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Abstract. This paper introduces an EMC-oriented study of the frequency-domain behavior of the electric field
generated by two dipole antennas. First of all, the theoretical expression of this field is analyzed and confronted
with the macromodel commonly used in electrical circuits. Then, the most significant components of the expression
are included into the topological study of a two-dipole network through Kron’s method. Finally, computed results
are compared with experimental ones and show significant similarities.
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1 INTRODUCTION

Common EMC-targeted equivalent macromodels of electric near field interaction are generally
based on the use of a capacitance which translates Poisson’spotential-related equation into a
current-related equation. In very high frequency, a far field interaction is added to the electro-
static one [1] [2]. However, taking into account both effects at the same time is a difficult task.
In fact, in classical SPICE-based electric simulators, this far field interaction must be coded using
mathematical equations, which are not easy to use in this case. Moreover, 3D simulation methods
are scarcely compliant with both near and far field requirements, thus preventing accurate model-
ing.
Therefore, this paper introduces a new approach, based on a study of the global behavior of the
electric field generated by two dipole antennas, and which automates the re-use of 3D computa-
tions while keeping the same accuracy as the one obtained through analytical fitting. It is based on
the results obtained in a previous paper [3].

2 THE ELEMENTARY CURRENT MODEL

On one hand, an elementary model of the electrical field generated by an elementary dipole is given
in Eq. 1 [4] :
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in which p0 is the electrical moment,̄λ the wavelength divided by 2π, r the distance between the
center of the moment and the observer, and−→r1 and

−→

θ1 the base vectors of the spherical coordinates
of the radiation pattern of the dipole. This expression depends on several powers ofr, and repre-
sents the far and near field components of the electric field. As discussed in a previous paper [3],
ther−2 or r−3 terms represent the lamellar part, while ther−1 components are linked with the far
field and are perpendicular to the propagation direction.
On the other hand, the general expression of a capacitor is given by Eq. 2 :
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∫

Q

4πεr2
dx =

∫

−→
E ·

−→

dx (2)

in which Q is the charge of the capacitor andx is an axis orthogonal to both armatures of the
capacitor.
Moreover, the magnetic far field emitted by an elementary loop can be obtained from Eq. 3 :

B(r, θ) = µπ
I S sin θ

rλ2
(3)

in which I represents the current within the loop,S the surface of the loop andµ the magnetic
permeability. In far field, the magnetic fieldB and the electric field are equivalent. Moreover, the
magnetic field is topologically more convenient than the electric field for the representation of the
amount of energy exchanged within the field. As can be seen in Fig. 1, the loop generated between
the electrostatic field andσE, the conduction current on the main axis on the dipole, is clearly
visible.

Fig. 1. Conduction current and electric field lines of a dipole

However, due to the number of field lines, the computation of the magnetic fluxφ requires a clever
identification of the trajectory to be used for the closed curvilinear integration of the electric field.



The definition of an associated inductance should then be made possible.
In order to solve this issue, a topological study of the dipole, using Kron’s method [5] [1], is
used. In this method, loads are associated with the node space level, conduction and displacement
currents to the edge space level, and magnetic flux with the mesh space level.
In low frequency (below the first eigenmode), the dipole behaves only like a capacitor, the value of
which should remain the same in its equivalent circuit. Then, the inductance value will be deduced
from the first resonance value. This capacitance value is thesum of :

– the capacitance of the two disks located at the base of the dipole,
– the capacitance of two plates separated by2πy (y is the integration height).

This capacitance can be computed by Eq. 4 :
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in whichd is the radius of one dipole,∆ the base distance between both dipoles, andh the height
of the dipole. In this case, with 1-mm diameter, 2-cm high dipoles separated by 3 mm, C is around
12 fF.
Likewise, the capacitance of a two-dipole setup can be computed using the law of capacitance per
unit length of a two-wire line, which is illustrated in Eq. 5 :
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h
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d

)
(5)

The next step consists in comparing this capacitance, the loop expression in far field, and Eq. 1.
Previous experience as well as several articles have already shown that the method of moments is
well suited to the computation of mutual inductance. In thiscase, the mutual inductance of both
coupled dipoles can be computed by Eq. 6 :
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In the case of 2-cm long dipoles, this mutual inductance isM12 = 3.98 · 10−11 H, approximated by
3.5 · 10−11 H. This value is lower than the equivalent self inductance ofone dipole (1/(Cω0

2) ≈

0.06 µH), and is actually close to the flux obtained from the averageelectrostatic field line. As a
comparison, the inductance of a loop is equal to (Eq. 7) :
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By neglecting ther−3 terms in Eq. 1, and seeing that the lamellar component is taken into account
in the capacitor interaction, thesin θ field intensity (which represents the perpendicular component)
can be rewritten as (Eq. 8) :
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The first term in Eq. 8 represents a capacitance-like expression, while the second one models the
far field model linked with the mutual inductance (obtained from the loop interaction in far field).
Moreover, the perpendicular evolution of the field can be computed directly from the method of
moments and through the magnetic field model, rather than from the electric field. Both terms of the
electric dipole in Eq. 8 must be obtained through a magnetic working out, as they are included in
the vector potential (the

−−→

grad ψ component is linked with the lamellar part [6]). Then, by adding
these terms and using an exponential development, the behavior of the magnetic fieldB can be
expressed in Eq. 9 :
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3 THE INTERACTION GRAPH

As a result of this study, the interaction graph between bothhalf-wave antennas can then be com-
puted (Fig.2).

Fig. 2. Interaction between both half-wave antennas

This graph depicts the self inductance of each antenna, the mutual inductance between both an-
tennas, the capacitance of each antenna, and finally the inter-antenna capacitance, thus making it
possible to build the corresponding impedance tensorZ in the edge base :
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in which s is the Laplace operator. Likewise, an inductance tensorM can be defined in the mesh
base :
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This problem can be solved in frequency domain for every distance between both antennas, through
Eq. 12, 13 and 14 :
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L is the connectivity matrix providing the relations betweenthe edge base and the mesh base, with
a sourcee in the mesh space. As far as theS21 measurement is concerned, the single source is the
one injected into the first antenna.

4 EXPERIMENTAL RESULTS

In order to measure the interaction between both antennas, two perfectly identical half-wave anten-
nas are used, which makes inter-antenna distance measurement easier. Each dipole is fastened on a
micrometric mechanism allowing an accurate measurement ofthe distance between the antennas,
which is swept between 1 and 19 mm. In order to trigger both near- and far-field interactions, the
antennas are fed with a high-frequency (27.5 GHz) generator; consequently, the far-field criterion
is met at approximately 3.5 mm (λ

π
).

Then, theS21 parameter of the interaction is measured and compared with theoretical results ob-
tained with the help of the SCILAB software. These results are presented in Fig. 3.
By fitting the α coefficient in Eq. 9 to 1.1, the discrepancy between measurements theoretical
values is lower than 0.6 % in any case, which demonstrates thevalidity of this study.

5 CONCLUSION

This application (which is the second one using this technique in very near-field interaction)
demonstrates the adequation of Kron’s method to the simultaneous computation of all kinds of
interactions between edges. In the case of near-field EMC, anaccurate prediction of theS21 pa-
rameter, thus an accurate modeling of the injection system,are made possible. In addition to that,
this opens to a better understanding of the influence of each kind of interaction.
This study should then be made complete by using 3D electromagnetic software in order to ob-
tain more accurate values of the RLC parameters as well as themathematical expressions of the
interactions involved in this problem.
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Fig. 3. Left : comparison between measurements (solid) and theoretical values (dotted) for theS21 parameter. Right : relative
difference between both curves
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