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S
1-VALUED SOBOLEV MAPS

PETRU MIRONESCU

Abstract. We describe the structure of the space W s,p(Sn; S1), where 0 <
s < ∞ and 1 ≤ p < ∞. According to the values of s, p and n, maps in
W s,p(Sn; S1) can either be characterised by their phases, or by a couple (sin-
gular set, phase).
Here are two examples:

W 1/2,6(S3; S
1) = {eıϕ ; ϕ ∈ W 1/2,6 + W 1,3};

W 1/2,3(S2; S
1) ≈ D × {eıϕ ; ϕ ∈ W 1/2,3 + W 1,3/2}.

In the second example, D is an appropriate set of infinite sums of Dirac masses.
The sense of ≈ will be explained in the paper.
The presentation is based on papers of H.-M. Nguyen [22], of the author [20]

and on a joint forthcoming paper of H. Brezis, H.-M. Nguyen and the author

[15].
The author thanks P. Bousquet for useful discussions.
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1. Introduction

In this paper, we will describe all the maps in the space

X = Xs,p = W s,p(Sn; S1) := {u : S
n → S

1 ; u ∈W s,p}.
Here, n ≥ 2, 0 < s <∞ and 1 ≤ p <∞.
By analogy with the case of continuous (or Ck) S

1-valued maps on S
n, which are

precisely the maps of the form u = eıϕ, with ϕ real and continuous (or Ck), the
first guess is

(1.1) X = eıY , where Y = Ys,p := W s,p(Sn; R).

Equality 1.1 was studied in [7]. [7] combined with a subsequent result [13] yields
the following
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Theorem 1.1. Let 0 < s <∞, 1 ≤ p <∞ and n ≥ 2. Then

(1) for sp < 1 or sp ≥ n, we have

W s,p(Sn; S1) = {eıϕ ; ϕ ∈W s,p(Sn; R)}
(2) for n ≥ 3, s ≥ 1, 2 ≤ sp < n, we have

W s,p(Sn; S1) = {eıϕ ; ϕ ∈W s,p ∩W 1,sp(Sn; R)}.
Thus, in each of these cases, S

1-valued maps with W s,p-regularity have phases with
(at least) W s,p-regularity.

Theorem 1.2. In the remaining cases, i. e.

(1) 0 < s < 1, 1 ≤ sp < n
(2) s ≥ 1, 1 ≤ sp < 2,

S
1-valued maps with W s,p-regularity need not have W s,p phases.

In what follows, we address the question of the description of W s,p(Sn; S1) in
the cases left open by Theorem 1.2.

We start by giving two basic examples of W s,p-maps that do not have W s,p-
phases.

“Analytical” example. The construction relies on three ingredients: optimality
of the Sobolev embeddings, Gagliardo-Nirenberg inequalities and a uniqueness ar-
gument (Lemma 1.2).
We start by recalling

Lemma 1.1. (Gagliardo-Nirenberg inequalities) For 0 < s < ∞, 1 ≤ p < ∞,
0 < t < 1, we have W s,p ∩ L∞ ⊂W ts,p/t.
Exception: these inclusions do not hold in the exceptional case s = 1, p = 1, i. e.,
we do not have W 1,1 ∩ L∞ ⊂W t,1/t.

Lemma 1.2. [7] Let sj > 0, pj ≥ 1 be such that sjpj ≥ 1, j = 1, . . . ,m. Let

ϕ : S
n → 2πZ be such that ϕ ∈

m
∑

j=1

W sj ,pj . Then ϕ is constant.

We may now construct the analytical example. Assume that 0 < s < 1 and
1 < sp < n. Let ψ ∈W 1,sp\W s,p (such a ψ exists, by the Sobolev ”non embedding”
W 1,sp 6⊂ W s,p for 0 < s < 1 and 1 < sp < n). Let u := eıψ. Then u ∈ W 1,sp

(since ψ ∈W 1,sp). Since we also have u ∈ L∞, we have u ∈W s,p (by Lemma 1.1).
We claim that u has no lifting in ϕ ∈W s,p. Argue by contradiction: otherwise, we
find that ϕ−ψ is in W 1,sp +W s,p and is 2πZ-valued. Therefore, ϕ−ψ is constant
(Lemma 1.2). This implies that ψ ∈W s,p, a contradiction.

The above argument does not hold in the case 0 < s < 1, sp = 1, since in that
case we do not have W 1,sp∩L∞ ⊂W s,p anymore. However, we may still find some
ϕ ∈ W 1,1 \W s,p such that eıϕ ∈ W s,p and obtain, as above, that such u does not
lift in W s,p.

“Topological” example. We will consider maps defined on the unit ball B of
R
n. (It is easy to adapt the construction below for maps on S

n.) Let u : B → S
1,

u(x) =
(x1, x2)

|(x1, x2)|
. One can check that u ∈W s,p whenever sp < 2.
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We claim that u has no lifting in W s,p provided 1 < sp < 2. Argue by contradiction
and assume that u = eıϕ with ϕ ∈ W s,p. Then for infinitely many x′′ ∈ R

n−2 and
0 < r < 1, we have ϕ ∈W s,p on the circle C = {(x1, x2, x

′′) ∈ R
n ; x2

1 + x2
2 = r2}.

Thus, on such a C, u has a continuous phase. Equivalently, the identity map on
the unit circle has a continuous phase, which is impossible.
With more work (and using degree theory for VMO-maps [17]), the above argument
can be adapted to the limiting case sp = 1.
At the end, we find that the topological example has no lifting in W s,p when
1 ≤ sp < 2.

The remaining part of this paper describes results of Nguyen [22], the author [20]
and of Brezis, Nguyen and the author [15], which provide the structure of Xs,p in
the region which is not covered by Theorem 1.2. Roughly speaking, the description
is summarised by the following

“Theorem”. The analytical and the topological example are the only obstructions
to existence of lifting.

