut que x à l'instant t appartient à I j . ✷ Ainsi, le franchissement d'une transition T k depuis un état E = (M, V, I) à un instant t, conduit à un nouvel état E ′ = (M ′ , V ′ , I ′ ) telle que :
1. Le marquage M ′ est défini par l'équation suivante : ∀j ∈ {1, . . . , n}, M ′ (P j ) = M (P j )-P ré(P j , T k )+P ost(P j , T k ) 2. Les intervalles de franchissement I ′ sont donnés comme suit :

(a) Si la transition T j est une transition temporelle validée par le marquage M et si elle n'est pas en conflit avec la transition T k alors, Preemptive-TPN [START_REF] Bucci | Timed state space analysis of real-time preemptive systems[END_REF]. Les Scheduling-TPN (RdP étendu à l'ordonnancement) introduisent la notion de transition active. L'activité d'une transition dépend d'une fonction Act qui active ou désactive la transition. Ainsi, on peut modéliser la préemption d'une action mais en dépit de la puissance graphique du réseau de Petri. En effet la synchronisation de transitions est réalisée par une fonction mathématique ajoutée dans le modéle graphique. Dans le même esprit, les Preemptive-TPN ajoutent des priorités au places. Une transition en progression (validée, l'horloge en marche) peut être suspendue si une transition en conflit et plus prioritaire devient validée. Le tir de cette derniére permet de reprendre la progression de la transition. La modélisation de la dépendance entre plusieurs actions est plus difficile à représenter.

I ′ j = [max(0, a j -t), b j -t]. ( 

III. Du RdP-TE vers l'Automate hybride linéaire

Dans cette section, nous commonçons par expliquer le principe de la transformation. d'une manière intuitive. Cela est finalisé par la suite à travers l'algorithme de transformation.

Les réseaux de Petri ont connu depuis leur invention un réel succés en raison de leurs simplicité mathématique, des avantages que procurent leurs représentations graphiques ainsi que leurs compacité. Les automates hybrides constituent un outil puissant d'analyse. Dans la littérature, nous pouvons constater plusieurs travaux concernant la transformation des réseaux de Petri vers les automates en allant des RdP ordinaires aux graphes de marquages ; RdP temporel s aux automates temporisés [START_REF] Sava | Sur la Synthèse de la Commande Des Systèmes à Evenements Discrets Temporisés[END_REF], [START_REF] Tiberiu | A control synthesis approach for time discrete event systems[END_REF] et [START_REF] Cassez | Traduction structurelle des réseaux de petri temporels vers les automates temporisés[END_REF], [START_REF] Cassez | Structural translation from time petri nets to timed automata[END_REF], ainsi que des RdP hybrides aux automates hybrides [START_REF] Allam | From hybrid petri nets to hybrid automata[END_REF], [START_REF] Allam | Sur l'analyse quantitative des réseaux de Petri hybrides : Une approche basée sur les automates hybrides[END_REF].

Dans le même objectif d'analyse et de synthèse de la commande, nous proposons de transformer les RdP-TE à une classe d'automate hybride linéaire. Nous commençons par illustrer le principe de façon intuitive. Ensuite, nous donnons l'algorithme de transformation.

L'état d'un RdP-TE est déterminé par l'évolution du marquage des places due au franchissement des transitions. Une transition franchie doit vérifier la condition de marquage et obéir à des contraintes temporelle ou à des conditions imposées sur la valeur de la variable. Le marquage des places reste inchangé entre deux franchissements successifs. Ainsi, on associe pour chaque marquage du RdP-TE, un sommet de l'automate hybride équivalent. A chaque franchissement d'une transition du RdP-TE on associe une transition de l'automate hybride équivalent.

Les informations correspondant à l'écoulement du temps et à l'évolution des variables peuvent également être modélisées par les éléments suivants de l'automate hybride équivalent :

1. Le temps écoulé à partir de l'instant de validation d'une transition est mesuré par une horloge (une variable dans le sommet évoluant avec la dynamique ṫ = 1) 2. La valeur de la variable (du RdP-TE) atteinte suite à la validation d'une transition est mesurée par une variable associée au sommet évoluant suivant la dynamique ẋ = k associée à la transition. 

