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Résumé: Cet article analyse le cœur de jeux combinés, obtenus en additionnant deux jeux sous forme 
de fonction caractéristique. Nous montrons que l’ensemble des jeux à utilité transférable peut 
être partitionné en classes d’équivalences, de telle sorte que le cœur du jeu combiné est égal à 
la somme des cœurs des jeux composants si et seulement si les deux jeux composants 
appartiennent à la même classe d’équivalence. Par ailleurs, pour des jeux non balancés, la 
relation binaire associant deux jeux non balancés dont la combinaison a un cœur vide est non 
transitive. Toutefois, nous identifions une classe de jeux non balancés telles que, chaque jeu, 
combiné avec tout autre jeu non balancé, a un cœur vide. 

 
Abstract: This paper studies the core of combined games, obtained by summing two coalitional games. 

It is shown that the set of balanced transferable utility games can be partitioned into 
equivalence classes of component games whose core is equal to the core of the combined 
game. On the other hand, for non balanced games, the binary relation associating two 
component games whose combination has an empty core is not transitive. However, we 
identify a class of non balanced games which, combined with any other non balanced game, 
has an empty core. 
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1 Introduction

The broad subject of the paper is the study of bargaining and cooperation when
multiple issues are at stake. We have two complementary objectives in mind:

1. Identify conditions under which negotiating over different issues separately is
equivalent to negotiating over these issues simultaneously;

2. Identify situations in which combining issues reduce conflict in bargaining.

We use games in coalitional form, a classical model to study cooperation, to tackle
these two questions. The coalitional function specifies for each coalition the surplus
to be shared should its members cooperate. The simplicity of this reduced-form
approach, making no direct reference to the underlying social or economic alterna-
tives, comes at a cost. Indeed, relating the cooperative opportunities associated to
different issues to the cooperative opportunities of the combined issues is possible in
this framework only if the different issues are independent (e.g. bargaining over the
allocation of different goods with quasi-linear preferences that are additively sepa-
rable). In such cases, the coalitional function associated to the combined issues is
simply the sum of the coalitional functions associated to each issue taken separately.
Spillovers are certainly an important characteristic of multi-issue bargaining, and
further analysis of non-welfarist models is needed to understand their implication.
We argue in the present paper that a good understanding of multi-issue bargaining
is important even in the absence of such spillovers.

Multi-issue bargaining was of central importance to Professor Shapley when
studying values for games in coalitional form, as illustrated by his motivation for
the additivity axiom: “The third axiom (“law of aggregation”) states that when two
independent games are combined, their values must be added player by player” (Shap-
ley, 1953, page 309).

Put differently, additivity implies that the outcome of multi-issue negotiations
does not depend on the agenda chosen by the negotiators. Whether issues are dis-
cussed separately or ”packaged” in different ways does not affect the result of the
negotiation. In Professor Shapley’s view, this agenda independence is a natural
requirement to impose on a solution concept.

However, the Shapley value is the only solution concept for which additivity is
posited as an axiom. Other solution concepts, whether they are based on alternative
axiomatizations, like the Nash bargaining solution, or more positive considerations,
like the core, do not satisfy this property of agenda independence. In this paper, we
focus attention on the core primarily because of its importance in economic theory.
Other solution concepts are briefly discussed in Section 5.

It is well known that the core is superadditive (see for example, Peleg’s (1986)
axiomatization of the core), so that the core of the combination of two games is always
larger than the sum of the core of the two components. Intuitively, by combining

1



two negotiation processes, and forcing players to make coalitional objections on the
issues simultaneously, it is easier to sustain an imputation than when players can
make separate objections on the two issues. Hence, the specific question we tackle in
this paper is the following: For which pairs of games is the core of the combination
of the two games exactly equal to the sum of the core of the component games? This
offers a formal statement to the first objective listed at the beginning of the paper.

Our main result (Proposition 1) shows that the core of the sum of two games
v and w is equal to the sum of the cores of v and w if and only if the extreme
points of the cores of v and w are defined by the same set of coalitional constraints
(see Proposition 1). Because the latter property defines an equivalence relation
among games, we conclude that the set of all balanced transferable utility games can
be partitioned into equivalence classes such that the core of the combination of two
games is equal to the sum of the cores of the components if and only if the two games
belong to the same class. One of these equivalence classes (where the extreme points
are determined by any increasing sequence of coalitions) is the set of convex games
introduced by Shapley (1971). Hence, the combination of two convex games does
not result in an expansion of the set of core allocations. By contrast, whenever
two games v and w are taken from two different equivalence classes, the core of the
combined game is strictly greater than the sum of the core of its components. When
v and w are close, a simple continuity argument shows that the difference between
the core of v + w and the sum of the cores of v and w is small. In other cases,
the difference can be extremely large, as the dimension of the core of v + w may
exceed the dimension of the sum of the cores (for example, even when the cores of v
and w are singletons, the core of v + w may be a set of full dimension in the set of
imputations.)

