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DUALITY AND ASYMPTOTICS FOR A CLASS OF
NON-NEUTRAL DISCRETE MORAN MODELS

Thierry Huillet1 and Martin Möhle2

January 23, 2009

Abstract

A Markov chain X with finite state space {0, . . . , N} and tridiagonal transition
matrix is considered where transitions from i to i − 1 occur with probability i/N(1 −
p(i/N)) and from i to i+1 with probability (1− i/N)p(i/N), where p : [0, 1] → [0, 1] is a
given function. It is shown that, if p is continuous with p(x) ≤ p(1) for all x ∈ [0, 1], then
for each N a dual process Y to X (with respect to a specific duality function) exists if
and only if 1 − p is completely monotone with p(0) = 0. A probabilistic interpretation
of Y in terms of an ancestral process of a multi-type Moran model with a random
number of types is presented. It is shown that under weak conditions on p the process
Y , properly time- and space-scaled, converges to an Ornstein-Uhlenbeck process as N
tends to infinity. The asymptotics of the stationary distribution of Y is studied as N
tends to infinity. Examples are presented involving selection mechanisms.

Keywords: Ancestral process; complete monotonicity; descendants; duality; Moran
model; Ornstein-Uhlenbeck process
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1 Introduction

Assume that X = (Xt)t∈T and Y = (Yt)t∈T are two time-homogeneous Markov processes
with state spaces (E1,F1) and (E2,F2) respectively. Typical time sets are T = {0, . . . , n} for
some n ∈ N := {1, 2, . . .}, countable sets T = N0 := {0, 1, 2, . . .} or as well continuous time
sets such as the unit interval T = [0, 1] or T = [0,∞). Let B(E1 × E2) denote the set of all
real-valued bounded measurable functions on E1 ×E2. We recall the definition of duality of
Markov processes in the sense of Liggett [21].

Definition 1.1 The process X is said to be dual to Y with respect to H ∈ B(E1 × E2) if

ExH(Xt, y) = EyH(x, Yt) (1)

for all x ∈ E1, y ∈ E2 and t ∈ T , where Ex denotes the expectation given that the process X
starts in X0 = x and Ey denotes the expectation given that the process Y starts in Y0 = y.

Dual processes occur in many applications, usually when considering some phenomena for-
wards and backwards in time. For typical dual processes in the mathematics and physics
literature on interacting particle systems we refer to [8, 17, 21, 22, 28, 29] and references
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therein. Other important examples occur in the context of mathematical population genetics
[1, 2, 5, 6, 10, 11, 12, 13, 14, 19, 25, 26] and essentially go back to similar duality results for
stochastically monotone Markov processes [27].
Here we are interested in a particular class of Markov chains X of the following form. Let
p : [0, 1] → [0, 1] be some function. For fixed N ∈ N consider a Markov chain X = (Xn)n∈N0

with state space {0, . . . , N} and tridiagonal transition matrix

Π = (πij)i,j∈{0,...,N} =



r0 p0 0 · · · 0

q1 r1 p1
. . .

...

0
. . . . . . . . . 0

...
. . . qN−1 rN−1 pN−1

0 · · · 0 qN rN


, (2)

where, for i ∈ {0, . . . , N},

pi :=
(

1− i

N

)
p

(
i

N

)
, qi :=

i

N

(
1− p

(
i

N

))
(3)

and

ri := 1− pi − qi =
(

1− i

N

)(
1− p

(
i

N

))
+

i

N
p

(
i

N

)
. (4)

