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1 Introduction

Consumption behavior is often affected by social interactions. Consumers
share information about the price and quality of products, compare their con-
sumption of status goods with that of their neighbors, benefit from network
externalities by consuming the same goods as members of their professional
or social circles.1 In many instances, firms are aware of the influence of social
relations on the consumption of the products they sell, and try to exploit the
underlying network externalities to maximize profit. To this end, they may
charge different prices at different nodes of the social network. In this paper,
our objective is precisely to analyze optimal discriminatory pricing strategies
in the presence of local network externalities.

Our analysis focusses around two questions. First, we investigate how
prices reflect characteristics of the nodes in the social network. In particular,
we study how classical network centrality measures (like degree centrality or
eigenvector centrality) are related to prices.2 Second, we study how changes
in social network affect the prices charged by the firms. More specifically,
we analyze the impact of the addition of a new link on the prices charged at
neighboring nodes.

These two types of comparative statics exercices have recently attracted
considerable attention from economists studying the effects of social networks
on economic activities.3 In a remarkable contribution, Ballester, Calvó-
Armengol and Zenou (2006) have proposed a method to analyze these two
questions in the context of linear-quadratic games, where agents’ objective
functions are quadratic, and interior equilibria can be computed as solu-
tions to a system of linear equations. They exhibit a relation between an
agent’s optimal decision and the Bonacich (1987) measure of network cen-
trality, which computes the discounted sums of paths originating from an
agent in the network.4

In line with the general approach of Ballester, Calvó-Armengol and Zenou
(2006), we model pricing in a network as a linear-quadratic problem, by

1Typical examples of local network externalities are the use of common software with
colleagues or co-authors, the purchase of books or movies recommended by friends, sensi-
tivity to fashion or snob effects, etc..

2See Wasserman and Faust (1994) for a clear exposition of the literature on network
centrality measures.

3For excellent recent surveys on the economic literature on networks, see the books by
Sanjeev Goyal (2007) and Matt Jackson (2008).

4In the very different context of large networks, which are characterized by their degree
distribution, Sundarajan (2006), Galeotti et al. (2006) and Galeotti and Goyal (2007) have
studied the relation between optimal economic decisions and agents’ degree centrality.
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assuming that consumer’s utilities are quadratic in consumption, so that
demand functions are linear.5 We model the impact of social interactions
on consumption in different ways. We first consider a model where players
care about the level of consumption of other consumers in their neighbor-
hood. Consumption externalities can either be positive, as in the case of
local network externalities generated by the use of common software or com-
mon products, or negative as in the case of consumption of status goods.
We also consider a model where agents care about the prices charged to
their neighbors. Two different models of price externalities are analyzed:
one where consumers care about the average price charged in their neighbor-
hood, and one where utilities are affected by the sum of prices charged to a
consumer’s neighbors.

The study of these different models of pricing with social interactions
highlights the power and the limits of the general approach of Ballester,
Calvó-Armengol and Zenou (2006). On the one hand, the methodology they
propose delivers exact results on the range of parameters for which unique
interior solutions exist, and provides an exact formula to compute the equilib-
rium. On the other hand, in models where firms’ objective functions involve
complex transformations of the matrix of social interactions, the Bonacich
(1987) centrality measure loses its transparent interpretation. Hence, the
exact result of Ballester, Calvó-Armengol and Zenou (2006) cannot be used
to relate prices charged at different nodes of the social network to simple
characteristics of the nodes.

In order to investigate further the relation between nodal characteristics
and firms’ prices, we propose an asymptotic approach when the magnitude
of externalities converges to zero. More precisely, we analyze solutions of
systems of linear equations where the coefficients of the matrix can be written
as power series in a given parameter λ , such that the off-diagonal terms of
the matrix converge to zero when λ goes to zero. Using standard techniques
of matrix norms, we show that the solution to the system of linear equations
can itself be written as a power series in λ. Hence, in order to compare
solutions of the systems of equations when λ goes to zero, one only needs
to consider the lexicographic ordering of the coefficients of the power series.
This approach allows us to rank equilibrium prices as a function of simple
nodal characteristics, like the degree and the sum of neighbors’ degrees.

At the outset, we would like to defend the usefulness of computing ap-

5The use of quadratic utility functions in order to generate linear demand functions
is standard in oligopoly theory. An early application of quadratic utility functions in
Industrial Organization can be found in Shubik and Levitan (1980)’s classic book on
oligopoly theory.
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proximation results when the magnitude of local external effects goes to zero.
First, as Ballester, Calvo-Armengol and Zenou (2006) argue, the existence
of a unique interior equilibrium is guaranteed if and only if the magnitude
of local effects is small – the largest eigenvalue of the matrix of local effects
must be bounded above by one.6 Hence, analyzing a model with small local
effects fits well with their approach. Second, when the matrix of external
effects is complex, the asymptotic approach may be the only way to handle
a problem which would otherwise be intractable. Third, by continuity, the
intuition obtained for small external effects continues to hold when the mag-
nitude of externalities increases, so that our qualitative results remain true
for a wider range of situations.

In a model with positive consumption externalities, the asymptotic ap-
proach shows that competing firms charge higher prices at nodes with higher
degree. If two nodes have the same degree, prices are higher at the node for
which the sum of neighbors’ degree is highest. Furthermore, the addition of a
new link between i and j increases the prices charged at i and j and all their
neighbors. These results do not hold when a single firm serves the entire
network. The monopolist charges uniform prices, consumers at nodes with
higher Bonacich centrality consume more, and obtain higher utility. When
consumption externalities are negative, the results are reversed. Prices set
by competing firms are lower at nodes with higher degree, and while the
monopolist charges uniform prices at every node, consumers at node with
higher centrality consume less and obtain lower utility.

To understand the intuition underlying these comparisons, notice that
in models with positive consumption externalities, consumers at nodes with
higher degree have higher demand. Hence firms serving nodes with higher
degree typically have higher best-response functions, resulting in higher equi-
librium prices. When a single firm serves all markets, it faces a new trade-off.
By increasing the price at nodes with higher degree, it reduces demand at
all the neighbors’ nodes. In the linear model we analyze, the incentive to
increase and lower prices at nodes with higher degree are exactly balanced,
and the monopolist charges uniform prices on the network.