In order to give the ”theorem” a rigourous meaning, it will be convenient to split
the region concerned by Theorem 1.2 in three regions (see Figure 1):

{(s, p) ; 0 < s < 1, 1 ≤ sp < n}
⋃

{(s, p) ; s ≥ 1, 1 ≤ sp < 2} = A ∪B ∪ C,
where

A := {(s, p) ; 0 < s < 1, 2 ≤ sp < n}, B := {(s, p) ; 0 < s < 1, 1 ≤ sp < 2}, C := {(s, p) ; s ≥ 1, 1 ≤ sp < 2}.
It will turn out that the rigourous statements depend on the region.
Note that:

(1) In region A, we have only the analytical example;
(2) In region C, we have only the topological example;
(3) In region B, the analytical and the topological example coexist.

We start by considering region A. In that region the ”theorem” becomes

Theorem 1.3. [22], [20] Assume that 0 < s < 1, 1 ≤ p < ∞ and 2 ≤ sp < n.
Then

Xs,p = {eıϕ ; ϕ ∈W s,p +W 1,sp(Sn; R)}.
The next section introduces a notion essential to the statement of the ”theorem”

in the regions B and C.

2. The singular set of an S
1-valued map

Consider the maps u, v : D → S
1, u(z) = z/|z|, v(z) = eı/

√
|z|. (Here, D is the

unit disk.) It is easy to check that both maps are in W 1,1.
Riddle: Which is the singular set of u, respectively v? (Answer at the end of this
section.)
In order to define the right notion of singular set, we start by considering maps
u ∈ R, where

R :=
{

u ∈ C∞(Sn \ Σ ; S1) ; Σ = Σ(u) is an oriented (n− 2) − submanifold of S
n,

∃ C = C(u) such that |D2u(x)| ≤ C/dist2(x,Σ),∀ x ∈ S
n
}

.



4 PETRU MIRONESCU

A

ss=1

sp=1

sp=2

sp=n

sp

p=1

CB

Figure 1. Outside A ∪B ∪ C, W s,p-maps do have W s,p-phases

The following result is easily established.

Lemma 2.1. [15] R ⊂ Xs,p when sp < 2.

Much more delicate is

Theorem 2.1. [5], [24], [8], [10] R is dense in Xs,p whenever 1 ≤ sp < 2.

The above statement is still true when sp < 1. However, we have the stronger
property

Theorem 2.2. [19] C∞(Sn; S1) is dense in Xs,p whenever sp < 1.

We next take a closer look to the singular set Σ = Σ(u) of a map u ∈ R.
We start with the case n = 2. In that case, Σ is a finite set, Σ = {a1, . . . , ak}.
We may associate to each aj a degree as follows: we consider, for small r > 0,
the restriction of u to the geodesic circle C(aj , r) of radius r around aj . The
orientation on S

2 (say, induced by the outward normal to the unit ball) induces
one on the geodesic disc D(aj , r). In turn, this induces an orientation on C(aj , r),
viewed as the boundary of D(aj , r). With respect to this orientation, the smooth
map u : C(aj , r) → S

1 has a winding number (degree) independent of small r. We
denote it by deg (u, aj). The object that will play a crucial role in our description
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of Xs,p is

(2.1) T (u) :=

k
∑

j=1

deg (u, aj)δaj .

For further use, we note that
k

∑

j=1

deg (u, aj) = 0.1 Thus, possibly after relabelling

the singularities of u, we may write

(2.2) T (u) =

k
∑

j=1

(δPj − δNj )

for some appropriate k ∈ N, Pj , Nj ∈ S
2.

We note that T (u) does not track all the singularities of u: a zero degree singularity
will not appear in the formula giving T (u). As we will see later, non zero degree
singularities are the only one relevant to analysis purposes.
We next define T (u) when n ≥ 3. In that case, if u ∈ R, then Σ(u) is a finite union
of disjoint smooth oriented connected (n− 2)-manifolds, say Σ = Σ1 ∪ . . . ∪Σk. In
this case, the winding number of u around each Σj is defined as follows: let

Uε := {y ∈ S
n ; dist (y,Σj) ≤ ε}.

Here, dist stands for the geodesical distance. For small ε and for each x ∈ Σj , the
set

D(x, r) := {y ∈ Σj ; dist (y, x) ≤ ε}
is a 2-manifold whose boundary, C(x, r), is diffeomorphic with a circle. If we
consider an orientation τΣ on Σj , then we may define an orientation on C(x, r) as
follows: we first consider an orientation τD on D(x, r) such that τΣ ∧ τD be the
natural orientation on S

n. This induces an orientation on C(x, r) (considered as
the boundary of D(x, r)). We then let deg (u,Σj) be the winding number of u
on C(x, r) with respect to the above orientation. One may prove [10] that this
definition is independent of small ε and of x ∈ Σj . We may now define

(2.3) T (u) :=

k
∑

j=1

deg (u, aj)

∫

Σj

.

Here,

∫

Σj

denotes the integration of (n− 2)-forms on the oriented (n− 2)-manifold

Σj . In other words, T (u) is an (n− 2)-current.
The key remark for defining T (u) for a general u appeared in [12] in the context
of S

2-valued maps: there is a tractable formula giving T (u) when u ∈ R. More
specifically, when n = 2 we have

(2.4) 〈T (u), ζ〉 =
1

2π

∫

S2

(u1du2 − u2du1) ∧ dζ, ζ ∈ C∞(S2; R) ≡ Λ0(S2).

Here, d stands for the (exterior) differential and ∧ is the exterior product of 1-forms
(thus the integrand is a 2-form).

1This follows from formula (2.4) below applied to ζ = 1.
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For arbitrary n, the corresponding formula is

(2.5) 〈T (u), ζ〉 =
1

2π

∫

Sn

(u1du2 − u2du1) ∧ dζ, ζ ∈ Λn−2(Sn).

In this case, the integrand is the exterior product of a 1-form and of an (n−1)-form.
It follows from (2.5) that the map u 7→ T (u), initially defined for u ∈ R with values
into the space Dn−2 of (n− 2)-currents, extends by density and continuity to X1,1.
A more involved result asserts that T (u) may be defined beyond the space X1,1.

Theorem 2.3. [9] Let s, p be such that 1 ≤ sp < 2. Then the map R ∋ u 7→
T (u) ∈ Dn−2 admits a unique continuous exension T : Xs,p → Dn−2.
In addition, T (u) does not depend on s and p, in the sense that, if u ∈ Xsj ,pj

,
j = 1, 2, then T (u) defined with respect to Xs1,p1 equals T (u) defined with respect
to Xs2,p2 .