The core of two games with an empty core may be non-empty (Example 1). In
such cases, bargaining over each component would lead to an impasse or to partial
cooperation, but efficiency can be recovered (on both components) by combining the
issues. This illustrates the relevance of the second objective introduced in the first
paragraph. Formally, we would like to characterize pairs of games with an empty
core whose sum has a non-empty core. Unfortunately, our characterization of the
set of games for which the core is additive does not carry over to games with empty
cores. The binary relation associating two games v and w whose combination has
an empty core is not transitive. This is easily understood: for two games v and w to
be such that the combined game v+w has an empty core, it is sufficient that one of
the balanced1 collections of coalitions has a worth exceeding the worth of the grand
coalition in both games v and w. Now consider a triple of games v, w, z. The worth
of the balanced collection C may exceed the worth of the grand coalition in both v
and w and the worth of the balanced collection D may exceed the worth of the grand
coalition in both w and z. However, v and z may very well not share any balanced

1As in Bondareva (1963) and Shapley (1967) - the reader is reminded of the formal definition in
Section 2.
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collection whose worth exceeds the grand coalition, and be such that the core of v+z
is nonempty. Put differently, for a game to be unbalanced, one only requires one of
the balanced collection to have a greater worth than the grand coalition, so that the
set of games with empty cores is not defined by a set of linear inequalities, and is
in fact typically not convex. In spite of this, we can identify a convex subset of the
class of unbalanced games which has the following property: for any game in that
class, the combination of this game with any other game with empty core also has
an empty core (Proposition 2). Intuitively, this subset contains those games which
are hardest to “balance” with other games, and may create the more difficulties in
negotiations.

To the best of our knowledge, the only previous studies of the additivity of the
core in the cooperative game theoretic literature are due to Tijs and Branzei (2002).
They identify three subclasses of games on which the core is additive (including the
class of convex games). Our results complement and extend their analysis by show-
ing that in fact the entire set of balanced games can be partitioned into subclasses on
which the core correspondence is additive. The literature on noncooperative games
has paid more attention to simultaneous, multi-issue bargaining. In a two-player set-
ting, Fershtman (1990) and Busch and Hortsmann (1997) extend Rubinstein (1982)’s
alternating offers game to a multi-issue setting, where players bargain over each issue
in a predefined sequence. They show that the equilibria of this multi-issue bargaining
differ considerably from the single-issue model. In later contributions to this litera-
ture, Bac and Raff (1996), Inderst (2000) and In and Serrano (2004) allow players
to endogenously choose on which issue to bargain, and show that players have an
incentive to manipulate strategically the agenda. Issue linkage has also been studied
in noncooperative games representing international negotiations across countries. It
has long been argued that combining negotiations over different dimensions (trade,
protection of the environment) may have beneficial effects (see for example Carraro
and Siniscalco, 1994). Conconi and Perroni (2002) propose a model of issue linkage
and evaluate this argument using a parameterized model of international trade and
environmental negotiations. Issue linkage also appears implicitly in the literature on
mergers in Industrial Organization (e.g. Perry and Porter (1985) and Farrell and
Shapiro (1990)). In order to be profitable, a merger must involve two dimensions –
both a cost and a market dimensions – and result in cost synergies as well as market
concentration.

The rest of the paper is organized as follows. In the next Section, we recall the
standard definitions of coalitional games and the core. In Section 3, we analyze the
combination of games with nonempty cores. We first provide intuition by analyzing
symmetric games with three players, then provide our general result on the parti-
tioning of the set of balanced games. We illustrate this result by computing exactly
this partition in four-player symmetric games. Section 4 contains our results for
games with empty cores. We provide an example to show that the set cannot be
partitioned, and discuss how four-player games with empty cores can or cannot be
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combined to obtain a nonempty core. We finally identify the class of noncompens-
able games, which, combined with any other game with an empty core, still retain an
empty core. The additivity of other cooperative solution concepts is briefly discussed
in Section 5. Section 6 contains the proof, and in particular a key lemma on the
addition of convex polyhedra defined by systems of linear inequalities.

2 Preliminaries

Let N be a set of players. A cooperative game is described by a coalitional function v
which assigns to every nonempty subset S of N a real number, v(S), called the worth
of the coalition. Game will be assumed to be superadditive: v(S ∪T ) ≥ v(S) + v(T ),
for any two disjoint coalitions S and T . We denote the set of all such n-player games
by Γ(n). A game is convex if the players’ marginal contributions are non decreasing:
v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ), for each pair (S, T ) of coalitions such that
S ⊆ T .

An imputation is a vector x ∈ <N that is feasible, efficient, and individually
rational:

∑
i∈N xi = v(N) and xi ≥ v({i}), for each i ∈ N . The core of a cooperative

game v is the set of payoff vectors x ∈ <N that are feasible when all the players
cooperate, and which cannot be improved upon by any coalition:

∑
i∈N xi ≤ v(N)

and
∑

i∈S xi ≥ v(S) for each coalition S. Let A be the (2n− 1)×n matrix encoding
coalitional membership: AS,i = 1 if i ∈ S and AS,i = 0 if i 6∈ S, for each coalition S
and each player i. Then,

C(v) = {x ∈ <N |
∑
i∈N

xi = v(N), Ax ≥ v}.

This rewriting highlights the fact that the core is a bounded convex polyhedron
defined by a system of linear inequalities. As any such set, the core is characterized by
its set of extreme points – points which cannot be obtained as convex combinations
of other points in the set. Equivalently, a payoff vector x is an extreme point of the
core of v if there exists a collection (Sk)nk=1 of coalitions such that

∑
i∈Sk

xi = v(Sk),
for each k, and these n equations are linearly independent.