In a model with average price externalities where consumer’s utility is
increasing in the average price charged to neighbors, competing firms charge
uniform prices in the social network. The social externality vanishes at equi-

6This distinguishes their analysis from Bramoullé and Kranton (2007)’s model, where
local effects are not small, and multiple corner equilibria are present. See also Bramoullé,
Kranton and d’Amours (2008) for a model which reconciles the two approaches and
Ballester and Calvó-Armengol (2007) for more precise results and tighter bounds on exis-
tence and uniqueness of equilibrium.
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librium, but prices remain higher than they would be in the absence of exter-
nalities. When a single firm serves all nodes, it charges differentiated prices.
The asymptotic approach shows that prices are higher when the sum of the
inverse of the degrees of the neighbors is larger. The monopolist thus has
an incentive to raise the price at nodes which have a large influence on their
neighbors, i.e. nodes which have many neighbors with small degree. For
example, in a star network, the monopolist has a strong incentive to raise
the price of the hub of the star, in order to increase demand at the peripheral
nodes.

Finally, when consumers care about the sum of prices charged in their
neighborhood, prices are proportional to the Bonacich centrality measure of
the nodes in the social network. Consumers at nodes with higher central-
ity will experience higher prices, both when different firms compete in the
network and when a single firm serves all nodes.

We now comment on the relation between our paper and other recent
work on consumption externalities in networks. Galeotti (2006) studies in-
formation sharing among consumers in a model of search. Jullien (2001),
Sundarajan (2006) and Banerji and Dutta (2005) analyze models with posi-
tive local network externalities. Jullien (2001) and Banerji and Dutta (2005)
focus on competition among two price-setting firms. While Banerjee and
Dutta (2006) consider uniform prices, Jullien (2001) allows for discrimina-
tory pricing at different nodes, and provides partial results suggesting that
firms set lower prices at nodes with higher degree. Sundarajan (2006) studies
monopoly pricing and focusses attention on consumer’s adoption decisions.
In that sense, his model is closely related to Galeotti et al. (2006)’s study of
network games with binary decisions, and both papers show that the deci-
sion to buy a new product is increasing in a consumer’s degree. This suggests
that, as in our paper, demand will be higher at nodes with higher degree.
Finally, Ghiglino and Goyal (2008) study a general equilibrium model where
consumers care negatively about the consumption of their neighbors. They
also adopt a quadratic-linear framework and characterize equilibrium prices
as a function of the social network. Prices in their model are determined
as part of a competitive equilibrium, while we consider strategic pricing by
oligopolistic firms. This difference in settings precludes a direct comparison
between their results and ours, but the thrust of the analysis is very similar.

The rest of the paper is organized as follows. In Section 2, we introduce
our asymptotic approach. Section 3 discusses the model with consumption
externalities. Section 4 is devoted to the model with price externalities. We
conclude in the last Section.
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2 Mathematical Preliminaries

In this Section, we state two technical results which form the core of the
asymptotic approach to comparative statics in networks. These results have
no economic content and are direct applications of standard techniques in
matrix algebra. We have chosen to present them in a separate section and
isolate them from the rest of the paper, because we believe that the asymp-
totic approach might be useful in a broad array of applications.

Consider an abstract system of linear equations

(I−A)x = a. (1)

where A is a n × n nonnegative square matrix, and a a positive vector in
<n. Suppose furthermore that there exist sequences of nonnegative square
matrices (A1, ....,Al, ...) (which can be equal to the zero matrix for some ls),
and a sequence of nonnegative vectors (a0, a1, ...., al, ...) (which can be equal
to zero for some l > 1) such that

A =
∞∑
l=1

λlAl, (2)

a =
∞∑
l=0

λlal. (3)

In words, we consider systems of linear equations which are parametrized
by a positive scalar λ, and such that every coefficient of the system of equa-
tions can be written as a power series in λ. Furthermore, as λ goes to zero,
the off-diagonal terms of the matrix I −A converge to zero. We will inves-
tigate properties of the solutions to the system of linear equations when λ
becomes small.

First observe that, when λ = 0, the system of equations admits a unique
solution

x = a0 (4)

By continuity, there exists λ > 0 such that, for all λ < λ, the system of
equations admits a unique interior solution given by
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x = (I−A)−1a, (5)

=
∞∑
k=0

Aka, (6)

=
∞∑
k=0

(
∞∑
l=1

λlAl)
k(
∞∑
l=0

λlal). (7)

We now need to express the vector x as a power series in λ,

x =
∞∑
k=0

λkck. (8)

To this end, we will use a variant of the Faà di Bruno formula on the
composition of abstract power series to compute the vectors ck.7

Definition 2.1 A partition of an integer m, p(m) is a sequence of positive
integers, (p1, ..., pR) such that

∑
r pr = m. The set of all partitions of an

integer m is denoted P(m). By convention, suppose that the partition of 0 is
0 and let I be the matrix corresponding to A0.

The sequence of vectors ck is given by:

ck =
k∑
t=0

∑
(pr)∈P(k−t)

∏
r

Aprat. (9)

Arguably, this sequence is not easy to compute. However, the first terms are
rather straightforward and given by:

c0 = a0,

c1 = a1 + A1a0,

c2 = a2 + A1a1 + (A2
1 + A2)a0,

c3 = a3 + A1a2 + (A2
1 + A2)a1 + (A3

1 + A2A1 + A1A2 + A3)a0.

...

Next, recall the definition of the lexicographic ordering of two sequences:

7For a presentation of Faà di Bruno’s formula and its variants, see Johnson (2002)’s
historical article and the references therein.
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Definition 2.2 The sequence f = (f1, ...., fk, ....) lexicographically domi-
nates the sequence f ′ = (f ′1, ...., f

′
k), f ≺ f ′ if and only if there exists K such

that fk = f ′k for all k < K and fK > f ′K.

We are now ready to prove the approximation lemma, which provides an
equivalence between the ranking of the components of the solution x and the
lexicographic ordering of the components of the sequence (c0, c1, ...) when λ
converges to zero.

Lemma 2.3 Consider a sequence of positive scalars λt converging mononot-
ically to zero. There exists T > 0 such that, for all t > T , the system of
linear equations (1) has a unique interior, positive solution xt and for any
i, j,

xti > xtj ⇔ (c0
i , c

1
i , ...) � (c0

j , c
1
j , ...)

Proof. See the Appendix.