We end this section by a result that illustrates the fact that the non zero degree
singularities are the only one relevant.

Theorem 2.4. [18], [23], [10], [15] Assume that 1 ≤ sp < 2. Then

{u ∈ Xs,p ; T (u) = 0} = C∞(Sn; S1)
W s,p

.

We emphasise the fact that the above result concerns density of smooth S
1-valued

maps. Each map in Xs,p can be approximated, in the W s,p-norm, by smooth maps.
But these maps need not be S

1-valued. Actually, one may prove2 that C∞(Sn; S1)
is never dense in Xs,p when 1 ≤ sp < 2.

Answer to the riddle: The singular set of u is 0 (with winding number 1), more
specifically we have T (u) = δ0. The singular set of v is empty, in the sense that
T (v) = 0. Consequently, the singularity of v is an illusion: v can be approximated,
in W 1,1, by smooth maps. On the other hand, the singularity of u is robust: if {uk}
is a sequence of S

1-valued maps such that uk → u in W 1,1, then, for large k, uk is
not smooth near the origin. Alternatively, given any neighbourhood V of the origin
in R

2, there is some ε = ε(V ) such that if w ∈W 1,1(D; S1) and ‖Dw−Du‖L1 ≤ ε,
then w cannot be smooth in V .

3. Singular sets for maps with prescribed regularity

In this section, we describe the image of Xs,p under T .
The starting point is the fact that, when u ∈ X1,1, T (u) acts on Lipschitz forms.
More specifically, it is clear from (2.5) that the map X1,1 ∋ u 7→ T (u) ∈ (W 1,∞)∗

is continuous. Here, W 1,∞ denotes the space of Lipschitz (n − 2)-forms. We take
as semi-norm of a form ζ ∈ W 1,∞ the best Lipschitz constant of its coefficients
(computed in a finite number of charts).
Let now, for n = 2,

E :=







k
∑

j=1

(δPj
− δNj

) ; k ∈ N, Pj , Nj ∈ S
2







.

Formula (2.2) implies that T (R) ⊂ E . Using the density of R in X1,1, we find that

T (X1,1) ⊂ E
(W 1,∞)∗

. The reversed inclusion is true.

2By adapting the arguments in [25].
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Theorem 3.1. [12], [1], [16] The following assertions are equivalent for T ∈
D ′(S2) ≡ D0(S

2):

(1) There are two sequences (Pj), (Nj) ∈ S
2 such that

∞
∑

j=1

|Pj − Nj | < ∞ and

T =
∞
∑

j=1

(δPj
− δNj

);

(2) There is some u ∈ X1,1 such that T (u) = T ;

(3) T ∈ E
(W 1,∞)∗

.

In particular, T (X1,1) = E
(W 1,∞)∗

.

In higher dimensions, it is not known3 whether the formal analog of Theorem
3.1 is true. The statement known to be true is the following

Theorem 3.2. [1] The following assertions are equivalent for T ∈ Dn−2(S
n):

(1) There is some rectifiable (n− 1)-current N such that ∂N = T ;
(2) There is some u ∈ X1,1 such that T (u) = T .

In (1), the boundary of N is taken in the sense of currents, i. e. ∂N is the
(n− 2)-current acting according to the formula

〈∂N, ζ〉 = 〈N, dζ〉, ∀ ζ ∈ Λn−2(Sn).

It is known that, in two-dimensions, (1) in Theorem 3.2 is precisely (1) in Theorem
3.1.
We set, for n ≥ 2,

E1 := {∂M ; M is a rectifiable (n− 1) − current}
and, for n ≥ 3,

E :=







k
∑

j=1

dj

∫

Σj

; k ∈ N, dj ∈ Z,Σ1, . . . ,Σk boundaryless disjoint oriented (n− 2) − submanifolds of S
n







.

It follows from Theorems 3.1-3.2 that T (X1,1) = E1 and4
E1 ⊂ E

(W 1,∞)∗

.
We next turn to the description of T (X1,p) when 1 < p < 2. We note that,

if u ∈ X1,p, then u1du2 − u2du1 ∈ Lp, so that T (u) acts on W 1,p′ , the space of

(n − 2)-forms with coefficients in W 1,p′ . (Here, p′ is the conjugate of p.) If we

endow W 1,p′ with the semi-norm ζ 7→ ‖dζ‖Lp′ + ‖δζ‖Lp′
5 and repeat the argument

preceding the statement of Theorem 3.1, then we find that

T (X1,p) ⊂ Ep := E
(W 1,p′

)∗

.

The reversed inclusion is true.

Theorem 3.3. [10] Let 1 < p < 2. The following assertions are equivalent for
n ≥ 2 and T ∈ Dn−2(S

n):

(1) T ∈ Ep;
(2) There is some u ∈ X1,p such that T (u) = T .

3To the best of the knowledge of the author.
4Using the fact that T (u) ∈ E if u ∈ R, and the density of R in X1,1.
5Here, δ is the formal adjoint of the exterior differential d.
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We next turn to the image of Xs,p under T when s 6= 1. We start by examining
the case s > 1. If u ∈ Xs,p, then u ∈W 1,sp (by Lemma 1.1), so that u1du2 −u2du1

acts on W 1,(sp)′ -forms. On the other hand, a standard result on the regularity of
products yields [7]

u ∈W s,p ∩ L∞, s > 1 =⇒ u1du2 − u2du1 ∈W s−1,p,

so that T (u) acts on forms ζ such that dζ ∈ W 1−s,p′ . In particular, T (u) acts on

W 2−s,p′ . Using the density of R in W s,p(Sn; S1), we find that, when s > 1 and
1 < sp < 2, we have

T (Xs,p) ⊂ E
(W 1,(sp)′ )∗∩(W 2−s,p′

)∗

.

The reversed inclusion holds also

Theorem 3.4. [10] We have T (Xs,p) = E
(W 1,(sp)′ )∗∩(W 2−s,p′

)∗

.

Our next result is, in some sense, function theoretic, and has no a priori con-
nection to S

1-valued maps. However, its only known proof relies heavily on tools
tailored specifically for S

1-valued maps.