For particular choices of the function p the Markov chain X is well known from the literature
on mathematical population genetics. For p = id (identity) the chain X counts the number
of descendants in the classical haploid Moran model [23] with population size N (see also
(3.45) - (3.47) on p. 105 of Ewens [15]). For p(x) = 1− (1−x)2, x ∈ [0, 1], the chain X is the
forward process of a two-sex model introduced by Kämmerle [20]. For closely related Moran
models in continuous time we refer to Coop and Griffiths [7], Donnelly [9] and Donnelly and
Rodrigues [12]. In Section 3 we provide (for a suitable subclass of functions p) a population
model such that X counts the number of ‘mating units’ forwards in time in this model.
Note that E(Xn+1 |Xn = i) = i + p(i/N) − i/N for all i ∈ {0, . . . , N}. Thus, if p(x) ≤ x
for all x ∈ [0, 1], then X is a super-martingale. If p(x) ≥ x for all x ∈ [0, 1], then X is a
sub-martingale.
The article is organised as follows. In Section 2 the main duality result (Theorem 2.3) and
its proof is given. Afterwards, in Section 3, a probabilistic interpretation of X and of the
dual process Y in terms of a multi-type Moran model is presented. Section 4 deals with the
convergence of Y , properly time- and space-scaled, to an Ornstein-Uhlenbeck limiting process
as N tends to infinity (Theorem 4.2). In Section 5 details on the extinction probabilities of
the forward chain X and on the stationary distribution of the ancestral chain Y are provided.
The asymptotics of the mean and the variance of the stationary distribution of Y is given. We
state a conjecture on the asymptotic normality (Conjecture 5.5) of the stationary distribution
and indicate possible approaches to verify this conjecture. The article finishes with a collection
of typical examples (Section 6) involving selection mechanisms.
Throughout the paper we will use the notation (x)0 := 1 and (x)k := x(x− 1) · · · (x− k +1),
x ∈ R, k ∈ N for the descending factorials. Furthermore, S(i, j), i, j ∈ N0, denote the Stirling
numbers of the second kind.
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2 A duality result

Before we state the main duality result (Theorem 2.3) we briefly recall some basics about
completely monotone functions. In the literature (see, for example, [4, Section 2]), complete
monotonicity is mostly considered for functions q with domain (0,∞) or [0,∞). Here we are
interested in functions q with domain [0, 1], the unit interval.

Definition 2.1 A function q : [0, 1] → R is called completely monotone if it is C∞ on (0, 1)
with (−1)kq(k)(x) ≥ 0 for all k ∈ N0 and all x ∈ (0, 1).

The following lemma is essentially a version of the classical Bernstein theorem.

Lemma 2.2 A continuous function q : [0, 1] → R is completely monotone if and only if there
exists a finite measure µ on N0 with q(1− x) =

∑∞
n=0 xnµ({n}) for all x ∈ [0, 1].

Proof. If there exists a finite measure µ on N0 with q(1 − x) =
∑∞

n=0 xnµ({n}) for all
x ∈ [0, 1], then (−1)kq(k)(x) =

∑∞
n=k n!/(n − k)!(1 − x)n−kµ({n}) ≥ 0 for all k ∈ N0 and

all x ∈ (0, 1), i.e., q is completely monotone. Conversely, if q is completely monotone, then
the function u : [0, 1] → R, defined via u(x) := q(1 − x) for x ∈ [0, 1], satisfies u(n)(x) =
(−1)nq(n)(1 − x) ≥ 0 for all n ∈ N0 and all x ∈ (0, 1). Bernstein’s theorem [16, Chp. VII.2,
Theorem 2] for bounded functions u ensures the existence of a measure µ on N0 such that u
has power series representation u(x) =

∑∞
n=0 xnµ({n}), x ∈ [0, 1]. The measure µ is finite as

µ(N0) = u(1) < ∞. 2

Remark. Suppose that q : [0, 1] → R is a continuous, completely monotone function. The
measure µ in Lemma 2.2 is a probability measure if and only if q(0) = 1. In this case, there
exists a random variable η with distribution P (η = n) = µ({n}), n ∈ N0, and u(x) :=
q(1− x) = E(xη) for all x ∈ [0, 1], i.e., u is the probability generating function (p.g.f.) of η.

We now turn to the duality result. If the state spaces E1 and E2 of the processes X and Y in
Definition 1.1 are finite, then the function H ∈ B(E1×E2) in Definition 1.1 can be considered
as a matrix H = (hij)i∈E1,j∈E2 . In the literature on duality for Markov chains with identical
finite state spaces E1 = E2 = {0, . . . , N}, the particular non-singular symmetric left upper
matrix H = (hij)i,j∈{0,...,N} with entries

hij :=

(
N−i

j

)(
N
j

) =

(
N−j

i

)(
N
i

) =
i−1∏
k=0

N − j − k

N − k
=

j−1∏
k=0

N − i− k

N − k
(5)

plays an important role. For example, this matrix turns out to be a suitable choice to obtain
duality results for a large class of exchangeable population models [25]. It was also used
(see also the remark at the end of this section) to derive duality results for a class of non-
neutral Wright-Fisher models [19]. The following theorem shows that this matrix is also an
appropriate choice for Moran models.

Theorem 2.3 Let p : [0, 1] → [0, 1] be some continuous function satisfying p(x) ≤ p(1) for
all x ∈ [0, 1]. Then, the following conditions are equivalent.