Lemma 2.3 shows that, in order to compare two different components of
the vector of solutions x, we can restrict attention to the zero order term
c0, or if the zero order terms are equal, to the first order term c1, and if the
first order terms are equal to the second order term c2, etc.. The intuition
underlying the result is easily grasped. We can use the composition of formal
power series to write down the solution x as a power series in λ. When λ
converges to zero, higher order terms become negligible, and the comparison
between two components of the solution vector x only depend on the ranking
of lower order terms.8

The same approximation can also be used to compare the solutions to
two different systems of equations.

Lemma 2.4 Consider two systems of equations (I−A)x = a and (I−A′)x =
a′. Let (c0, c1, ...) and (c′0, c′1, ...) denote the corresponding sequences. Con-
sider a sequence of positive scalars λt converging monotonically to zero.
There exists T > 0 such that, for all t > T , the two systems of linear equa-
tions have unique, interior positive solutions xt and x′t and for any i,

xti > x′tj ⇔ (c0
i , c

1
i , ...) � (c′0i , c

′1
i , ...)

8This intuition is almost entirely correct. The only remaining step is to show that, not
only do the higher terms become negligible, but that the sum of higher terms also becomes
small. In other words, we need to show that the series of higher order terms converges.
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Proof. See the Appendix.

Lemma 2.4 is a useful tool to study the effects of changes in the social
network on the solutions x. Changes in the social network typically will
result in changes in the matrix A and the vector a, and in many instances,
it will be rather straightforward to identify the first term of the sequence ci
which is affected by the change in the social network.

3 Pricing with Consumption Externalities

3.1 The Model

3.1.1 Consumer’s utilities and choices

In this Section, we consider a model where consumers’ utilities are affected
by the quantities consumed by other consumers on the network. We suppose
that consumers are located on a social network, defined by an undirected
graph g with n nodes indexed by i = 1, 2, ..., n. The matrix G denotes the
adjacency matrix of graph g, with typical entry gij ∈ {0, 1}. The matrix G
denotes the complementary of the adjacency matrix, namely a matrix such
that gij = 1 if and only if gij = 0. Correspondingly, we let g denote the
complementary of network g. We let deg i denote the degree of node i, or the
number of links originating at i,

deg i =
∑
j

gij.

The vector d = (d1, ..., dn) collects the degrees of all nodes in the network,
whereas the vector id = ( 1

d1
, ..., 1

dn
) collects the inverses of the degrees of all

nodes in the network.
At each node i of the network, consumer i’s utility is defined over her

consumption, qi, the consumption of her neighbors
∑

j gijqj, and the price at
node i, pi. We suppose that the utility is linear-quadratic and given by:

Ui = qi −
1

2
q2
i + λ

∑
j

gijqiqj − piqi. (10)

Note that in this formulation λ can either be positive or negative. If
λ > 0, our model is a model of local positive network externalities where con-
sumers benefit from the consumption of the good by their neighbors. This is
the typical case of network externalities studied by Farrell and Saloner (1985)
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and Katz and Shapiro (1985). If λ < 0, our model is a model of negative
consumption externalities, where consumers are harmed by the consumption
of their neighbors. This is the classical model of conspicuous or status goods
first emphasized by Veblen (1899), and recently studied in the context of
social networks by Ghiglino and Goyal (2008). Consumers compare their
consumption of a status good with that of their neighbors and derive posi-
tive utility from consuming more than their neighbors. We will furthermore
assume that λ > −1, which implies that own consumption has higher weight
than the social externality in every consumer’s utility.

Alternative Interpretations Alternatively, we could identify nodes of the net-
work g as geographical locations, and have a continuum of consumers of
measure 1 at each node. The network g is then interpreted as a transporta-
tion network among geographical locations. Assume that consumers can only
buy the good at the location where they reside (either because of transporta-
tion costs or specific regulations) but derive positive or negative utility from
consumption in neighboring locations.

As another interpretation, we could identify nodes of the network g as
variants of a product. If λ > 0, the network g measures the complementarity
of the products: if gij = 1, products i and j are complementary, if gij = 0,
they are independent. If λ < 0, the network g measures the substitutability
of the products: if gij = 1, products i and j are substitutable, if gij = 0, they
are independent. Notice that we need not assume that complementarity or
substitutability are transitive: consumers can view goods i and j and j and
k as complements, but not perceive any relation between products i and k.
Similarly, goods i and j and j and k may be substitutable, but goods i and k
display no substitutability. We could also interpret the network of products
in terms of technical compatibility rather than consumers’ perceptions. Two
products for which gij = 0 are incompatible, two products for which gij = 1
are compatible (and can either be substitutes if λ < 0 or complements if
λ > 0). Again, we do not need to assume that compatibility is transitive.
With this interpretation in mind, we do not associate consumers to nodes
and assume instead that there is a continuum of identical consumers, with a
utility defined over the variants of all products,

Ui =
∑
i

qi −
1

2

∑
i

q2
i + λ

∑
i

∑
j

gijqiqj −
∑
i

piqi. (11)

This model gives rise to a demand system which is slightly different from
that of Equation (10). However, the basic results of our analysis extend to
this alternative model.
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3.1.2 Optimal consumer choices

Given any vector of prices p = (p1, p2, ..., pn), consumers choose the quan-
tities in order to maximize the utility given in Equation (10). Given the
interdependence arising from consumption externalities, the optimal choice
of consumers are given by the Nash equilibrium of a noncooperative game
played by consumers at different nodes of the social network. We apply di-
rectly the results of Ballester, Calvó-Armengol and Zenou (2006) on the equi-
librium of a game played by agents on a social network with linear-quadratic
objective functions.

We first recall the definition of the Bonacich centrality measure of nodes
in a social network. For any nonnegative scalar a ≥ 0 and square matrix G,
define the matrix

M(G, a) = [I− aG]−1 =
∞∑
k=0

akGk.

Let 1 denote the vector of 1’s.

Definition 3.1 Let G be the adjacency matrix of a network g and a a
scalar such that M(G, a) is well defined and nonnegative. The vector of
Bonacich centrality measures in network g with scalar a is given by b(a, g) =
M(G, a)1.