Theorem 3.5. [15] Let s > 1, 1 < sp < 2. Then we have

E
(W 1,(sp)′ )∗∩(W 2−s,p′

)∗

= E
(W 1,(sp)′ )∗

= Esp.

More specifically, we have, for T ∈ E , the estimate

(3.1) ‖T‖(W 2−s,p′ )∗ ≤ C‖T‖s
(W 1,(sp)′ )∗

.

Consequently, the previous theorem can be improved to T (Xs,p) = Esp.

There is something intriguing about estimate (3.1). One may see, using Sobolev

non embeddings, that there is no inclusion relation between W 1,(sp)′ and W 2−s,p′ ;
similarly, there is no inclusion relation between there duals (W 1,(sp)′)∗ and (W 2−s,p′)∗.
Estimate (3.1) does not hold for arbitrary functionals T , for otherwise we would

have (W 1,(sp)′)∗ ⊂ (W 2−s,p′)∗. It has already been noted (in the context of the
Ginzburg-Landau equation [4]) that distributions with ”small” support satisfy im-
proved estimates (see also [21] for an abstract approach). The situation we en-
counter here seems to be somewhat similar, since when T ∈ E , T is supported in
an (n− 2)-manifold.6

Open Problem 1. In 2D, (3.1) is equivalent to the following estimate: let Pj , Nj ∈
S

2, j = 1, . . . ,m. Let 1 < q < 2. Then

(3.2)

∥

∥

∥

∥

∥

∥

m
∑

j=1

(δPj − δNj )

∥

∥

∥

∥

∥

∥

(C0,2−q)∗

≤ Cq

∥

∥

∥

∥

∥

∥

m
∑

j=1

(δPj − δNj )

∥

∥

∥

∥

∥

∥

q

(W 1,q′ )∗

.7

Question: is there any short proof of (3.2)?
Similar question in 3+D, when sums of Dirac masses are replaced by T ∈ E and
the spaces C0,2−q and W 1,q′ are spaces of (n− 2)-forms.

6This is exactly the dimension of singular sets observed in the study of the Ginzburg-Landau

equation.
7This is a fact, not an open problem.
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Open Problem 2. The formal generalization of (3.2) for higher codimensional
currents is the following: let k ≥ 2. Let Pj , Nj ∈ S

k+1, j = 1, . . . ,m. Let k < q <
k + 1. Then

(3.3)

∥

∥

∥

∥

∥

∥

m
∑

j=1

(δPj
− δNj

)

∥

∥

∥

∥

∥

∥

(C0,k+1−q)∗

≤ Cq

∥

∥

∥

∥

∥

∥

m
∑

j=1

(δPj
− δNj

)

∥

∥

∥

∥

∥

∥

q/k

(W 1,(q/k)′ )∗

.

Is (3.3) true?

Same question when S
k+1 is replaced by S

n with n ≥ k+2 and T =

m
∑

j=1

(δPj − δNj )

is replaced by T =
m

∑

j=1

dj

∫

Σj

, with dj ∈ Z and the Σj ’s are (n−k−1)-submanifolds

of S
n.

Open Problem 3. Is there an ”abstract” form of (3.2) and (3.3) in the spirit of
[21]?

We now turn to the description of T (Xs,p) when s < 1. Assume first that
1 < sp < 2. Then X1,sp ⊂ Xs,p, by Lemma 1.1. By Theorem 3.1, it follows that
T (Xs,p) ⊃ Esp. The reversed inclusion is true.

Theorem 3.6. [15] Assume that 0 < s < 1 and 1 < sp < 2. Then T (Xs,p) = Esp.

When sp = 1, there is no obvious relation between T (Xs,p) and E1. However,
we have

Theorem 3.7. [11] Assume that 0 < s < 1 and sp = 1. Then T (Xs,p) = E1.

Theorems 3.1, 3.2, 3.3, 3.5, 3.6, 3.7 yield the following short conclusion

Theorem 3.8. Assume that 1 ≤ sp < 2. Then T (Xs,p) = Esp.

4. Singular sets for maps with prescribed regularity: how the

proofs work

In this section, we briefly sketch the arguments leading to Theorem 3.8.
The key ingredient is the following

Theorem 4.1. [20], [15] Assume that 1 ≤ sp < 2 and let u ∈ Xs,p. Then there is
some ϕ ∈W s,p such that u1du2 − u2du1 − dϕ ∈W sp−1,1.
Equivalently: there is some ϕ ∈W s,p such that the map v := ue−ıϕ is in W sp,1.

We note that the object u1du2−u2du1−dϕ is well-defined (as a current) in view
of Theorem 2.3. The proof of the above theorem is constructive8 and inspired by
[6], which contains a variant of Theorem 4.1 in the special case s = 1/2, p = 2.

Sketch of proof of Theorem 3.8 (assuming Theorem 4.1). Assume that 1 ≤ sp <
2. Let u ∈ W s,p(Sn; S1) and let ϕ be as in Theorem 4.1. Recall that9 we have

8There is an explicit formula for ϕ in terms of u.
9When u is sufficiently smooth, say at least W 1,1.
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〈T (u), ζ〉 =
1

2π

∫

Sn

(u1du2 − u2du1) ∧ dζ. On the other hand, it is easy to justify

the equality v1dv2 − v2dv1 = u1du2 − u2du1 − dϕ. Thus10

(4.1)

〈T (ue−ıϕ), ζ〉 =
1

2π

∫

Sn

(u1d2 − u2du1 − dϕ) ∧ dζ

= 〈T (u), ζ〉 − 1

2π

∫

Sn

dϕ ∧ dζ = 〈T (u), ζ〉.

In other words, we have T (u) = T (v). Since, by Theorem 4.1, we have v ∈ W sp,1,
we find that

(4.2) T (Xs,p) ⊂ T (Xsp,1).

When 1 < sp < 2, Lemma 1.1 yields Xsp,1 ⊂ Xs,p, so that T (Xs,p) ⊃ T (Xsp,1).
Using the trivial remark T (X1,q) ⊂ Eq, 1 < q < 2, we find that

(4.3) T (Xs,p) = T (Xsp,1) = T (X1,sp) ⊂ Esp.

The reversed inclusion T (X1,sp) ⊂ Esp is Theorem 3.3. We will return to its proof
few lines later.