The system of linear inequalities defining the core may be inconsistent, in which
case the core is empty. Bondareva (1963) and Shapley (1967) proposed a charac-
terization of games with nonempty core based on balanced collections of coalitions.
A collection (Sk)Kk=1 of coalitions is balanced if there exists a collection (δk)Kk=1 of
real numbers between 0 and 1 (called balancing weigts) such that

∑
Sk|i∈Sk

δk = 1,
for each i ∈ N . A game v is balanced if and only if

∑
k δkv(Sk) ≤ v(N), for each

balanced collection (Sk)Kk=1 of coalitions and each collection (δk)Kk=1 of balancing
weights. The core of a game v is nonempty if and only if the game v is balanced.
The set of all balanced superadditive n-player games is denoted β(n).
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3 Combining games with a nonempty core

3.1 Three-player symmetric games

In this Section, we suppose that the two component games v and w are balanced. In
order to gain intuition, we first consider three-player symmetric normalized games.
For these games v({i}) = 0, v(N) = 1 and v(S) = v2 ∈ (0, 1) for any coalition S
with two players. It is easy to see that the core of game v is empty if v2 >

2
3 , and

the game is convex if v2 ≤ 1
2 . Figures 1a and 1b illustrate the shape of the core of

three-player symmetric games, when v2 ≤ 1
2 and 1

2 ≤ v2 ≤ 2
3 .
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Figure 1 Core of symmetric three-player games

When the game is balanced but not convex, the core has the shape of a triangle
in the simplex, and has three extreme points given by (2v2 − 1, 1− v2, 1− v2) (and
the permutations). When the game is convex, the core has the shape of an hexagon,
characterized by six extreme points given by (0, v2, 1− v2) (and the permutations).
Clearly, by summing up two balanced, nonconvex games v and w, one obtains a new
balanced nonconvex game v + w. This combined game again has a core shaped like
a triangle, and all the extreme points of C(v + w) are be decomposed as sums of
extreme points of C(v) and C(w). Similarly, by summing up two convex games v and
w, one obtains a new convex game v+w. The core of v+w is shaped like an hexagon
and all the extreme points of v+w can be decomposed as sums of extreme points of
C(v) and C(w). However, if one combines a convex game with a nonconvex balanced
game, the core of the combined game cannot be equal to the sum of the cores of the
games. To see this, let us combine a nonconvex game – v2 ∈ (1

2 ,
2
3 ] – with a strictly

convex game – w2 ∈ [0, 1
2). Observe that, for any point in C(v), xi > 2v2−1. Hence,

for any points in C(v) + C(w), xi > 2v2 − 1. However, the core of v + w is either
shaped as a triangle or as an hexagon. In the latter case, it contains extreme points
on the boundary, so that C(v+w) is a strict superset of C(v) +C(w). In the former
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case, the core of v + w contains an extreme point for which a player’s payoff equals
xi = 2(v2 + w2) − 2 = (2v2 − 1) + (2w2 − 1) < 2v2 − 1, where the last inequality is
obtained because w2 < 1/2. Yet that player’s minimal payoff is 2v2 − 1 in C(v) and
0 in C(w). Hence, again C(v + w) is a strict superset of C(v) + C(w).

3.2 A general result

The study of three-player symmetric games thus shows that the set of balanced games
can be partitioned into two subclasses on the basis of the extreme points of the core.
The core of the combined game is equal to the sum of the cores of the component
games if and only if the two component games belong to the same subclass. Our
main result shows that this intuition can be generalized to any n-player transferable
utility game. We will prove this statement as a corollary to a general result on convex
polyhedra.

In the lemma from the Appendix, we define an equivalence relation between
two bounded convex polyhedra P (A, b) = {x ∈ <N |Ax ≥ b} and P (A, b′) = {x ∈
<N |Ax ≥ b} if the extreme points of the two polyhedra are defined by the same
constraints. We first consider the generic case where every extreme points is charac-
terized by exactly N equalities. In that case, when P (A, b) +P (A, b′) = P (A, b+ b′),
any extreme point of P (A, b + b′) can be decomposed as the sum of two elements
of P (A, b) and P (A, b′). These vectors have to be extreme points of the polyhedra
P (A, b) and P (A, b′), and furthermore neither P (A, b) nor P (A, b′) can possess addi-
tional extreme points. This shows that, whenever P (A, b) + P (A, b′) = P (A, b+ b′),
the extreme points of P (A, b) and P (A, b′) must be defined by the same constraints.
To prove the converse statement, we need to show that, when extreme points are
defined by the same constraints, P (A, b + b′) ⊂ P (A, b) + P (A, b′). This is proven
by induction on the number of players in the games. For n = 1, the polyhedra are
subsets of the line, and the inclusion is verified. For higher values of n, we pick an
extreme point of P (A, b + b′) and show that it can be decomposed as the sum of
two vectors in P (A, b) and P (A, b′). This is done by isolating one of the players, i,
redefining an n− 1 dimensional polyhedron by using one of the binding constraints
to define xi as a function of x−i and applying the induction hypothesis to the lower
dimensional polyhedron.

In the nongeneric case where some extreme points of the polyhedron P (A, b) or
P (A, b′) satisfy strictly more than N equalities, the argument must be adapted. In
that case, P (A, b)+P (A, b′) = P (A, b+b′) if and only if one can construct sequences
of generic polyhedra bk and b′k converging to b and b′ such that bk and b′k are equiv-
alent for all k. Applying this lemma to the core of cooperative games, we obtain the
following result.

Proposition 1 Consider the equivalence relation R on β(n), where vRw if and
only if the extreme points of C(v) and C(w) are defined by the same constraints.
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Then C(v) + C(w) = C(v + w) if and only if there exist two sequences of games vk

and wk converging to v and w such that, for all k, the games vk and wk belong to
the same equivalence class in the quotient set β(n)/R.

3.3 Four-player symmetric games

We illustrate the partition of the set of balanced games into equivalence classes by
considering normalized four-player symmetric games – N = {1, 2, 3, 4}, v(N) = 1
and v({i}) = 0, for each i ∈ N . Let v2 denote the value of two-player coalitions and
v3 the value of three-player coalitions. Superadditivity requires that v2 ∈ [0, 1/2]
and v3 ∈ [v2, 1]. Figure 2 depicts the subsets of games where the extreme points of
the cores are defined by the same constraints. The computations underlying Figure
2 are given in Section 6.2.