For any agent i, the Bonacich centrality measure bi(a, g) computes the
sum of discounted paths of length k originating at i. For any vector α in
<n, we also define the weighted Bonacich centrality measures as bα(a, g) =
M(G, a)α.We also define bα(a, g) to be the sum of weighted Bonacich central-
ity measures of all agents in the network, bα(a, g) = bα(a, g)1. We are now
ready to apply Theorem 1 in Ballester, Calvó-Armengol and Zenou (2006)
to show:

Proposition 3.2 Consider λ > 0 and suppose that λ < 1
µ1(G)

, where µ1(G)
denotes the largest eigenvalue of the adjacency matrix G. Then, for any
vector of prices p, the game played by consumers at different nodes has a
unique interior equilibrium given by

q = b(1−p)(g, λ).

Consider −1 < λ < 0 and suppose that − λ
1+λ

< 1
µ1(G)

. Then, for any vector
of prices p, the game played by consumers at different nodes has a unique
interior equilibrium given by

10



q =
b(1−p)(g,− λ

1+λ
)

1 + λ− λb(g,− λ
1+λ

)
.

Proof. The result is a direct application of Theorem 1 in Ballester, Calvó-
Armengol and Zenou (2006). Using their notations, we decompose the matrix
of cross-effects as

Σ = −β̃I− γ̃U + λ̃G

where U is the matrix of 1s and α̃ denotes the vector of linear effects.
If λ > 0, we decompose the matrix of cross-effects with α̃i = (1− pi), λ̃ =

λ, β̃ = 1, γ̃ = 0. If −1 < λ < 0, we decompose the matrix of cross effects
with α̃i = (1− pi), λ̃ = −λ, β̃ = 1 + λ, γ̃ = −λ and gij = gij.

Proposition 3.2 provides two results: it first shows that when the mag-
nitude of external effects is not too high, the game admits a unique interior
equilibrium. Second, it provides explicit formulas to compute equilibrium
quantities at every node as a function of weighted Bonacich centrality mea-
sures of the nodes in the appropriate networks (the original network g when
λ > 0 and the complementary network g when λ < 0).

3.1.3 Firms

We consider firms which charge discriminatory prices p1, p2, ..., pn at each
node in the network. For simplicity, we normalize the constant marginal cost
of production at zero, and define the profit of a firm at node i as

Πi(p) = piqi(p).

We will analyze both the case where each node is served by a different
firm and the case where all nodes are served by a single, price discriminating,
firm.

3.2 Positive Consumption Externalities

When λ > 0, using Proposition 3.2, we can rewrite consumer demands as:

q(p) = [I− λG]−1(1− p),

= b(g, λ)− [I− λG]−1p,

= b(g, λ)−
∞∑
k=0

λkGkp.
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Let gkij denote the ij entry of the matrix Gk. The preceding computation
shows that the demand at node i, qi can be rewritten as:

qi(p) = bi(g, λ)−
∑
j

∞∑
k=0

λkgkijpj. (12)

Hence, the demand of consumers at node i is a linear function of the
prices p1, ..., pn, that we may rewrite as:

qi(p) = bi(g, λ)−
∑
j

cijpj, (13)

with cij =
∑∞

k=0 λ
kgkij.

3.2.1 The limits of the BCAZ decomposition

We first consider the case where each node is served by a different firm. The
profit of firm i operating at node i as a linear quadratic function of the prices
p1, p2, .., pn, with

Πi = pibi(g, λ)− ciip2
i −

∑
j 6=i

cijpipj. (14)

Hence, the noncooperative game played by the n firms is again a linear-
quadratic game and can again be analyzed using the decomposition of Ballester,
Calvó-Armengol and Zenou (2006). More specifically, define α̃i = bi(g,λ)

2cii
,

c̃ij =
cij
2cii

. Suppose that c̃ij < 1 for all i, j. Let γ̃ = maxi 6=j c̃ij, β̃ = 1 − γ̃,

λ̃ = maxi 6=j c̃ij − mini 6=j c̃ij and finally, the weighted graph g̃ be defined by

the matrix G̃ with generic term g̃ij =
maxi6=j c̃ij−c̃ij

maxi6=j c̃ij−mini 6=j c̃ij
. We then obtain the

following characterization of equilibrium prices:

Proposition 3.3 Consider price competition among n firms located at dif-

ferent nodes of graph g with positive consumption externalities. If λ̃
β̃
< 1

µ1(G̃)
,

the noncooperative pricing game has a unique interior solution

p =
bα̃(g̃, λ̃

β̃
)

β̃ + γ̃bα̃(g̃, λ̃
β̃
)
.

Proposition 3.3 highlights the power and the limits of the decomposition
of Ballester, Calvó-Armengol and Zenou (2006). On the one hand, this is a
very general model which provides exact conditions under which the pricing
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game admits a unique interior equilibrium, and a formula to compute the
equilibrium. On the other hand, the variables used in the decomposition
are derived from the primitives of the model (the underlying social network
g and the magnitude of local effects λ) in an extremely complex way, and

the Bonacich centrality measure bα̃(g̃, λ̃
β̃
) cannot be interpreted as a simple

measure of centrality in the underlying network g.

3.2.2 Ranking of prices at different nodes

In order to better understand the relation between equilibrium prices and
the underlying social network g, we consider an asymptotic model, letting
the magnitude of local effects, λ, converge to zero. We will use Lemma 2.3
to study the ranking of optimal prices chosen by Bertrand competitors on
the network. For λ small enough, the pricing game admits a unique interior
equilibrium. Recalling the expression of profits in equation (14), and taking
derivatives, we derive the system of linear equations

2ciipi +
∑
j

cijpj = bi(g, λ) (15)

This system can be rewritten in matrix form as

(C + ∆(C))p = b(g, λ) (16)

where ∆(C) denotes the diagonal matrix formed by picking the diagonal
elements of C, i.e. the diagonal matrix such that dii = cii and dij = 0 for
i 6= j. Recalling the definitions of C and b(g, λ), we obtain:

((I− λG)−1 + ∆((I− λG)−1))p = (I− λG)−11. (17)

Premultiplying both sides of the equation by (I−λG) and rearranging terms,
we obtain:

((I + (I− λG)∆((I− λG)−1))p = 1. (18)

or

(2I− (I− (I− λG)∆((I− λG)−1)))p = 1, (19)

Dividing by 2, we finally obtain:

(I− 1

2
(I− (I− λG)∆((I− λG)−1)))p =

1

2
1. (20)
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The equilibrium prices can thus be computed as the solutions to a system of
linear equations, as in Equation (1) with

A =
1

2
(I− (I− λG)∆((I− λG)−1),

a =
1

2
1.