The case sp = 1 needs a different argument. In that case, (4.2) still holds.
However, since X1,1 6⊂ Xs,1/s when 0 < s < 1, the reversed inclusion T (X1,1) ⊂
T (Xs,1/s) is not obvious. This inclusion is true and obtained via a generalized
”dipole construction” (in the spirit of [12]; see also [2], [1]). This construction
yields the ”converse” to Theorem 4.1 in the limiting case sp = 1: given v ∈ X1,1,
there is some ϕ ∈W 1,1 +W s,p such that u := veıϕ ∈ Xs,p. Arguing as in (4.1), we
find that T (X1,1) ⊂ T (Xs,1/s).

The final ingredient in the proof of Theorem 3.8 is the inclusion T (X1,q) ⊃ Eq,
1 ≤ q < 2 (Theorems 3.2 and 3.3). For q = 1, this is obtained through a dipole
construction [1]. In the case 1 < q < 2, the construction is different [10] and
relies on elliptic equations and elliptic regularity. Given T ∈ Eq, we let F ∈ Dn−2

solve ∆F = 2πT , where ∆ is the Laplace-Beltrami operator on S
n. By standard

elliptic estimates, F belongs to W 1,q. The key step is to prove existence of some

S
1-valued u such that

1

ıu
du = u1du2 − u2du1 = (−1)n ∗ dF . Here, ∗ is the Hodge

operator, so that ∗dF is an 1-form. Since11 |du| = |dF |, we find that u ∈ W 1,q. A
straightforward calculation shows that T (u) = T . �

Remark 4.1. We take here a closer look to the proof of Theorem 3.3, i. e., to the
construction T 7→ F 7→ u described right above. The following two dimensional
example will give better insight to this construction. It will be more convenient to
work on R

2 rather than S
2. In order to construct a map u such that T (u) = T := δ0,

we proceed as follows:

(1) We solve ∆F = 2πδ0. ”The” solution is F = ln |x|.
(2) We solve u1du2 − u2du1 = dF⊥. Here, ⊥ stands for the counterclockwise

rotation of
π

2
. If u is smooth, then we may write u = eıϕ with smooth ϕ

and equation u1du2 − u2du1 = dF⊥ becomes dϕ = dF⊥. In our case, u

10Formally. However, one may rigourously prove that the conclusion of (4.1) is correct.
11At least formally.
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can not be smooth, but we may see that ”the” solution is ϕ = θ (the polar

angle). This gives u(z) = eıϕ = eıθ =
z

|z| .
(3) We have, for this u, T (u) = T .

Noting that θ and ln are harmonic conjugated, we see that the proof of Theorem
3.3 consists roughly speaking in finding the harmonic conjugate of the phase of u.
The advantage of this approach is that it allows to work with a global object (ln)
instead of a local one (θ).

Thus the argument giving T (X1,q), 1 < q < 2 (Theorem 3.3), uses elliptic
estimates, while the one that yields T (X1,1) (Theorem 3.2) is based on a direct
construction. There is some hope to unify the two proofs. This would require a
new elliptic estimate that eludes us.

Open Problem 4. Let M be a rectifiable (n− 1)-current on S
n. Let T = ∂M ∈

Dn−2(S
n). Let F ∈ Dn−2(S

n) solve ∆F = T . Is it true that ‖dF‖L1 ≤ C|M |?
More generally, let 1 < p <∞. Is it true that |F |p

W 1/p,p ≤ Cp|M |?

Here, |M | stands the mass of M .12 One could ask the same question for currents
of arbitrary dimension.

Remark 4.2. For a better understanding of the ”Theorem”, we will give here a
(not so) naive interpretation of Theorem 3.3.
We start with the dimension 2 and replace, for simplicity, S

2 by the unit disc
D. By (the analog in D of) Theorem 3.1, each T ∈ E1 (and thus each T ∈ Ep,

where 1 < p < 2) is of the form T =

∞
∑

j=1

(δPj − δNj ), where Pj , Nj ∈ D satisfy

∞
∑

j=1

|Pj −Nj | <∞.

Assume first that T ∈ Ep is given by a finite sum: T =

k
∑

j=1

(δPj − δNj ). Adapt-

ing to the case of D the proof of Theorem 3.3, we may see, in the spirit of Re-
mark 4.1, that ”the” map u ∈ W 1,p such that T (u) = T is of the form u =
k

∏

j=1

(

z − Pj
|z − Pj |

|z −Nj |
z −Nj

)

eıψ, where ψ is smooth.

If we allow T to be a sum with infinitely many terms, then the product
∞
∏

j=1

(

z − Pj
|z − Pj |

|z −Nj |
z −Nj

)

need not converge. Instead, one may write T as T =
∞
∏

j=1

(

z − Pj
|z − Pj |

|z −Nj |
z −Nj

eıψj

)

,

where the smooth phases ψj make the product converge. Thus one may see u as a

12In the special case where M is then integration over a smooth oriented (n − 1)-manifold Σ,
|M | is the (n − 1)-dimensional Hausdorff measure of Σ. In general, |M | is the total variation of
the measure M .
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corrected infinite product of terms of the form

(

z − a

|z − a|

)±1

.13

In dimension n ≥ 3, points are replaced by smooth oriented (n− 2)-manifolds, say
Σj , j ≥ 1. In this case, one could interpret u as a corrected infinite product of

terms that, near a point x0 ∈ Σj , are of the form
(Φ1(x),Φ2(x))

|(Φ1(x),Φ2(x))|
.

Here, Φ is a local diffeomorphism from a neighborhood of x0 in R
n to a neighbor-

hood of the origin in R
n and Φ flattens, locally around x0, Σj to {(0, 0)} × R

n−2.

The proofs of Theorems 3.8 and 3.3 have the following pleasant byproduct.

Theorem 4.2. Assume that 1 < q < 2. Then there is a map

Eq ∋ T
Φ7→ u ∈W q,1(Sn; S1)/S1

such that

(1) T (Φ(T )) = T , ∀ T ∈ Eq;
(2) Φ is continuous;
(3) Φ(T + S) = Φ(T )Φ(S), ∀ S, T ∈ Eq.

Here, W q,1(Sn; S1)/S1 is W q,1(Sn; S1) modulo constants.