(i) There exists a random variable η taking values in N0 such that 1 − p(1 − x) = E(xη)
for all x ∈ [0, 1].
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(ii) The function q := 1− p is completely monotone and p satisfies p(0) = 0.

(iii) For each N ∈ N there exists a Markov chain Y = (Yn)n∈N0 such that X is dual to
Y with respect to H = (hij)i,j∈{0,...,N} with entries (5), i.e., ΠH = HP ′, where P ′

denotes the transpose of the transition matrix P = (pij)i,j∈{0,...,N} of Y .

Remark. Note that p does not need to satisfy p(1) = 1. The transition matrix P of the
dual Markov chain Y can be expressed explicitly in terms of p. See (7), (8), (9) and (11)
below. It turns out that Y is skip-free to the left, i.e., pij = 0 for all j < i− 1. In Section 3 a
probabilistic interpretation of Y is provided.

Proof. The equivalence of (i) and (ii) follows immediately from the remark after Lemma 2.2.

(ii) ⇒ (iii): For i, j ∈ {0, . . . , N},

(ΠH)ij = qihi−1,j + rihij + pihi+1,j = qi

(
N−i+1

j

)(
N
j

) + ri

(
N−i

j

)(
N
j

) + pi

(
N−i−1

j

)(
N
j

)
with pi, qi and ri as defined in (3) and (4). Define the matrix P := (pij)i,j∈{0,...,N} recursively
over its columns via

pi0 :=
(ΠH)Ni

hN0
=


1 for i = 0,

1− p(1)
N

for i = 1,

0 for i ∈ {2, . . . , N}

and

pij :=
(ΠH)N−j,i −

∑j−1
k=0 hN−j,kpik

hN−j,j
, i ∈ {0, . . . , N}, (6)

for j ∈ {1, . . . , N}. From this definition it follows immediately that

(ΠH)N−j,i =
j∑

k=0

hN−j,kpik =
N∑

k=0

hN−j,kpik = (HP ′)N−j,i

for all i, j ∈ {0, . . . , N}. Thus, the duality equation ΠH = HP ′ is satisfied. It remains to
verify that P is a stochastic matrix. Note that p00 = 1 and that pij = 0 for j < i− 1. Thus,
the matrix P has the form

P = (pij)i,j∈{0,...,N} =


1 0 · · · 0 0
? ? · · · ? ?
0 ? · · · ? ?
...

. . . . . .
...

...
0 · · · 0 ? ?

 , (7)

where the ?-entries are those which are now studied in more detail. From (6) it follows that,
for i ∈ {1, . . . , N},

pi,i−1 =
(ΠH)N−i+1,i

hN−i+1,i−1
=

qN−i+1hN−i,i

hN−i+1,i−1
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=
N − i + 1

N

(
1− p

(
N − i + 1

N

))
1(
N
i

)(
N

i− 1

)
=

i

N

(
1− p

(
N − i + 1

N

))
. (8)

In particular, pi,i−1 ≥ 0. For the diagonal entries of P we obtain from (6) that p00 = 1 and
that, for i ∈ {1, . . . , N},

pii =
(ΠH)N−i,i − hN−i,i−1pi,i−1

hN−i,i

=
qN−ihN−i−1,i + rN−ihN−i,i + pN−ihN−i+1,i − hN−i,i−1pi,i−1

hN−i,i

= (i + 1)qN−i + rN−i − (N − i + 1)pi,i−1

= (i + 1)
N − i

N

(
1− p

(
N − i

N

))
+

i

N
+

N − 2i

N
p

(
N − i

N

)
−(N − i + 1)

i

N

(
1− p

(
N − i + 1

N

))
=

N − i

N
+

i

N
(N − i + 1)

(
p

(
N − i + 1

N

)
− p

(
N − i

N

))
. (9)

In particular, pii ≥ 0 as the function p is increasing by condition (ii). We now proceed in the
same way and obtain

pi,i+1 =
(ΠH)N−i−1,i −

∑i
k=i−1 hN−i−1,kpik

hN−i−1,i+1

=
(ΠH)N−i−1,i − hN−i−1,i−1pi,i−1 − hN−i−1,ipii

hN−i−1,i+1

= (N − i)
(

i + 2
2

qN−i−1 + rN−i−1 +
1

i + 1
pN−i−1

)
−

(
N − i + 1

2

)
pi,i−1 −

(
N − i

1

)
pii.