In the next step of the computation, we will write down the coefficients of
the matrix A as polynomials in λ. (Notice that the vector a does not depend
on λ, and can thus be decomposed simply as a = a0 = 1

2
1.) Recall that the

diagonal elements of ∆((I− λG)−1) are cii = 1 +
∑∞

k=1 λ
kgkii. Hence,

2A = I− (I− λG)(I +
∞∑
k=1

λk∆(Gk)), (21)

= I− I−
∞∑
k=1

λk∆(Gk) + λG +
∑
k=1

λk+1G∆(Gk), (22)

=
∞∑
k=1

λk(G(∆(Gk−1))−∆(Gk)). (23)

We can thus decompose the matrix of local effects A using the formal power
series:

A =
∞∑
l=1

λlAl (24)

where Al = 1
2
(G(∆(Gl−1))−∆(Gl)), and construct accordingly the vectors

ck =
∑

(pr)∈P(k)

∏
r

Apr1. (25)

The following table computes the first two elements of the sequences c
and ci.

k ck cki
0 1

2
1 1

2
,

1 1
2
d 1

2
deg i,

2 1
2
(G21− d) 1

2

∑
j gij(deg j − 1),

This table allows us to show:
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Proposition 3.4 Suppose that firms compete in prices in a network with
positive externalities. There exists λ > 0 such that, for all λ < λ, the pricing
game admits a unique interior equilibrium p. For any two nodes i,j, pi > pj
if deg i > deg j. If deg i = deg j then pi > pj if

∑
k gik deg k >

∑
k gjk deg k.

Proposition 3.4 allows us to compare the prices charged at different nodes.
The computation of the sequence ck shows that, at the first order, the rele-
vant characteristic of node i is its degree. Prices will be higher for consumers
at nodes with larger degrees. This result can easily be interpreted. With
positive externalities, demand is higher at nodes with higher degree, so that
the best-response of a firm serving a higher degree node is higher. In equilib-
rium, this translates into a higher price charged at nodes with higher degree.
If two nodes have the same degree, the next component to consider in the
lexicographic ordering is the sum of the degree of the agent’s neighbors: the
higher this measure is, the higher the price charged to consumers.

3.2.3 Sensitivity analysis

Proposition 3.4 compares prices at different nodes for low values of the ex-
ternalities parameter λ. In order to appreciate the limitations of this compu-
tation, we ran simulations to investigate the range of externality parameters
for which the exact ranking of prices coincides with the ranking in Propo-
sition 3.4.9 The following Table lists our results. For different numbers of
agents (n = 6, 7, 8, 9, 10, 15 and 20), we generated 1000 random networks,
and computed for each network the threshold value λ such that the ranking
of prices in the network coincides with the ranking obtained by our asymp-
totic calculations. The table lists the maximal, minimal and mean values of
λ over the 1000 simulations.

n 6 7 8 9 10 15 20

λmin 0.19 0.14 0.01 0.01 0.005 0.01 0.01

λmax 1 1 0.38 0.38 0.305 0.15 0.11

λmean 0.301 0.248 0.213 0.188 0.160 0.108 0.082

Table 1: Simulations for price rankings

As expected, the threshold value of λ decreases with the number of agents,
but remains (in our opinion) surprisingly high, allowing us to claim that the
approximation results reflect a robust structural property of the model.

9We are immensely grateful to Sebastian Bervoets who wrote the computer program
and ran the simulations.
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3.2.4 Effects of changes in the network

We now conduct the second exercise of comparative statics to study how
changes in the social network g affect equilibrium prices. Given the complex-
ity of the relation between the underlying social network and equilibrium
prices captured by Proposition 3.3, we again resort to the asymptotic ap-
proach and apply Lemma 2.4.

We consider the effect of the addition of a link ij to a network g. We can
use the computations of the first terms of the sequence ck to sign the effect
of the addition of a link ij on nodes i and j and their neighbors. As both
deg i and deg j increase, we obtain:

Proposition 3.5 Suppose that firms compete in prices in a network with
positive externalities. There exists λ > 0 such that, for all λ < λ, if a new
link ij is added to the social network, the prices charged at nodes i, j and
any node k such that gik = 1 or gjk = 1 strictly increase.

3.2.5 Multiproduct monopolist

We now suppose that all markets are served by a single firm which chooses
discriminatory prices at every node. The objective function of the monopoly
is:

Πm =
∑
i

pibi(g, λ)− ciip2
i −

∑
j 6=i

cijpipj. (26)

Suppose that λ is small enough so that cij < cii for all i, j.10 Then the
matrix −C is negative semi-definite, and the monopoly’s profit is a concave
function of the prices p. Hence the optimum is characterized by the first
order conditions:

ciipi +
∑
j 6=i

cijpj =
1

2
bi(g, λ), (27)

or in matrix terms,

(I− λG)−1p =
1

2
(I− λG)−11. (28)

Premultiplying both terms of the equation by (I − λG), we obtain p = 1
2
1,

and we conclude that a multiproduct monopolist charges the same price p = 1
2

10Recall that cij converges to zero when λ goes to zero, but not cii.
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at each and every node. The price structure of a multiproduct monopolist is
thus independent of the network structure.

On the other hand, quantities supplied will vary from node to node, with
nodes with higher degree consuming larger quantities. In fact, plugging prices
p = 1

2
1 in the demand system given in Proposition 3.2, we have

q =
1

2
b(g, λ). (29)

We summarize these findings in the following Proposition.

Proposition 3.6 A multiproduct monopolist serving all nodes in a network
with positive externalities charges the same price at every node. The con-
sumption at node i is proportional to the Bonacich centrality measure of
node i with scalar λ.

Because the monopolist internalizes the consumption externalities across
nodes, it should reduce prices at nodes with higher degree and increase prices
at nodes with smaller degree, with respect to a firm only serving a single
node. The fact that optimal prices are uniform across nodes is an artefact
of our linear specification. It can easily be understood by noticing that a
quantity setting monopolist should always choose optimal quantities equal
to the Bonacich centrality measures of the nodes, implying that prices are
uniform across nodes.

3.3 Negative Consumption Externalities

We now consider the case where agents incur negative consumption exter-
nalities, so that demand at different nodes are substitutes rather than com-
plements. Let µ = − λ

1+λ
denote the magnitude of external effects. From the

derivation of consumer demands, we can write

qi =
bi(g, µ)−

∑
j cijpj

1 + λ− λb(g, µ)
(30)

where cij denotes the ij entry of the matrix [I− µG]−1.