Sketch of proof. If F = F (T ) is ”the”14 (n − 2)-current that solves ∆F = T , then
the map T 7→ F is linear. The map u = Φ(T ) solves u1du2 − u2du1 = F . It is
easy to see that, up to a multiplicative constant, this equation has at most one
solution.15 This implies that Φ(T + S) = Φ(T )Φ(S). Continuity of Φ follows from
the continuity of T 7→ F , which is part of the proof of Theorem 3.8. �

The Gagliardo-Nirenberg inequalities imply that, given 1 < q < 2, the map Φ
constructed in Theorem 4.2 is continuous from Eq into W s,p(Sn; S1) for each s, p
such that sp = q. In addition, Φ(T ) does not depend on q, but only on T . A variant
of Open Problem 4 which would allow the extension of this result to q = 1 is

Open Problem 5. Is there a map

E1 ∋ T
Φ7→ u ∈

⋂

1≤p<∞

W 1/p,p(Sn; S1)/S1

such that

(1) T (Φ(T )) = T , ∀ T ∈ E1;
(2) Φ is continuous from E1 into W 1/p,p(Sn; S1)/S1, ∀ 1 ≤ p <∞;
(3) Φ(T + S) = Φ(T )Φ(S), ∀ S, T ∈ E1?

Here, we consider on E1 the distance

d(T1, T2) = inf{|M | ; ∂M = T2 − T1}.
In connection to Open Problem 5, what is known to be true is the following very
partial result

13The need to correct the factors is similar to the one encountered in the construction of
a holomorphic function f with a given sequence of zeroes {zn}. The answer is not f(z) =

(z − z1)(z − z2) . . .; each factor z − zj has to be corrected in order to make the product converge.

14When n = 2, uniqueness requires a normalization condition, e. g.

Z

S2
F = 0.

15In W 1,1.
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Theorem 4.3. [11] There is a map Φ : E1 →
⋂

1≤p<∞

W 1/p,p(Sn; S1)/S1 such that

T (Φ(T )) = T for each T ∈ E1.

5. Lifting for maps without singularities

We start this section by reducing the problem of the description of arbitrary maps
in W s,p(Sn; S1) to the one of the description of maps in the closure of C∞(Sn; S1)
for the W s,p-norm.

Assume first that (s, p) is in the region A described in Section 1. Then maps in
W s,p(Sn; S1) have no essential singularities.

Theorem 5.1. [14] Let 0 < s < 1, 1 ≤ p < ∞ be such that 2 ≤ sp < n. Then
C∞(Sn; S1) is dense in W s,p(Sn; S1).

We next turn to the regions B and C. The following result is easily proved.

Lemma 5.1. Let 1 ≤ sp < 2 and let u, v ∈ W s,p(Sn; S1). Then T (uv) = T (u) +
T (v) and T (uv) = T (u) − T (v). 16

Let now, for u ∈ W s,p(Sn; S1), v ∈ W sp,1(Sn; S1) ∩W s,p(Sn; S1) be such that

T (v) = T (u).17 Lemma 5.1 and Theorem 2.4 imply that w := u/v ∈ C∞(Sn; S1)
W s,p

.
Thus describing maps in W s,p(Sn; S1) when (s, p) is in either of the regions A or

B or C amounts to describing a map in C∞(Sn; S1)
W s,p

. This is achieved by the
following result, whose first part is Theorem 1.3.

Theorem 5.2. [18], [7], [11], [6], [10], [22], [20] Let u ∈ C∞(Sn; S1)
W s,p

.

(1) Assume that (s, p) is in the region A, i. e., 0 < s < 1, 2 ≤ sp < n. Then
one may write u = eıϕ for some real ϕ ∈W s,p +W 1,sp.
The converse is true, i. e., if ϕ ∈ W s,p +W 1,sp, then u := eıϕ belongs to

C∞(Sn; S1)
W s,p

.
(2) Assume that (s, p) is in the region C, i. e., s ≥ 1, 1 ≤ sp < 2. Then one

may write u = eıϕ for some real ϕ ∈W s,p ∩W 1,sp.
The converse is true, i. e., if ϕ ∈ W s,p ∩W 1,sp, then u := eıϕ belongs to

C∞(Sn; S1)
W s,p

.
(3) Assume that (s, p) is in the region B, i. e., 0 < s < 1, 1 ≤ sp < 2. Then

one may write u = eıϕ for some real ϕ ∈W s,p +W 1,sp.
When 1 < sp < 2, the converse is true, i. e., if ϕ ∈ W s,p + W 1,sp, then

u := eıϕ belongs to C∞(Sn; S1)
W s,p

.
When sp = 1, the converse is wrong, i. e. there is some ϕ ∈ W s,p +W 1,1

such that u := eıϕ does not belong to C∞(Sn; S1)
W s,p

.18

Sketch of the proof. Regularity of u from the one of ϕ is a consequence of regu-
larity results for superposition operators [13] and Gagliardo-Nirenberg inequalities.
More delicate is existence of ϕ given u. Proof of existence is rather simple when

16This is clear when u, v ∈ R. The general case follows by density+continuity.
17Such v exists, by Theorems 3.8 and 4.3.
18Actually, such u need not even belong to W s,p(Sn; S1).
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(s, p) ∈ C. Assume that ϕ does exist. Since maps we consider are at least W 1,1,
we have

u = eıϕ =⇒ du = ıeıϕdϕ =⇒ dϕ = u1du2 − u2du1 := X.