-
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Figure 2 Equivalence classes of four-player symmetric games

The set of four-player symmetric games can be partitioned into eight regions,
labeled from A to H. In each region, the extreme points of the core are characterized
by the same constraints. Three regions stand out. Region A corresponds to the class
of convex games. The work of Shapley (1971) and Ichiishi (1981) imply that a game
is convex if and only if the extreme points of the core coincide with the vectors of
marginal contribution. Convex games form an equivalence class of the relation R, so
that the core of the sum of any two convex games is equal to the sum of the cores.
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(See also Tijs and Branzei (2002) on that point.) Region G corresponds to games
where the extreme points of the core are characterized by constraints involving only
three-player coalitions, or the dual imputation set. This is the class of games Kd

introduced by Driessen and Tijs (1983) – and for which Tijs and Branzei (2002) also
note that the core is additive. Finally, region H (for which v3 >

3
4) corresponds to

games with empty cores.
Notice that any game in the interior of a region is a generic game, where ex-

treme points are defined by exactly N equalities. Games at the boundary between
two regions are nongeneric, and can be approached by sequences of generic games
belonging to the interior of the games in the two regions. Hence, combining a game
on the boundary with a game belonging to any of the two regions does not increase
the size of the set of stable agreements.

While the core correspondence is additive inside each region of Figure 2, it is never
additive when we combine two games belonging to different regions. Notice however
that, generically, when the two component games are close, the difference between
the core of the combined game and the sum of the cores of the component games
cannot be too large. To see this, define the game v∨w which assigns to each coalition
S the worth max{v(S), w(S)}. Generically, when v and w are sufficiently close, the
game v∨w will belong to the same equivalence class as one of the component games.
Suppose without loss of generality that v∨wRv. Then, C(v∨w)+C(v) = C(v∨w+v).
Recall that, on the set of games balanced games β(n), the core correspondence is
continuous (See e.g. Peleg and Sudholter (2003), Theorem 9.2.4). Hence, when v and
w are close enough, the differences between C(v∨w)\C(w) and C(v∨w+v)\C(v+w)
cannot be too large, so that the difference C(v+w) \ (C(v) +C(w)) is bounded and
converges to zero when v converges to w.

However, Figure 2 also shows that there are special cases where the difference
between the core of the combined game and the sum of the cores of the component
games can be extremely large. In fact, it is possible to combine two component
games where the core collapses to a single point, and obtain a full dimensional core.
For example, pick two games v and w such that v2 = 1

2 and w3 = 3
4 . For each of these

games, the core is a single point (1
4 ,

1
4 ,

1
4 ,

1
4). However, the sum of the two games can

belong to any of the regions A,B,D,E,F or G, where the core is a full-dimensional
set.

4 Combining games with an empty core

4.1 Examples

We now consider the combination of unbalanced games. First, as the next exam-
ple shows, the combination of two games with empty cores may very well possess a
nonempty core. In this sense, it is worthwhile to combine games, or to link negotia-
tions which would otherwise result in an impasse.
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Example 1 Let n = 4. Let v(123) = 2
3 , v(S) = 1

2 if |S| = 2, 3 and 4 ∈ S, v(N) =
1, v(S) = 0 otherwise. Let w(S) = 0 if |S| < 3, w(S) = 4

5 if |S| = 3 and w(N) = 1.

In Example 1, game v has an empty core, because the worth of the grand coalition
is smaller than the sum of worths in the balanced collection C∞ = {{123}, {14}, {24}, {34}}.
Game w is unbalanced with respect to the collection C∈ = {{123}, {124}, {134}, {234}}.
However, it is easy to check that the imputation (1

2 ,
1
2 ,

1
2 ,

1
2) belongs to the core of

v + w.
Example 1 illustrates a crucial difference between the conditions characterizing

a nonempty core (the equations defining the extreme points of the core), and the
conditions guaranteeing emptiness of the core (the inequalities for balanced collec-
tions). Whereas a nonempty core is characterized by all the equations determining
extreme points, emptiness of the core is guaranteed as long as one of the balanced
collections has a worth greater than the grand coalition. As the next example shows,
this difference implies that the binary relation linking two unbalanced games whose
combination is also unbalanced may not be transitive.

Example 2 Let n = 5. Let v(S) = 0 if |S| < 4, v(S) = 5
6 if |S| = 4, v(N) = 1. Let

w(S) = 0 if |S| = 2, w(S) = 3
4 if |S| = 3, 4 and w(N) = 1. Let z(S) = 0 if |S| = 2,

z(S) = 3
4 if S = 3, z(S) = 5

6 if S = 4 and z(N) = 1.

In example 2, v is unbalanced because of the collection of coalitions of size 4, w
because of the collection of coalitions of size 3, and z because of both collections of
coalitions of size 4 and 3. Hence, the combined games v + z (respectively w + z )
is unbalanced, because the worth of the grand coalition is smaller than the sum of
worths of the balanced collection of coalitions of size 4 (respectively 3). However,
the core of the combined game v + w is nonempty, and contains for example the
symmetric allocation (2

5 ,
2
5 ,

2
5 ,

2
5 ,

2
5).

Put differently, the difficulty is that the set of games with empty cores (for
which only one of the balanced collections may pose problems) need not be convex,
whereas classes of games with nonempty cores whose extreme points satisfy the
same constraints are always convex. This is illustrated in Figure 3, which graphs
unbalanced symmetric games with 5 players, as a function of the values v3 and v4 of
the three and four player coalitions.
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Figure 3 Five-player symmetric games with empty cores

In region A, the core is empty because any imputation is blocked by a four-player
coalition; in region B the blocking coalitions are coalitions of size 3. In region C, both
coalitions of sizes 3 and 4 are blocking. From Figure 3, it is clear that combinations
of games of regions A and B may have nonempty cores. On the other hand, any
combination of symmetric games involving one component in region C has an empty
core.