3.3.1 Price competition

We now conduct the analysis of price competition in a network with negative
consumption externalities following the same steps as in the case of positive
externalities. The profit of firm i is
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Πi =
bi(g, µ)− ciip2

i −
∑

j 6=i cijpipj

1 + λ− λb(g, µ)
. (31)

Instead of expressing equilibrium prices as Bonacich centrality measures
of a complicated matrix, we use the asymptotic approach to analyze the
relation between prices and nodal characteristics. For µ small enough, the
game has a unique interior equilibrium, given by the solution to:

2ciipi +
∑
j 6=i

cijpj = bi(g, µ). (32)

or in matrix terms:

((I− µG)−1 + ∆((I− µG)−1))p = (I− µG)−11. (33)

This expression is exactly equivalent to the expression for positive exter-
nalities, with µ replacing λ and G replacing G. Hence, we can compute the
first terms of the sequences c and ci as

k ck cki
0 1

2
1 1

2
,

1 1
2
G1 1

2
(n− deg i),

2 1
2
(G

2
1−∆(G

2
)1) 1

2

∑
j(1− gij)(n− deg j) + n− deg i,

This table allows us to show:

Proposition 3.7 Suppose that firms compete in prices in a network with
negative externalities. There exists λ < 0 such that, for all 0 > λ ≥ λ, the
pricing game admits a unique interior equilibrium p. For any two nodes i,j,
pi > pj if deg i < deg j. If deg i = deg j then pi > pj if

∑
k(1 − gik)(n −

deg k) >
∑

k(1 − gjk)(n − deg k). Furthermore, if a new link ij is added to
the social network, the prices charged at nodes i, j and any node k such that
gik = 1 or gjk = 1 strictly decrease.

The results of Proposition 3.7 mirror the results of Propositions 3.4 and
3.5 for the case of positive externalities. When externalities are negative,
prices charged at nodes with higher degree are lower, and the addition of a
new link between i and j reduces the prices at nodes i and j and at their
neighbors.
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3.3.2 Multiproduct monopolist

A multiproduct monopolist selects a vector of prices p in order to maximize:

ΠM =

∑
i bi(g, µ)− ciip2

i −
∑

j 6=i cijpipj

1 + λ− λb(g, µ)
. (34)

By an exact parallel to the analysis for positive externalities, we find that
the multiproduct monopolist chooses uniform prices across all nodes, and
that quantities are lower at nodes with higher degree:

Proposition 3.8 A multiproduct monopolist serving all nodes in a network
with negative externalities charges the same price at every node. The con-
sumption at node i is proportional to the Bonacich centrality measure of node
i in the complementary network g with scalar µ = − λ

1+λ
.

4 Price Externalities

We now consider a model where externalities do not result from consumption
but from prices. We suppose that agents compare the price they receive
with the prices received by their neighbors, and enjoy positive utility if they
receive a lower price than the prices in their neighborhood. This psychological
effect is likely to play a role when consumers make infrequent purchases of
complex goods (like houses, cars or vacation packages) for which they are
unable to assess a precise price. By paying less than their neighbors for
comparable goods, consumers will perceive that they enjoyed a ”good deal”
and derive positive utility. This model could either be expressed by assuming
that consumers care about the sum of prices charged to their neighbors, or
about the average price charged in their neighborhood.

4.1 Average Price Externalities

4.1.1 Consumer demand

We first assume that utilities are defined over the average price charged to a
consumer’s neighbor:

Ui = θi − pi + λ
1

deg i

∑
j

gijpj. (35)

where θi is a taste parameter uniformly distributed on [0, 1]. A consumer
located at node i buys the good if and only if
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θi ≥ pi − λ
1

deg i

∑
j

gijpj, (36)

Hence the demand at node i is given by:

qi =


0 if 1− pi + λ

deg i

∑
j gijpj < 0,

1 if 1− pi + λ
deg i

∑
j gijpj > 1,

1− pi + λ
deg i

∑
j gijpj otherwise

4.1.2 Price competition

If every node is served by a different firm, prices are determined by the Nash
equilibrium of a noncooperative game, where firm i sets a price pi in order
to maximize

Πi =


0 if 1− pi + λ

deg i

∑
j gijpj < 0,

pi if 1− pi + λ
deg i

∑
j gijpj > 1,

pi − p2
i + λ

deg i

∑
j gijpipj otherwise

It is easy to check that the relevant range of prices chosen by firm i is pi ∈
[λ 1

deg i

∑
j gijpj, λ

1
deg i

∑
j gijpj + 1].11 If λ = 0, the game admits a unique

interior equilibrium. Hence, by continuity, there exists λ such that the game
admits a unique interior equilibrium for any λ ≤ λ. In that case, equilibrium
prices will satisfy:

2pi − λ
1

deg i

∑
j

gijpj = 1, (37)

or in matrix terms:

(2I− λ∆(id)G)p = 1. (38)

where ∆(id) is the diagonal matrix with terms di = 1
deg i

. Notice that the

matrix ∆(id)G is a stochastic matrix. Hence, 1 is an eigenvector of the
matrix with associated eigenvalue 1, and

11These constraints on optimal strategies are different from the positivity constraints of
Ballester, Calvó-Armengol and Zenou (2006). As a consequence, the exact bound on λ
that they find to guarantee existence of a unique interior equilibrium cannot be directly
applied here.
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(I− λ

2
∆(id)G)

1

2− λ
1 =

1

2
1. (39)

We summarize this result in the following Proposition.

Proposition 4.1 In a network with average price externalities, there exists
λ > 0 such that, for all λ < λ, competing firms all charge the same price
p = 1

2−λ at every node.

Proposition 4.1 shows that when consumers experience average price ex-
ternalities, prices charged by competing firms at different nodes are uni-
form.12 Every firm faces a trade-off between raising the price above the
price of its competitors (and lowering the demand of its product) or reduc-
ing the price below the price of its competitors (and raising the demand of
its product). Proposition 4.1 shows that this trade-off is independent of the
characteristics of the network, and that every firm, facing the same trade-off,
will charge the same price. Hence, consumers at different node will not expe-
rience any utility gain or loss from comparing the price they receive with that
of their neighbors. However, this does not imply that the model is equivalent
to a model without externalities. Due to the presence of externalities, firms
will charge higher prices, and it is easy to see that prices are increasing in
the externality parameter λ.