A. Identification des éléments de l'automates hybride linéaire

Les différents éléments de l'AHL modélisant le comportement d'un RdP-TE sont identifiés comme suit :

A.1 Variables Deux types de variables sont identifiable : -Pour chaque transition temporelle T j n'appartenant à aucune tâche, on associe une horloge t j qui permet de compter le temps écoulé depuis la derniére validation de la transition T j . Ceci permet de vérifier si la condition de franchissement de la transition est vérifiée.

-Pour chaque tâche T ache k , on associe une variable x k . Une instance de x k est créée à chaque fois que la transition de début de tâche est validée (l'instance est morte quand on franchit la transition de fin de tâche).

Pour une transition validée T j appartenant à une tâche tache k :

• Si la transition T j est linéaire, nous associons à T j une instance de la variable x k • Si la transition T j est temporelle, nous associons à T j une instance de la variable x k et une horloge t j . Dans ce cas le sommet de l'automate est régi par l'équation ẋk = 0 et ṫj = 1 puisque la transition est associée à une contrainte temporelle.

A.2 Sommets

Pour chaque marquage M i , nous associons un sommet unique L i de l'automate hybride linéaire correspondant. Le marquage évolue par franchissement de transitions. Une transition non validée ne peut être franchie. Ainsi, au sein d'un sommet L i (correspondant au marquage M i ), on ne considére que les horloges des transitions validées (en plus des éventuelles instances des variables des tâches).

A.3 Transition

Pour chaque franchissement d'une transition dans le graphe de marquage du RdP-TE, nous associons une transition au niveau de l'AHL. La garde de la transition modélise l'intervalle de franchissement de la transition du RdP-TE.

B. Construction de l'automate hybride linéaire associée au RdP-TE

Le principe de construction de l'AHL est inspiré des travaux dans [START_REF] Sava | Sur la Synthèse de la Commande Des Systèmes à Evenements Discrets Temporisés[END_REF], [START_REF] Tiberiu | A control synthesis approach for time discrete event systems[END_REF] concernant la conversion du RdP temporel en un automate temporisé. Le marquage initial est associé au sommet initial de l'automate. La construction de l'AHL se poursuit en analysant l'évolution du marquage.

B.1 Création d'un sommet

Considérons le marquage actuel M n du RdP-TE. M n sera modélisé par un sommet L n dans l'automate correspondant.

Nous recherchons les transitions validées par le marquage M n . Supposons que les transitions validées par M n sont T i et T j , avec T i et T j deux transitions temporelles n'appartenant à aucune tâche. Dans ce cas, L n sera régi par deux horloges t i et t j (avec les deux équations suivantes : ṫi = 1 et ṫj = 1. Supposons qu'une des transitions validés (T k ) est une transition de début de tâche (T ache l ), une instance de la variable x l (x l,1 ) sera créée. Si D(T k ) = (a, b, c), alors on aura l'équation ẋ l,1 = a. Si en plus a = 0 (le cas où T k est une transition temporelle) alors L n est regie en plus de l'horloge t k .

B.2 Calcul des invariants des sommet

L'invariant d'un sommet L n , I(L n ), est calculé à partir des intervalles de franchissement des transitions validées. Deux cas se présentent :

Cas 1 : La transition T i est une transition temporelle avec l'intervalle de franchissement [b i , c i ]. Ainsi, T i n'est plus validée aprés l'écoulement de c i de c i unités de temps. l'invariant de sommet correspondant serait 0 ≤ t i ≤ c i . Cas 2 : La transition T i est une transition linéaire. T i est alors une transition de tâche (T ache l ). Si D(T i ) = (a i , b i , c i ) alors T i est associée à une contrainte de variable du type x ∈ [b i , c i ]. Soit x l,1 l'instance de la variable x l de la tâche tache l . L'invariant de sommet équivalent dépend du signe de la dynamique :

1. Si a i > 0 alors l'invariant de sommet équivalent serait x l,1 ≤ c i 2. Si a i < 0 alors l'invariant de sommet équivalent serait x l,1 ≥ b i

B.3 Création d'une transition

Soit M n+1 le nouveau marquage atteint suite au franchissement d'une transition T i . On crée un nouveau sommet L n+1 , le sommet correspondant à M n+1 . Le franchissement de la transition T i est modélisé au niveau de l'automate par la transition T n,n+1 qui relie L n à L n+1 .