4.2 Noncompensable games

Figure 3 suggests that there exist unbalanced games which, combined with any other
unbalanced game, produce an empty core. We will term these games noncompensable
games. Formally, a game v is noncompensable if, for any game w such that C(w) = ∅,
C(v+w) = ∅. Clearly, the class of noncompensable games contains those games for
which imputations are blocked by all proper minimal balanced collections.2

For example, if n = 3, the only proper minimal balanced collection is the collec-
tion C = {{1, 2}, {1, 3}, {2, 3}. Hence any game such that: v(12) + v(13) + v(23) >
2v(123) is unbalanced and noncompensable. If n = 4, the proper minimal bal-
anced collections are (up to a permutation) C = {{1, 2, 3}, {1, 4}, {2, 4}, {3, 4}}, C′ =
{{1, 2, 3}, {1, 2, 4}, {1, 3}, {1, 4}}, C′′ = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. Hence,
a symmetric four-player game is noncompensable if and only if 2v3 + 3v2 > 1 and
v3 >

3
4 . Notice in particular that this set is smaller than region H in Figure 2. In

fact, some four-player symmetric games (for which v3 >
3
4 but 2v3 + 3v2 ≤ 1) cannot

be compensated by another unbalanced symmetric game, but can be compensated
by nonsymmetric games (see Example 1).

2Recall that a balanced collection is minimal if any subcollection is unbalanced and proper if no
two sets in the collection are disjoint. It is easy to verify that these are the only balanced collections
where the inequality

∑
j δjv(Sj) ≤ v(N) needs to be checked.
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We now prove that the set of noncompensable games is exactly equal to the set
of games for which imputations are blocked by all minimal proper coalitions.

Proposition 2 A game v is noncompensable if and only if, for all proper minimal
balanced collections of coalitions C = {S1, ...Sj , ..., SJ},

∑
j δjv(Sj) ≥ v(N).

5 Additivity of other cooperative solution concepts

In this paper, we characterize the classes of cooperative games on which the core is
additive. In this concluding section, we briefly comment on the generalization of our
results to other cooperative solution concepts, and discuss the existing literature on
additivity axioms in cooperative game theory.

We first note that, whenever a solution is defined by a system of linear inequal-
ities, a direct application of the Lemma from Section 6.1 shows that the set of
cooperative games can be partitioned into equivalence classes where the solution is
additive. For example, Laussel and Le Breton (2001) analyze the Pareto frontier of
sets U(v) = {(u1, ..., un)|ui ≥ 0,

∑
i∈S ui ≤ v(N)− v(N \ S)} for a given cooperative

game v. From our analysis, it is clear that the convex polyhedron corresponding
to the sum of two games v and w is equal to the sum of the convex polyhedra,
U(v + w) = U(v) + U(w) if and only if the extreme points of U(v) and U(w) are
defined by the same coalitions.3 On the other hand, , the Lemma does not apply if
the solution concept is not a unique polyhedron but a finite union of polyhedra, like
the Mi

1 bargaining set (Davis and Maschler (1963), Maschler, 1966), or the kernel
(Davis and Maschler (1965) and Maschler and Peleg (1966)). Suppose for illustration
that a solution can be written as the union of two polyhedra: S(v) = A(v) ∪ B(v).
Even if we consider two games v and w with the same binding coalitions in the two
polyhedra A and B, so that A(v +w) = A(v) +A(w) and B(v +w) = B(v) + B(w),
there is no guarantee that S(v + w) = S(v) + S(w). In fact, it is easy to check that
(A(v + w) ∪ B(v + w)) ⊆ (A(v) ∪ B(v)) + (A(w) ∪ B(w)), with strict inclusion for
generic games.

We next consider solutions defined as unique points rather than convex polyhe-
dra. Of course, the Shapley value satisfies additivity. Peters (1985) and (1986) pro-
vides an axiomatic characterization of solutions to Nash’s bargaining problem which
satisfy additivity and variants of superadditivity. Charnes and Kortanek (1969)
and Kohlberg (1971) prove that the nucleolus is piecewise linear in the following
sense. For any imputation x, and any coalition S, compute the excess function
e(x, S) = v(S) − x(S), and order the coalitions, by decreasing values of the excess,
to obtain an array of coalitions b(x, v) = (b1(x, v), ..., b2n−1(x, v). Partition then the
set of coalitional games in such a way that v and w belong to the same equivalence
class if and only if, at the nucleolus of the two games, ν(v) and ν(w), the array of

3We are grateful to Hideo Konishi for pointing this reference to us.
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coalitions satisfy b(ν(v), v) = b(ν(w), w). Then, for any two v and w in the same
equivalence class, ν(v + w) = ν(v) + ν(w).

Finally, we would like to emphasize that, in our opinion, the study of the additiv-
ity of the core is only a first step in a research program on multi-issue cooperation.
In the future, we hope to extend the analysis by studying noncooperative models of
sequential coalitional bargaining on multiple issues.

6 Appendix

6.1 A useful lemma

For each positive integers M and N , let AM,N be the set of couples (A, b), where A
is an (MxN)-matrix and b is an N -vector such that P (A, b) = {x ∈ <N |Ax ≥ b}
is non-empty and bounded. For each extreme point of P (A, b), let Me(A, b) be the
set of binding constraints at e, i.e. Me(A, b) = {m ∈ {1, . . . ,M}|Ame = bm}. Two
vectors b and b′ are equivalent (given A), b ∼ b′, if there exists a bijection f between
the set of extreme points of P (A, b) and the set of extreme points of P (A, b′) such
that Me(A, b) = Mf(e)(A, b′), for each extreme point e of P (A, b).
Lemma 1 Let (A, b) and (A, b′) be two elements of AM,N , for some integers M and
N . The two following properties are equivalent:

1. P (A, b+ b′) = P (A, b) + P (A, b′).

2. There exist two sequences (bk)k∈N and (b′k)k∈N in <N such that (bk)k∈N con-
verges to b, (b′k)k∈N converges to b′, and bk ∼ b′k for each k ∈ N.