4.1.3 Multiproduct monopolist

We now consider the prices chosen by a multiproduct monopolist who in-
ternalizes the price externalities experienced by consumers. Noticing that
the multiproduct monopolist will always choose prices in the relevant range
pi ∈ [λ 1

deg i

∑
j gijpj, λ

1
deg i

∑
j gijpj + 1], we rewrite her profit as:

ΠM =
∑
i

pi − p2
i +

λ

deg i

∑
j

gijpipj. (40)

For λ < 1, the profit function is strictly concave in p, and the optimal
prices chosen by the monopolist are uniquely determined by the solution to
the system of equations:

2pi − λ(
1

deg i

∑
j

gijpj +
∑
j

gij
1

deg j
pj) = 1, (41)

12This result also appears in Ghiglino and Goyal (2008)’s analysis when externalities
arising from the consumption of status goods depend on the average consumption rather
than the absolute consumption.
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or in matrix terms

(I− λ1

2
(∆(id)G + G∆(id))p =

1

2
1. (42)

Using the decomposition of Ballester, Calvó-Armengol and Zenou (2006), we
can compute the vector of optimal prices as

p = b(g̃,
λ

2
), (43)

where g̃ is the weighted network with adjacency matrix (∆(id)G+G∆(id)).
Hence, the multiproduct monopolist charges optimal prices which are equal
to the Bonacich centrality measure of the weighted network g̃. However, the
relation between nodal characteristics of a node i in the original social net-
work g and the weighted network g̃ are not immediate. In order to shed light
on the relation between prices and the characteristics of node i in network g,
we again resort to approximation results when λ converges to zero, and apply
Lemma 2.3 and 2.4. We compute the first terms of the sequences (c0, ...) and
(c0
i , ..).

k ck cki
0 1

2
1 1

2
,

1 1
4
(1 + Gid) 1

4
(1 +

∑
j gij

1
deg j

),

2 1
8
(1 + id + ∆(id)G2id + G∆(id)Gid) 1

8
(1 + 1

deg i
+ 1

deg i
(
∑

j,k gijgjk
1

deg k
)

+
∑

j gij
1

deg j

∑
k gjk

1
deg k

).

Using the computations of the first-order effects, we can easily rank prices
at two different nodes and assess the effect of the addition of link ij on the
prices pi and pj.

Proposition 4.2 In a network with average price externalities, there exists
λ > 0 such that, for all λ < λ the monopolist charges differentiated positive
prices. If

∑
k gik

1
deg k

>
∑

k gjk
1

deg k
), the prices verify pi > pj. If g′ is

obtained by adding link ij to network g, the optimal prices charged by the
monopolist satisfy p′i > pi and p′j > pj.

We thus observe that a multiproduct monopolist exploits the average price
externality and charges different prices at different nodes. Interestingly, the
ranking between pi and pj in the first order does not depend on the degrees
of i and j but on the sum of the inverse of the degrees of their neighbors. In
words, price pi will exceed price pj if consumer i is surrounded by a larger
number of neighbors with smaller degrees than consumer j. According to
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this measure, it is clear that the highest price will be charged to the hub in
a star (which has a large number of neighbors with the smallest degree) and
the lowest price to a peripheral agent in a star (who has the smallest number
of neighbors with the largest degree). Finally, the addition of a new link
between i and j does not affect the degree of the other neighbors of i and j
but increases the sum of neighbor’s inverse degrees and hence has a positive
effect on the prices charged at nodes i and j.

4.2 Total price externalities

We now consider the alternative version of the model, where consumers care
about total prices charged in the neighborhood,

Ui = θi − pi + λ
∑
j

gijpj. (44)

By a computation similar to the case of average price externalities, we obtain
consumer’s demand at node i as:

qi =


0 if 1− pi + λ

∑
j gijpj < 0,

1 if 1− pi + λ
∑

j gijpj > 1,

1− pi + λ
∑

j gijpj otherwise

4.2.1 Price competition

When different firms serve different nodes, in the relevant range of prices,
pi ∈ [λ

∑
j gijpj, λ

∑
j gijpj + 1], profit is given by:

Πi = pi − p2
i + λ

∑
j

gijpj. (45)

By a direct application of Ballester, Calvó-Armengol and Zenou (2006),
we can compute equilibrium prices when λ is small enough.

Proposition 4.3 In a model with total price externalities, there exists λ > 0
such that, for all λ < λ, the noncooperative pricing game admits a unique
interior equilibrium and

p = b(g,
λ

2
).

Proposition 4.3 shows that, as in the model of criminal activities of
Ballester, Calvó-Armengol and Zenou (2004) and Calvó-Armengol and Zenou
(2004), the decomposition of the matrix of external effects has a transparent
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interpretation. With total price externalities, prices charged at every node
are exactly equal to the Bonacich centrality measure of the node in the social
network g with scalar λ

2
. By a direct application of Theorem 2 in Ballester,

Calvó-Armengol and Zenou (2006), we also establish that, if a new link ij is
added to the social network, the sum of prices charged by the firms increases.

4.2.2 Multiproduct monopolist

If a single firm sells at every node, her profit in the relevant price range is
given by:

ΠM =
∑
i

(pi − p2
i + λ

∑
j

gijpj). (46)

For small values of λ, the profit function is strictly concave in p, and the
optimal prices are characterized by the unique interior solution to the system
of equations:

1− 2pi + 2λ
∑
j

gijpj = 0 (47)

We apply Ballester, Calvó-Armengol and Zenou (2006) again to obtain:

Proposition 4.4 In a model with total price externalities, there exists λ >
0 such that, for all λ < λ, the optimal prices chosen by the multiproduct
monopolist satisfy

p =
1

2
b(g, λ).

Proposition 4.4 shows that the ranking of prices across nodes is identical
when different firms serve different nodes and when a single firm sells at
all nodes. A multiproduct monopolist charges higher prices at nodes with
higher Bonacich centrality and benefits from the addition of new links in the
network.. Unsurprisingly, the multiproduct monopolist charges higher prices
than competing firms at every node.