Cas 1 : La transition T i est une transition temporelle n'appartenant à aucune tâche. La contrainte temporelle [b i , c i ]est associée à T i . La garde est b i ≤ t i ≤ c i . Cas 2 : La transition T i est une transition appartenant à une tâche. Supposons que D(T i ) = (a i , b i , c i ), la garde associé à T i est calculé comme suit :

-Si a i = 0 alors dans ce cas une contrainte temporelle est associée à la transition temporelle T i . La garde est b i ≤ t i ≤ c i -Si a i = 0 alors dans ce cas la garde associée à la transition linéaire T i est bi ≤ x lj ≤ c i . Avec j dépend de l'instance de la variable. L'évolution du marquage peut mener vers des transitions nouvellement validées. Supposons que T k est une transition nouvellement validée. L'affectation au niveau de T n,n+1 dépend du type de la transition T k :

Cas 1 : Si la transition T k est une transition temporelle n'appartenant à aucune tâche, alors l'horloge t k doit être mise à zéro au niveau de T n,n+1 Cas 2 : Si la transition T k appartient à une tâche et

D(T i ) = (a i , b i , c i ) alors :
• Si a i = 0 (transition linéaire), on associe l'affectation correspondante à init(T k ) à T n,n+1 • si a i = 0 (transition temporelle), dans ce cas la variable est toujours active car on est toujours au sein de la tâche et la transition produit un effet de retard, donc une horloge t k est également active. Ainsi, deux affectations serons associées à la transition T n,n+1 : x l,1 := init(T k ) et t k := 0

C. Algorithme de transformation

Nous utilisons les notations suivantes :

• M désigne l'ensemble des marquages du RdP-TE.

• L désigne l'ensemble des sommets du l'AHL.

• T désigne l'ensemble des transitions de l'AHL.

• P désigne la pile qui enregistre les visites à faire sous forme de couple (sommet, transition). L'algorithme de transformation d'un RdP-TE vers un AHL est donnée comme suit : Un RdP-TE bornée est caractérisé par le fait que le nombre de marques de chaque place est fini. Par conséquent le nombre de vecteurs de marquage est fini. Chaque marquage est représenté par un sommet de l'AHL. Ainsi, l'AHL associé au RdP-TE dans la classe considérée a un nombre finie de sommets.

Algorithme 1 : Debut PAS 1 : Initialisation • Créer L 0 correspondant à M 0 • Créer T 0,
La visite d'un sommet du AHL correspond à l'exécution d'une transition. Si le sommet n'est pas encore crée alors on empile le sommet et la visite dans la pile. Si le sommet est déjà créé, alors on crée la transition et on ne sauvegarde pas la visite dans la pile. Puisque le nombre de sommets est fini, alors le nombre de transition est aussi fini.

Le comportement temporel de l'AHL obtenu est similaire au comportement du RdP-TE puisque le nombre de sommets est égal au nombre de marquages du graphe de marquage. Les horloges actives dans un sommet reflètent le comportement des transitions validées. Les variables des tâches sont aussi représenté dans les sommets leur valeurs sont éventuellement préservées par les affectations associées au AHL.