The proof requires another lemma.
Lemma 2 Let α be a strictly positive real number, and let (A, b) and (A, b′) be two
elements of AM,N , for some integers M and N . If P (A, b+ b′) = P (A, b) +P (A, b′),
then P (A,αb+ b′) = P (A,αb) + P (A, b′).
Proof of Lemma 2: It is always true that P (A,αb) +P (A, b′) ⊆ P (A,αb+ b′). So we
have to prove the other inclusion. We first assume that α > 1. Let x be an element
of P (A,αb + b′). Consider the correspondence F : P (A, b′) → 2P (A,b′) defined as
follows:

F (y′) = {z′ ∈ P (A, b′)|(∃z ∈ P (A, b)) : z + z′ =
x− y′

α
+ y′},

for each y′ ∈ P (A, b′). Observe that A(x−y
′

α + y′) ≥ b+ b′ (the total coefficient of y′,
α−1
α , is positive because α > 1). Hence F is non-empty valued. It is easy to check

that it is also convex-valued, and has a closed graph. Kakutani’s fixed point theorem
implies that there exists y′ in P (A, b′) such that y′ ∈ F (y′). Hence x−y′

α ∈ P (A, b),
and x = (x− y′) + y′ ∈ P (A,αb) + P (A, b′).
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Suppose now that α < 1. We have: P (A,αb)+P (A, b′) = αP (A, b)+αP (A, b
′

α ) =
α[P (A, b) +P (A, b

′

α )] = αP (A, b+ b′

α ) = P (A,αb+ b′). The penultimate equality fol-
lows from the previous paragraph. The other equalities are straightforward. �

Proof of Lemma 1: (1 ⇒ 2) For each k ∈ N, let bk = k
k+1b + 1

k+1b
′ and b′k =

1
k+1b + k

k+1b
′. Notice that if ek is an extreme point of P (A, bk), then there exists a

unique extreme point x of P (A, b) and a unique extreme point x′ of P (A, b′) such
that ek = k

k+1x+ 1
k+1x

′. In addition, Mek(A, bk) = Mx(A, b)∩Mx′(A, b′). Indeed, if
ek is an extreme point of P (A, bk), then there exists a set L of N independent lines
such that ALek = bkL. By Lemma 2, there exist x ∈ P (A, b) and x′ ∈ P (A, b′) such
that ek = k

k+1x+ 1
k+1x

′. It must be that ALx = bL and ALx
′ = b′L. So x and x′ are

the unique vectors in P (A, b) and P (A, b′) whose weighted sum coincides with ek. It
must also be that x and x′ are extreme points of P (A, b) and P (A, b′), respectively.
Finally, Amek = bkm if and only if Amx = bm and Amx′ = b′m (the necessary condition
follows from the fact that x ∈ P (A, b) and x′ ∈ P (A, b′)). Conversely, observe that if
there exists an extreme point x of P (A, b) and an extreme point x′ of P (A, b′) such
that Mx(A, b) ∩Mx′(A, b′) contains N independent lines, then k

k+1x + 1
k+1x

′ is an
extreme point of P (A, bk). A similar argument holds to show that 1

k+1x + k
k+1x

′ is
an extreme point of P (A, b′k).

For each extreme point ek of P (A, bk), let f(ek) be the vector 1
k+1x + k

k+1x
′,

where x is the unique extreme point of P (A, b) and x′ is the unique extreme point
of P (A, b′) such that ek = k

k+1x+ 1
k+1x

′. The previous paragraph implies that f(ek)
is an extreme point of P (A, b′k). It also implies that f is a bijection, and that
Mek(A, bk) = Mf(ek)(A, b′k), for each extreme point ek of P (A, bk). We thus have
established Condition 2, since (bk)k∈N converges to b, and (b′k)k∈N converges to b′.

(2⇒ 1) It is always true that P (A, b)+P (A, b′) ⊆ P (A, b+b′). So we have to prove
the other inclusion. Consider the correspondence φ associating to any vector b the
nonempty bounded convex polyhedron P (A, b). Because λP (A, b)+(1−λ)P (A, b′) ⊆
P (A, λb + (1 − λ)b′), the graph of φ is convex, and by Corollary 9.2.3 in Peleg and
Sudhölter (2003), the correspondence φ is lower hemi continuous. Because P (A, b)
is defined by a set of continuous, linear inequalities, the correspondence φ is clearly
upper hemi continuous, and hence fully continuous.

Now take a point x in P (A, b+b′). Because φ is lower hemi continuous, there exist
sequences bk and b′k converging to b and b′ such that x ∈ P (A, bk+b′k). Furthermore,
because the polyhedron P (A, b + b′) is only determined by the sum b + b′, we are
free to choose two sequences bk and b′k such that bk ∼ b′k. Suppose that we have
proven that P (A, b + b′) = P (A, b) + P (A, b′) for each pair (b, b′) of N -vector such
that b ∼ b′. Then, x ∈ P (A, bk) + P (A, b′k) for all k. Because the correspondence φ
is upper hemi continuous, this implies that x ∈ P (A, b) + P (A, b′).

The preceding argument shows that in order to finish the proof of Lemma 1,
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it is sufficient to show that P (A, b + b′) = P (A, b) + P (A, b′) for each pair (b, b′) of
N -vector such that b ∼ b′. We proceed by induction on N . Suppose first that N = 1.
Then

P (A, b) = [
bk
Ak

,
bl
Al

],

where
k = arg max

m|Am>0

bm
Am

and l = arg min
m|Am<0

bm
Am

.