The idea is to solve the equation dϕ = X. Using the fact that u ∈ C∞(Sn; S1)
W s,p

,
one may prove that the vector field X is closed. A Poincaré type lemma for dis-
tributions implies existence of ϕ. Regularity of ϕ follows from standard regularity
results on products.
More delicate are the cases where (s, p) is in A or B. In these cases, we start
with a smooth map u ∈ C∞(Sn; S1). For such a map, we explicitely split its phase
into a W s,p-part and a W 1,sp-part, each one satisfying appropriate estimates. By
a rather straightforward limiting procedure, these estimates transfer to a general

map u ∈ C∞(Sn; S1)
W s,p

. The first phase decomposition of this kind appears in [6]
and concerns H1/2-maps. The general decomposition in [20] is inspired by the one
in [6]. For simplicity, we present it for maps defined in R

n rather than S
n. Assume

that u : R
n → S

1 is constant at infinity19, e. g. we assume that u − 1 ∈ W s,p.
We let v be any reasonable extension of u to R

n × [0,∞). Typically, we could let
v(x, t) = u ∗ ρt(x), where ρ is a nice mollifier. Assume first that u − 1 is small in
absolute value. Then v is close to 1, so that we can project v onto S

1 and obtain a
map as smooth as v. We let w := v/|v| : R

n × [0,∞) → S
1 be this projection. We

may then write w = eıψ with smooth ψ. Since w is close to 1 at infinity, we may
pick ψ close to 1 at infinity. Then ϕ(x) := ψ(x, 0) is a phase of u and, assuming
that the integrals in the calculation below converge, we have

(5.1)

ϕ(x) = − ψ(x, t)

∣

∣

∣

∣

t=∞

t=0

= −
∫ ∞

0

∂ψ

∂t
(x, t) dt

= −
∫ ∞

0

(

w1
∂w2

∂t
− w2

∂w1

∂t

)

(x, t) dt.

If u− 1 is not assumed to be small anymore, we can still consider the last integral
in (5.1), but it need not give ϕ anymore.

The splitting of the phase ϕ of an arbitrary smooth map u is inspired by the
above remark. More specifically, we let u and v as above. We define w as a sort of

projection of v onto S
1: we let Π : R

2 → R
2 be a smooth map such that Π(z) =

z

|z|
when |z| ≥ 1

2
and we set w := Π(v). This w coincides with the previous one when

u is close to 1. We set

(5.2) ϕ1(x) := −
∫ ∞

0

(

w1
∂w2

∂t
− w2

∂w1

∂t

)

(x, t) dt, ϕ2 := ϕ− ϕ1.

With some work, one may estimate ϕ1 in W s,p and ϕ2 in W 1,sp provided that
0 < s < 1.20 More specifically, we have

(5.3) |ϕ1|W s,p ≤ C|u|W s,p , ‖dϕ2‖spLsp ≤ C|u|pW s,p

provided 0 < s < 1. These estimates extend to maps u in C∞(Sn; S1)
W s,p

. �

19This assumption is the natural substitute for ”u is compactly supported”.
20This covers the case (s, p) ∈ A ∪ B.
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6. Description of W s,p(Sn; S1)

We may now put together the puzzle.
Recall that, for 1 < q < 2, we set21

Eq :=







k
∑

j=1

dj

∫

Σj

; k ∈ N, dj ∈ Z,Σ1, . . . ,Σk boundaryless oriented (n− 2) − submanifolds of Sn







(W 1,q′ )∗

,

while for q = 1 we defined

E1 := {∂M ; M is a rectifiable (n− 1) − current}.
Recall also the existence of a map Φ : Eq →

⋂

1≤p<∞

W q/p,p(Sn; S1)/S1 such that

T (Φ(T )) = T , ∀ T ∈ Eq, where T is the map ”u 7→ Sing u” rigourously defined via
Theorem 2.3.

Using these objects, we reach the following description of W s,p(Sn; S1).22

Theorem 6.1. Assume that n ≥ 2, s > 0, 1 ≤ p <∞ and set

Xs,p := {u : S
n → S

1 ; u ∈W s,p}.
(1) When sp < 1 or sp ≥ n, we have

Xs,p = {eıϕ ; ϕ ∈W s,p}.
(2) When s ≥ 1 and 2 ≤ sp < n, we have

Xs,p = {eıϕ ; ϕ ∈W s,p ∩W 1,sp}.
(3) When n ≥ 3, 0 < s < 1 and 2 ≤ sp < n, we have

Xs,p = {eıϕ ; ϕ ∈W s,p +W 1,sp}.
(4) When s ≥ 1 and 1 ≤ sp < 2, we have

Xs,p ≈ Esp × (W s,p ∩W 1,sp),

in the following sense:
• For u ∈ W s,p(Sn; S1), let v := Φ(T (u)).23 Then u/v writes as eıϕ

for some ϕ ∈ W s,p ∩ W 1,sp. Thus, we may associate to each u ∈
W s,p(Sn; S1) the couple (T (u), ϕ) ∈ Esp × (W s,p ∩W 1,sp).

• Conversely, let (T, ϕ) ∈ Esp × (W s,p ∩W 1,sp). Then u := Φ(T )eıϕ ∈
W s,p(Sn; S1).24

(5) When 0 < s < 1 and 1 < sp < 2, we have

Xs,p ≈ Esp × (W s,p +W 1,sp),

in the following sense:

21When n = 2 and 1 < q < 2, the condition

k
X

j=1

dj = 0 has to be added to the definition of Eq .

22Theorem 6.1 is nothing else but the sum of the results in the previous sections.
23This slightly lacks of rigour, since Φ(T (u)) is a class of maps. Rigourously, one should con-

sider u/v and ϕ as classes of maps modulo constants. Alternatively, one may pick a representative
v ∈ Φ(T (u)) and work with the genuine maps u/v and ϕ.

24Here, it is convenient to replace Φ(T ) by one of its representatives. An even more convenient
way to write formulae consists in working in the quotient spaces W s,p(Sn; S1)/S1 and (W s,p ∩
W 1,sp)/R.
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• For u ∈ W s,p(Sn; S1), let v := Φ(T (u)). Then u/v writes as eıϕ

for some ϕ ∈ W s,p + W 1,sp. Thus, we may associate to each u ∈
W s,p(Sn; S1) the couple (T (u), ϕ) ∈ Esp × (W s,p +W 1,sp).

• Conversely, let (T, ϕ) ∈ Esp × (W s,p +W 1,sp). Then u := Φ(T )eıϕ ∈
W s,p(Sn; S1).

(6) When 0 < s < 1 and sp = 1, we may associate to each u ∈ W s,p(Sn; S1)
a couple (T, ϕ) ∈ E1 × (W s,p + W 1,1), in the following sense: for u ∈
W s,p(Sn; S1), let v := Φ(T (u)). Then u/v writes as eıϕ for some ϕ ∈
W s,p +W 1,1.