IV. Exemple de transformation : systéme de traitement thermique

Nous allons construire l'AHL A équivalent au RdP-TE R de la figure 3, en appliquant l'algorithme 1 de la section III-C. Le RdP R contient une seule tâche, et par conséquence, une seule variable (qui peut posséder, éventuellement, plusieurs instances). Initialement, la transition T 1 du RdP R est validée par le marquage initial. Ceci revient à créer un sommet initial conformément à la figure 4. La transition T 1 est une transition de début de tâche, alors on crée une nouvelle instance de la variable x 1 , soit x 1,1 . Nous créeons une transition d'entrée pour ce sommet. L'instance x 1,1 sera initialisée par l'initialisation statique de T 1 , soit x 1,1 := 20. Les dynamiques qui seront actives dans L 0 seront celle des transitions validées. Dans ce cas de figure, seule T 1 est validée. La transition T 1 est une transition temporelle, alors on crée une horloge t 1 initialisée au niveau de la transition d'entrée ; la dynamique associée dans L 0 est ṫ 1 = 1. Etant donné que T 1 est une transition temporelle, la valeur de x 1,1 n'évolue pas. Ainsi, L 0 est régie par l'equation ẋ1,1 = 0. L'intervalle de franchissement de T 1 est [0, 1]. Ainsi, On associe la garde t 1 ≤ 1 à L 0 .

L'algorithme que nous avons proposé génére les sommets sans prendre en compte l'atteignabilité des sommets. Notons que le probléme d'atteignabilité des sommets d'un automate hybride linéaire est indécidable [START_REF] Henzinger | What's decidable about hybrid automata ?[END_REF]. Néanmoins, avec certains outils informatique se basant sur des approximations comme HyTech [START_REF] Henzinger | Hytech : A model checker for hybrid systems[END_REF] et PHAVer [START_REF] Morari | Hybrid systems : Computation and control, 8th international workshop[END_REF], [START_REF] Frehse | Phaver : Algorithmic verification of hybrid systems past hytech[END_REF], on peut calculer l'espace atteignable. Le franchissement de T 1 conduit vers un nouveau marquage où T 2 est validée.

En appliquant l'algorithme 1 (section III-C), on obtient l'automate A de la figure 5.

V. Analyse de l'automate hybride linéaire Dans cette section, nous allons analyser l'automate hybride linéaire A de la figure 5. Nous utilisons pour cela l'outil PHAVer [START_REF] Morari | Hybrid systems : Computation and control, 8th international workshop[END_REF], [START_REF] Frehse | Phaver : Algorithmic verification of hybrid systems past hytech[END_REF]. L'analyse avant de l'automate A permet d'affirmer que tous les états de l'automate sont atteignables. L'outil PHAVer, exécuté sous cygwin, nécessite 24 itérations pour analyser l'atteignabilité de l'automate. L'analyse avant permet de donner le résultat illustré dans le tableau I. Nous avons ajouté une horloge artificielle y pour déterminer le temps de séjour dans les différents sommets. Nous allons, par exemple, calculer le temps minimal pour commencer la derniére phase de chauffage. Pour cela, calculons l'espace atteignable pour les sommets L 12 , L 14 et L 15 . Les résultats de calcul donnée par PHAVer sont illustrés dans le tableau II.