Since b ∼ b′, we must have:

P (A, b′) = [
b′k
Ak

,
b′l
Al

],

and hence

P (A, b) + P (A, b′) = [
bk + b′k
Ak

,
bl + b′l
Al

].

The desired conclusion follows from the fact that P (A, b+ b′) ⊆ [ bk+b′k
Ak

,
bl+b

′
l

Al
].

Let N ≥ 2 be such that the desired inclusion holds for all N ′ ≤ N − 1. We
prove now that P (A, b + b′) ⊆ P (A, b) + P (A, b′), for all (A, b) and (A′, b) in AM,N

such that b ∼ b′. Assume first that (A, b) is such that for each m ∈ {1, . . . ,M},
there exists an extreme point e of P (A, b) such that Ame = bm. Let e be an extreme
point of P (A, b+ b′). We will be done with this part of the proof after showing that
e ∈ P (A, b) +P (A, b′). Let m be such that Ame = bm + b′m.4 Let i ∈ N be such that
Am,i 6= 0.5 Observe that

P (A, b) ∩ {x ∈ <N |Amx = bm} = {x ∈ <N |x−i ∈ P (Ā, b̄), xi =
bm −Am,−ix−i

Am,i
}

P (A, b′) ∩ {x ∈ <N |Amx = b′m} = {x ∈ <N |x−i ∈ P (Ā, b̄′), xi =
b′m −Am,−ix−i

Am,i
}

P (A, b+b′)∩{x ∈ <N |Amx = bm+b′m} = {x ∈ <N |x−i ∈ P (Ā, b̄+b̄′), xi =
bm + b′m −Am,−ix−i

Am,i
}

where Ā, b̄ and b̄′ are defined as follows:

b̄k = bk −
Ak,ibi
Am,i

b̄′k = b′k −
Ak,ib

′
i

Am,i

4The vector e is characterized by n equations of this type. The difficulty in this part of the proof
stems from the fact that we are not sure a priori that these equations applied to b and b′ lead to an
element of P (A, b) and P (A, b′), respectively.

5We assume without loss of generality that A does not have a line with only zero entries. Such
lines are redundant and can be deleted anyway.
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Āk,j = Ak,j −
Am,j
Am,i

for all k ∈ {1, . . . ,M} \ {m} and all j ∈ {1, . . . , N} \ {i}. Notice that the first
two sets above must be non-empty because m ∈ Me(A, b) for some extreme point
e of P (A, b) (and hence m ∈ Mf(e)(A, b′), since b ∼ b′). P (Ā, b̄) and P (Ā, b̄′) are
thus non-empty, and belong to AM−1,N . Take an extreme point ē in P (Ā, b̄). Then
e = (ē, ei = bm−A,m,−iē−i

Am,i
) is an extreme point of P (A, b) such that m ∈ Me(A, b).

Because b ∼ b′, there exists an extreme point e′ of P (A, b′) such that m ∈Me(A, b′)
and all other constraints are defined by the same equalities as ē. It is easy to check
that the N−1 vector ē′ such that e′i =

b′m−A,m,−iē′−i

Am,i
is an extreme point of P (Ā, b̄′), so

that b̄ ∼ b̄′. The induction hypothesis implies that P (Ā, b̄+ b̄′) = P (Ā, b̄) +P (Ā, b̄′).
Hence there exists x−i ∈ P (Ā, b̄) and x′−i ∈ P (Ā, b̄′) such that e−i = x−i + x′−i and

ei = bm+b′m−Am,−ie−i

Am,i
. Taking xi = bm−Am,−ix−i

Am,i
and x′i =

b′m−Am,−ix
′
−i

Am,i
, we obtain

that e = x+ x′, where x ∈ P (A, b) and x′ ∈ P (A, b′), as desired.
Let us finally drop the assumption that each inequality appearing in Ax ≥ b

is binding at some extreme point of P (A, b). Let z ∈ P (A, b + b′), and let L ⊆
{1, . . . ,M} be the set of inequalities that are binding at some extreme point of
P (A, b) (or P (A, b′), since b ∼ b′). In particular, we have z ∈ P (AL, bL + b′L). By
our previous argument, there exists x ∈ P (AL, bL) and x′ ∈ P (AL, b′L) such that
z = x + x′. Let m ∈ {1, . . . ,M} \ L. Notice that P (A−m, b−m) ∩ {y ∈ <N |Amy =
bm} = ∅ (as otherwise the extreme points of this convex polyhedron would be extreme
points of P (A, b), contradicting the fact that m 6∈ L). Since P (A−m, b−m) is convex
and has a nonempty intersection with {y ∈ <N |Amy ≥ bm}, we conclude that
P (A−m, b−m) ⊆ {y ∈ <N |Amy > bm}. Iterating the argument, we conclude that
ALx ≥ bL implies that Ax ≥ b. Similarly, ALx′ ≥ b′L implies that Ax′ ≥ b′. Hence
z ∈ P (A, b) + P (A, b′). �

6.2 Equivalence classes of four-player symmetric games

We characterize (up to a permutation) the different categories of extreme points,
and the conditions on the games for which those extreme points belong to the core.
Each extreme point is characterized by a set of 3 coalitions for which the inequalities:
x(S) = v(T ) are binding. By superadditivity, we can restrict attention to coalitions
which have a nonempty intersection – if two coalitions S and T with S ∩ T = ∅ are
used, this must imply that v(S∪T ) = v(S) +v(T ), a nongeneric condition. Further-
more, we only have to consider collections of coalitions for which the conditions are
independent. This leaves us with the following possible extreme points:
E1 Coalitions 1,12,123. Extreme point (0, v2, v3− v2, 1− v3). For this extreme point
to be in the core, we must have: v3 ≥ 2v2, 1 ≥ 2v3 − v2.
E2 Coalitions 1,12,13. Extreme point (0, v2, v2, 1 − 2v2). For this extreme point to
be in the core, we must have: v2 ≤ 1

3 , 2v2 ≥ v3
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E3 Coalitions 1,123,124. Extreme point (0, 2v3 − 1, 1− v3, 1− v3). For this extreme
point to be in the core, we must have: 1

2 leqv3 ≤ 2
3 and 2v3 ≥ v2 + 1.