(7) The converse to item (6) is wrong, i. e., if (T, ϕ) ∈ E1 × (W s,p + W 1,1),
then u := Φ(T )eıϕ need not belong to W s,p(Sn; S1).

(8) There is an ”exact” description of W s,p(Sn; S1) when 0 < s < 1, sp = 1,
which writes as follows: set, for 1 < p <∞,

Y p := W 1/p,p + {ϕ ∈W 1,1 ; eıϕ ∈W 1/p,p}.

Then

Xs,p ≈ E1 × Y p,

in the following sense:
• For u ∈ W s,p(Sn; S1), let v := Φ(T (u)). Then u/v writes as eıϕ for

some ϕ ∈ Y p. Thus, we may associate to each u ∈ W s,p(Sn; S1) the
couple (T (u), ϕ) ∈ E1 × Y p.

• Conversely, let (T, ϕ) ∈ E1 × Y p. Then u := Φ(T )eıϕ ∈W s,p(Sn; S1).

The drawback of item (8) is that the there is no explicit description of Y p. Only
some straightforward properties of Y p are known.

Lemma 6.1. [15] For 1 < p <∞ we have:

(1) Y p = {ϕ ∈W 1/p,p +W 1,1 ; eıϕ ∈ C∞(Sn; S1)
W 1/p,p

};
(2) ϕ,ψ ∈ Y p =⇒ ϕ± ψ ∈ Y p.

We will return later to the interest of the following

Open Problem 6. (1) Is there a description of Y p in terms of ”usual” func-
tion spaces?

(2) Is it true that Y p is a vector space?

Remark 6.1. The statement of Theorem 6.1, especially items (4) and (5), is indeed
the rigourous form of the ”Theorem”. To see this, consider, e. g., the item (4). For
simplicity, we let n = 2 and replace S

2 by D. By Remark 4.2, the map v in (4) is

a corrected infinite product of maps of the form

(

z − a

|z − a|

)±1

. On the other hand,

the map w in (4) is of the form w = fg, where f := eıψ, g := eıϕ, with ψ ∈ W 1,sp

and ϕ ∈W s,p. Thus we may write each u ∈W s,p(Sn; S1) as u = v f g, where v is (a

corrected infinite) product of terms of the form

(

z − a

|z − a|

)±1

, f has a W 1,sp-phase

and g does lift in W s,p.
Similar considerations apply to the item (5).



S
1-VALUED SOBOLEV MAPS 17

7. An application: the square root problem

In [3], the authors addressed (and partially solved) the following problem: given
n ≥ 2, s > 0 and 1 ≤ p <∞, decide whether each map u ∈ Xs,p has a square root
v ∈ Xs,p. This problem is completely solved (via Theorem 6.1) in [15]. Following
[15], we discuss here a sharper version of this question, which is not completely
solved:

(Qs,p,u) Given n ≥ 2, s > 0, 1 ≤ p <∞ and u ∈ Xs,p, is there some v ∈ Xs,p such that v2 = u?

In order to introduce our result, let us consider some examples. Let first u1 : D →
S

1, u1(z) =
z

|z| . It is easy to see that u1 ∈ W 1,1. However, u1 has no square root

v ∈W 1,1. Indeed, argue by contradiction: if such v exists then, then on a ”generic”
circle C(0, r) we would have v ∈ C0(C(0, r)), so that, for such r, it holds25

1 = deg (u1, C(0, r)) = deg (v2, C(0, r)) = 2deg (v, C(0, r)),

a contradiction.
Similarly, a map with a singular point of odd winding number has no square root

in W 1,1. On the other hand, the map u2 : D → S
1, u2(z) =

z2

|z|2 , whose singularity

has an even multiplicity, has the obvious square root z 7→ z

|z| .
The difference between these two examples is that T (u1) = δ0, which is an ”odd

multiplicity” singular set, while T (u) = 2δ0, which is an ”even multiplicity” singular
set.

The partial answer to Qs,p,u is given by the following

Theorem 7.1. (1) When sp < 1 or sp ≥ 2, the answer to Qs,p,u is yes.
(2) When 1 < sp < 2 or s = p = 1, the answer to Qs,p,u is yes if and only if

”the singular set of u is even”, i. e., if and only if T (u) ∈ 2Esp.
(3) When 0 < s < 1 and sp = 1, the answer to Qs,p,u is no if ”the singular set

of u is odd”, i. e., if T (u) 6∈ 2Esp.

The missing result is the converse to item (3); if this converse were true, this
would imply that item (2) still holds in the limiting case sp = 1.

Proof. When sp < 1 or sp ≥ 2, the conclusion is immediate, via Theorem 6.1.
We assume that 1 ≤ sp < 2. By Lemma 5.1, we have T (uv) = T (u) + T (v),
∀ u, v ∈ Xs,p. This implies at once that, if the answer to Qs,p,u is yes, then
T (u) ∈ 2Esp.
Conversely, we assume that T (u) ∈ 2Esp. By Theorem 6.1, there is some w ∈ Xs,p

such that T (w) =
1

2
T (u). Set z := u/w2. Then T (z) = 0 (by (5.1)). By Theorem

6.1, items (4) to (6), we may write z = eıϕ, with

(1) ϕ ∈W s,p ∩W 1,sp when s ≥ 1;
(2) ϕ ∈W s,p +W 1,sp when 0 < s < 1.

We set v := w eıϕ/2; this v satisfies v2 = u. When 1 < sp < 2 or s = p = 1,
Theorem 6.1, items (4) to (5) imply that v ∈ Xs,p. �

25In the formula below, ”deg” is the winding number.
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Clearly, a positive answer to item (2) in Open Problem 6 would imply that, in
the case sp = 1, a positive answer to Qs,p,u is equivalent to T (u) ∈ 2E1. Thus a
weaker form of Open Problem 6 is

Open Problem 7. Assume that 0 < s < 1 and sp = 1. Let u ∈ Xs,p such that
T (u) ∈ 2E1. Is it true that there is some v ∈ Xs,p such that v2 = u?

Equivalently, is it true that ϕ ∈ Y p =⇒ ϕ

2
∈ Y p?

Equivalently, is it true that for each u ∈ C∞(Sn; S1)
W s,p

there is some v ∈ Xs,p

such that v2 = u?
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