L 0 x 12 = 20 & x 11 = 20 & t 5 = 0 & t 3 = 0 & t 1 ≥ 0 & -t 1 ≥ -1 L 1 x 12 = 20 & t 1 = 0 & x 11 ≥ 20 & -x 11 ≥ -100 L 2 x 12 = 20 & x 11 ≥ 20 & -t 1 ≥ -1 & -t 3 ≥ -1 L 3 t 1 = 0 & -x 11 ≥ -100 & x 12 ≥ 20 & x 11 ≥ 20 & -t 3 ≥ -1 L 4 x 12 = 20 & -t 1 ≥ -1 & x 11 ≥ 15 L 5 -x 11 ≥ -100 & x 12 ≥ 20 & x 11 ≥ 80 & -t 3 ≥ -1 L 6 x 12 ≥ 20 & x 11 ≥ 15 & -x 12 ≥ -100 L 7 x 12 = 20 & -x 11 ≥ -20 & x 11 ≥ 15 & -t 1 ≥ -1 & -t 5 ≥ -1 L 8 x 12 ≥ 20 & x 11 ≥ 15 L 9 -x 11 ≥ -20 & x 12 ≥ 20 & x 11 ≥ 15 & -x 12 ≥ -100 L 10 -x 11 ≥ -100 & x 12 ≥ 20 & x 11 ≥ 15 & -t 3 ≥ -1 & -t 5 ≥ -1 L 11 t 5 = 0 & -x 11 ≥ -60 & x 12 ≥ 20 & x 11 ≥ 15 & -t 3 ≥ -1 L 12 -x 11 ≥ -100 & -x 12 ≥ -20 & x 12 ≥ 15 & x 11 ≥ 15 & -t 5 ≥ -1 L 13 x 11 ≥ 15 & x 12 ≥ 15 & -x 11 ≥ -60 L 14 -x 12 ≥ -20 & x 12 ≥ 15 & x 11 ≥ 15 & -x 11 ≥ -60 L 15 x 12 = 20 & t 1 -t 5 = 0 & -x 11 ≥ -20 & x 11 ≥ 15 & t 1 ≥ 0 & -t 1 ≥ -1 L 16 x 12 = 20 & t 5 = 0 & t 1 = 0 & x 11 ≥ 15 & -x 11 ≥ -100 L 17 x 12 = 20 & t 5 = 0 & -t 1 ≥ -1 & x 11 ≥ 15 & -x 11 ≥ -60 L 18 t 3 = 0 & -x 11 ≥ -100 & x 11 ≥ 15 & -t 5 ≥ -1 & x 12 ≥ 15 
Ainsi, nous pouvons déduire que pour les sommets L 15 et L 12 , on a y ≥ 90 ; Ceci veut dire que 90 u.t sont nécessaires pour entamer la derniére action de chauffage de la premiére piéce. De nombreuses performances du systéme peuvent être déduites de l'automate atteignable. Certaines peuvent être interprétées directement sur le RdP, d'autres sont liées à l'automate. Le fait de disposer du modéle dynamique exact ouvre la voie aux techniques de vérification et de synthése.

VI. Conclusion

Dans le cadre de cet article, nous avons utilisé le RdP-TE qui permet de modéliser une sous-classe des systémes dynamiques hybrides basée sur les réseaux de Petri permettant de modéliser l'évolution des parties continues avec des vi- tesses constantes (température, etc.) et ainsi la description des processus continus séquentiels. Dans le but de l'analyse des systémes modélisés par les RdP-TE, nous avons proposé un algorithme permettant de transformer systématiquement, de maniére structurelle le RdP-TE en un automate hybride équivalent. Ainsi, nous pouvons bénéficier des nombreux travaux qui existent déjà dans la littérature concernant l'analyse à base d'automate hybride. Des mesures de performances et des vérifications de propriétés de vivacité ainsi que l'analyse de l'atteignabilité ont été réalisés, dans le cadre de notre travail, avec l'outil PHAVer [START_REF] Morari | Hybrid systems : Computation and control, 8th international workshop[END_REF], [START_REF] Frehse | Phaver : Algorithmic verification of hybrid systems past hytech[END_REF]. Les travaux futurs concernent la synthése de la commande des systémes modélisés par le RdP-TE. Ainsi, il serait intéressant de développer des méthodes systématiques de synthése permettant de revenir au modéle initial pour changer les paramétres du modéle. Ainsi, on peut respecter les contraintes imposées pour le bon fonctionnement du systéme.

  Si a = 0 T k est une transition temporelle, dans la transition T k , b et c représente les bornes min et max de l'intervalle de franchissement. -Si a = k = 0 T k est une transition linéaire), , dans la transition T k , k représente la dynamique avec la quelle elle évolue, b et c représentent les deux bornes (min et max) délimitant l'intervalle de franchissement.

Cas 2 :

 2 D(T k ) = (b, c) avec T k ∈ T \T t , T k est une transition temporelle, b et c représente les bornes min et max de l'intervalle de franchissement de la transition T k .