E4 Coalitions 12,13,123. Extreme point (2v2 − v3, v3 − v2, v3 − v2, 1− v3). For this
extreme point to be in the core, we must have: 2v2 ≥ v3 ≥ 3

2v2 and v2 + 1 ≥ 2v3.
E5 Coalitions 12,13,14. Extreme point (3v2−1

2 , 1−v2
2 , 1−v2

2 , 1−v2
2 ). For this extreme

point to be in the core we must have: v2 ≥ 1
3 and v2 + 1 ≥ 2v3.

E6 Coalitions 12, 13,23. Extreme point (v22 ,
v2
2 ,

v2
2 , 1− 3v22 ). For this extreme point

to be in the core we must have: 3
2v2 ≥ v3.

E7 Coalitions 123,124,134. Extreme point (3v3 − 2, 1 − v3, 1 − v3, 1 − v3). For this
extreme point to be in the core, we must have: 3

4 ≥ v3 ≥ 2
3 and 2v3 ≥ 1 + v2.

6.3 Proof of Proposition 2

⇐ This implication is obvious. If imputations are blocked for all proper minimal
balanced collections, clearly the game is non compensable.
⇒ Suppose that there exists one proper minimal balanced collection C = {S1, ..., Sj , ..., SJ}
for which

∑
j δjv(Sj) < v(N). Construct then a game w as follows. Fix a vector

(x1, ..., xn) in <n+, ε < min{xi}
n , α > 0 and δ < min{xi}

α .

w(T ) = 0 ifT + Sj for anyj

w(T ) = α
∑
i∈Sj

xi ifT = Sj

w(T ) = α
∑
i∈T

(xi − ε) ifT ⊃ Sj for somej, T 6= N

w(N) = α
∑
i∈N

xi − γ .

We first check that the game w is superadditive. Because the collection C is
proper, Sj ∩Sk 6= ∅ for all j, k. As the game w only puts positive worth on supersets
of sets in C, we conclude that if S ∩ T = ∅, either w(S) = 0 or w(T ) = 0. This
implies that, in order to check that w is superadditive, we only need to verify that
w is monotonic. Given that ε < min{xi}

n and γ < min{xi}
α , monotonicity is always

satisfied. Next note that
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∑
j

δjw(Sj) =
∑
j

δjα
∑
i∈Sj

xi

=
∑
i∈N

∑
j|Sj3i

δjαxi

= α
∑
i∈N

xi

> α
∑
i∈N

xi − γ

= w(N).

so that C(w) = ∅.
Next, consider any other proper minimal balanced collection, C′ = {T1, ..., Tk, ..., TK}.
We compute:

∑
k

δkw(Tk) =
∑

k|Tk=Sj

δkα
∑
i∈Tk

xi +
∑

k|Tk⊃Sj

δkα
∑
i∈Tk

(xi − ε)

=
∑
i∈N

(
∑

k|Tk3i,Tk=Sj

δkαxi +
∑

k|Tk3i,Tk⊃Sj

δkα(xi − ε)

= α
∑
i∈N

(
∑

k|Tk3i,Tk⊇Sj

δkxi −
∑

k|Tk3i,Tk⊃Sj

δkε

< α
∑
i∈N

xi.

The last inequality is obtained because
∑

k|Tk3i,Tk⊇Sj
δk ≤ 1 and can only be equal

to 1 for all agents i if Tk ⊇ Sj for all sets Tk in the collection C′. However, because
C′ 6= C, there must exist some set Tk ⊃ Sj , which implies that

∑
k|Tk3i,Tk⊃Sj

δk 6= 0
for some player i. Armed with this result, we can define, for any proper minimal
balanced collection C′ 6= C, the positive quantity

∆(w, C′) =

∑
j δjw(Sj)−

∑
k δkw(Tk)

α
.

Notice also that ∆(w, C′) does not depend on α.
Now, consider the combined game v + w. For the collection C,∑

j

δj(v(Sj) + w(Sj)) < v(N) + α
∑
i∈N

xi.

Now, for any α, we can pick a value γ < min{xi}
α such that
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γ < v(N)−
∑
j

δjv(Sj)

and hence ∑
j

δj(v(Sj) + w(Sj)) ≤ v(N) + w(N).

Next, consider any other proper minimal collection C′. Then,∑
k

δk(v(Tk) + w(Tk)) =
∑
k

δkv(Tk) +
∑
j

δjv(Sj)− αDelta(w, C′).

Hence,

v(N) + w(N)−
∑
k

δk(v(Tk) + w(Tk)) = w(N)−
∑
j

δjv(Sj) + α∆(w, C′)

+v(N)−
∑
k

δkv(Tk)

= γ + α∆(w, C′) + v(N)−
∑
k

δkv(Tk).

Hence, if one picks α > maxC′
(
∑

k δkv(Tk)−v(N)−γ)
∆(w,C′) , we have that for any collection C′,

v(N) + w(N) >
∑

k δk(v(Tk) + w(Tk)), so that the core of v + w is nonempty. �
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