5 Conclusions

In this paper, we study optimal pricing in networks with quadratic objective
functions. We focus on two questions: How do optimal prices reflect the po-
sition of agents in the network? What is the effect of a change in the network
structure on optimal pricing decisions? Using an asymptotic approach, we
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show that, when local effects become small, the ranking of optimal prices
and strategies can be reduced to the ranking of simple characteristics of the
agent’s position in the network. In particular, this result shows that with
positive consumption externalities, prices are higher at nodes with higher
degree, and with relative price externalities, prices are higher at nodes which
have more neighbors of smaller degree.

The contribution of this paper is twofold. Our first contribution is method-
ological: we propose an asymptotic approach to study comparative statics
effects which would otherwise be impossible to sign. This asymptotic ap-
proach has proved fruitful to analyze prices charged in different settings of
consumption with social externalities. It could also be useful to study other
linear models where the matrix of interaction is a complex transform of the
adjacency matrix of the social network. For example, in Goyal and Moraga-
Gonzales (2001)’s model of R & D efforts in networks of strategic alliances,
the asymptotic approach shows that firms with higher degree will expand less
effort.13 The second contribution deals with the analysis of oligopoly pric-
ing in social networks. We relate equilibrium and optimal prices to simple
characteristics of the nodes, and study when consumers at nodes with higher
degree will experience higher or lower prices.

Of course, we are aware of the limitations of our analysis. Our approxi-
mations only hold for small local effects, and our method cannot be used to
analyze model with large network effects. Simulations are needed to assess
the accuracy of our approximation results. In analyzing effects of changes in
the network we have focussed attention on connectivity. Following Galeotti
and Goyal (2007), we may also look at ”second order stochastic dominance”
effects, where the number of links in the network is kept fixed, but the vari-
ance of the degree distribution is reduced.
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7 Proofs

Proof of Lemma 2.3: Consider the l∞ vector norm, defined by:

||A|| = max
i,j
|ai,j|. (48)

The following Lemma is a direct application of well-known results on
matrix norms.

Lemma 7.1 Suppose that ||A|| < 1
n

. Then, the system of linear equations
(1) has a unique solution x and

||x−
K∑
k=0

Aka|| ≤ nK+1||A||K+1||a||
1− n||A||

.

Proof of Lemma 7.1: Recall that ||A|| is not a matrix norm, but n||A||
satisfies the submultiplicativity condition, and is indeed a matrix norm (Horn
and Johnson (1986), Example 5, p. 322). Hence, if n||A|| < 1, the power
series

∑
k Ak is convergent in one matrix norm, so that I − A is invertible

and

(I−A)−1 =
∞∑
k=0

Ak. (49)

We thus have:

x =
K∑
k=0

Aka. (50)
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Now,

||x−
K∑
k=0

Aka|| = ||
∞∑

k=K+1

Aka|| (51)

≤
∞∑

k=K+1

||Aka|| (52)

≤
∞∑

k=K+1

n||Ak||||a|| (53)

≤
∞∑

k=K+1

nk||A||k||a||, (54)

≤ nK+1||A||K+1||a||
1− n||A||

. (55)

The first inequality derives from the triangle inequality of the vector norm,
the second from the fact that the matrix norm n||A|| is compatible with the
vector norm ||A|| (Horn and Johnson (1986), Theorem 5.7.13 p. 324) and
the third from the fact that the matrix norm n||A|| is submultiplicative.

Now consider a sequence λt of positive scalars converging monotonically
to zero. The matrix of cross effects At converges to zero in the l∞ norm, so
there exists T > 0 such that ||At|| ≤ 1

n
for all t ≥ T , and, by Lemma 7.1, the

system of linear equations possesses a unique interior solution. Furthermore,
for t ≥ T , the series

∑∞
l=1(λ

t)lAl and
∑∞

l=0 λ
l
tal are convergent, so that∑∞

k=0 λ
k
t ||ck|| is a convergent series.

Next, using Lemma 7.1, recall that, for the solution xt of the system of
equations,

||xt −
K∑
k=0

λkt c
k|| ≤ ||

∞∑
k=K+1

λkt c
k||. (56)

By definition of the l∞ vector norm, this implies that for all i = 1, 2, ...n,

|xti −
K∑
k=0

λkt c
k
i | ≤ |

∞∑
k=K+1

λkt c
k
i |. (57)

Now consider a pair (i, j) and let K be the first element of the sequences
(c0
i , ...) and (c0

j , ...) such that cKi 6= cKj . Applying equation (57) to i and j,
we obtain,
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|
xti − xtj
λKt

− (cKi − cKj )| ≤ 2λt||
∞∑

k=K+1

λk−K−1
t ck||. (58)

Now, recall that T is a fixed index of the series, chosen so that the system
of equations has a unique interior solution when t ≥ T . Because the series∑∞

k=0 λ
k
t ||ck|| is convergent, there exists a positive F such that:

∞∑
k=0

λkT ||ck|| ≤ F, (59)

so that

∞∑
k=K+1

λk−K−1
T ||ck|| ≤ F

λK+1
T

. (60)

Now,

||
∞∑

k=K+1

λk−K−1
t ck|| ≤

∞∑
k=K+1

λk−K−1
t ||ck||, (61)

≤
∞∑

k=K+1

λk−K−1
T ||ck||, (62)

≤ F

λK+1
T

, (63)

where the first inequality stems from the properties of the vector norm, the
second inequality from the fact that λt converges monotonically to zero, and
the last inequality from equation (60). Now, this implies that, for any ε > 0
there exists T ′ > 0 such that, for all t ≥ max{T, T ′},

2λt||
∞∑

k=K+1

λk−K−1
t ck|| ≤ ε

F

λK+1
T

, (64)

Hence, by inequality (58) the difference between
xt

i−xt
j

λK
t

and cKi − cKj can be

made arbitrarily small, concluding the proof of the Proposition.

Proof of Lemma 2.4: As in the proof of Lemma 2.3, there exists T >
0 such that ||At|| ≤ 1

n
and ||A′t|| ≤ 1

n
, so that both systems of equa-

tions admit unique interior solutions. Let let K be the first element of
the sequences (c0

i , ...) and (c′0i , ...) such that cKi 6= c′Ki . Following the same
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steps as in the proof of Lemma 2.3, one can bound the terms of the series

||
∑∞

k=K+1 λ
k−K−1
t ck||, so that the difference between

xt
i−x′ti
λK

t
and cKi − c′Ki

vanishes, establishing the Proposition.
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