Fig. 1 .

 1 Fig. 1. Etat du RdP Temporel étendu.

Fig. 2 .

 2 Fig. 2. Systéme de traitement thermique.

Fig. 3 .

 3 Fig. 3. RdP temporel étendu du systéme de traitement thermique.

  3. L'intervalle de franchissement d'une transition correspond à la garde de la transition équivalente construite dans l'automate hybride.

  4. L'initialisation des horloges des transitions nouvellement validées est modélisée par une initialisation de l'horloge correspondante 5. L'initialisation d'une variable d'une transition nouvellement validée est également modélisée par une initialisation au niveau de la transition d'entrée correspondante.

  0 la transition d'entrée à L 0 • Empiler le couple (L 0 , T 0,0 ) dans une pile P • Mettre à jour les ensembles M := {M 0 }, L := {L 0 } et T := {T 0,0 } PAS 2 : Analyse du sommet de la pile P. Supposons qu'il s'agit du couple (L n , T m,n ), càd la visite du sommet L n suite au franchissement de la transition T m,n • Dépiler P • Déterminer l'ensemble des transitions validées • Analyser l'évolution engendrée par le franchissement de chaque transition. Pour chaque transition T j , on détermine le marquage M n+1 du RdP-TE atteint par son franchissement : SI M n+1 ∈ M (M étant l'ensemble des marquages visités) • Créer un sommet L n+1 correspondant à M n+1 • Créer une transition T n,n+1 correspondant au franchissement de T j • Empiler (L n+1 , T n,n+1 ) dans P • Mettre à jour les ensembles M := M ∪{M n+1 }, L := L ∪{L n+1 } et T := T ∪{T n,n+1 } SI M n+1 ∈ M, Alors • Créer une nouvelle transition correspondante au franchissement de T j (si elle n'existe pas déjà) • T := T ∪{T n,k } avec L k le sommet correspondant à M n+1 . PAS 3 : Si P = ∅ aller à PAS 2 Sinon Aller à Fin Fin Proposition 1: L'algorithme converge pour les RdP-TE bornés. preuve : L'algorithme se termine lorsqu'il n'y a aucune nouvelle visite d'un sommet à analyser. Une visite d'un sommet est complètement caractérisée par le marquage du RdP-TE. Ainsi l'algorithme converge si le nombre de sommets et le nombre de fois que chaque sommet est visité est fini.

Fig. 4 .

 4 Fig. 4. Construction du premier sommet de l'automate.

Fig. 5 .

 5 Fig. 5. L'AHL construit à partir du RdP de la figure 3 en appliquant l'algorithme 1.

  L 12 t5 == 0 & -x 11 ≥ -60 & -t3 ≥ -1 & 2*x 11x 12 + 2*y ≥ 120 & -2*t3x 12 + 2*y ≥ 80 & -2*t3 + 2*x 11x 12 + 2*y ≥ 120 & -t3 + y ≥ 90 & -t3 + x 11 + y ≥ 110 & -x 11 -2*x 12 + 4*y ≥ 140 & -x 11 + 4*y ≥ 340 & x 12 ≥ 20 & x 11 ≥ 15 & x 11 + y ≥ 110 L 14 x 12 ≥ 15 & -x 11 -2*x 12 + 4*y ≥ 140 & -x 11 + 4*y ≥ 340 & x 12 + y ≥ 110 & x 11 ≥ 15 & x 11 + y ≥ 110 & x 11 + x 12 + y ≥ 130 & -x 11 ≥ -60 & 2*x 11x 12 + 2*y ≥ 120 L 15 -x 11 + 4*y ≥ 340 & -x 12 ≥ -20 & x 12 ≥ 15 & x 12 + y ≥ 110 & x 11 ≥ 15 & x 11 + x 12 + y ≥ 130 & -x 11 ≥ -60

TABLE I L

 I 'espace atteignable de A.

TABLE II

 II Espace atteignable pour les sommet L 12 , L 14 et L 15 .