Plugging in the expressions for pN−i−1, qN−i−1 and rN−i−1 and as well the already available
formulas (8) and (9) for pi,i−1 and pii, and sorting afterwards with respect to the values
p((N − i− 1)/N), p((N − i)/N) and p((N − i + 1)/N), we obtain after some straightforward
manipulation that, for i ∈ {1, . . . , N − 1},

pi,i+1 =
i

N

(
N − i + 1

2

) (
2p

(
N − i

N

)
− p

(
N − i− 1

N

)
− p

(
N − i + 1

N

))
. (10)

Since q is completely monotone, differences of differences of p are non-negative from which
it follows that pi,i+1 ≥ 0. We now verify by induction on j ∈ {i + 1, i + 2, . . . , N} that

pij =
i

N

(
N − i + 1
j − i + 1

) j−i+1∑
k=0

(
j − i + 1

k

)
(−1)j−i−kp

(
N − i + 1− k

N

)
. (11)
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For j = i + 1, (11) coincides with (10). Thus, (11) is already proven for j = i + 1. The
induction step from {1, . . . , j − 1} to j (> i) works as follows. For j > i, we have

pij =
(ΠH)N−j,i −

∑j−1
k=i−1 hN−j,kpik

hN−j,j

=
qN−jhN−j−1,i + rN−jhN−j,i + pN−jhN−j+1,i

hN−j,j
−

j−1∑
k=i−1

hN−j,k

hN−j,j
pik

=
(

N − i

N − j

)(
qN−j

j + 1
j − i + 1

+ rN−j + pN−j
j − i

j

)
−

j−1∑
k=i−1

(
N − k

j − k

)
pik.

As before, plugging in the expressions for pN−j , qN−j and rN−j and as well the (by induction
already known) formulas for pik, k ∈ {i− 1, i, . . . , j − 1}, we obtain - after some tedious but
straightforward manipulations - that the latter expression coincides with the right hand side
in (11), which completes the induction.
Since q is completely monotone, the sum on the right hand side in (11) is non-negative, which
shows that pij is non-negative for j > i. For i ∈ {1, . . . , N} it follows furthermore from (8),
(9) and (11) that, for x ∈ [0, 1],

N∑
j=0

pijx
j = pi,i−1x

i−1 + piix
i +

N∑
j=i+1

pijx
j

=
ixi−1

N

(
1− p

(
N − i + 1

N

))
+

N − i

N
xi +

ixi

N
(N − i + 1)

(
p

(
N − i + 1

N

)
− p

(
N − i

N

))
+

N∑
j=i+1

ixj

N

(
N − i + 1
j − i + 1

) j−i+1∑
k=0

(
j − i + 1

k

)
(−1)j−i−kp

(
N − i + 1− k

N

)

=
i

N
xi−1 +

N − i

N
xi +

i

N

N∑
j=i−1

xj

(
N − i + 1
j − i + 1

)
·

·
j−i+1∑
k=0

(
j − i + 1

k

)
(−1)j−i−kp

(
N − i + 1− k

N

)

=
i

N
xi−1 +

N − i

N
xi − i

N

N−i+1∑
k=0

(
N − i + 1

k

)
p

(
N − i + 1− k

N

)
xi+k−1 ·

·
N∑

j=k+i−1

(
N − i + 1− k

j − i + 1− k

)
(−x)j−i+1−k

=
i

N
xi−1 +

N − i

N
xi − i

N

N−i+1∑
k=0

(
N − i + 1

k

)
·
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·p
(

N − i + 1− k

N

)
xi+k−1(1− x)N−i+1−k

=
i

N
xi−1 +

N − i

N
xi − i

N

N−i+1∑
l=0

(
N − i + 1

l

)
p

(
l

N

)
xN−l(1− x)l

=
N − i

N
xi +

i

N

N−i+1∑
l=0

(
N − i + 1

l

)
q

(
l

N

)
xN−l(1− x)l. (12)

For x = 1, only the summand for l = 0 differs from 0, and we obtain
∑N

j=0 pij = (N − i)/N +
i/Nq(0) = 1− i/Np(0) = 1, as p(0) = 0 by condition (ii). Thus, P is a stochastic matrix.

(iii)⇒ (ii): If X is dual to Y with respect to H, then the recursion (6) holds. As in the previous
part of the proof it follows that the matrix P has the structure (7) with the ?-entries given
by (8), (9) and (11). Consequently, (12) is valid, and we obtain, for x ∈ [0, 1],

E(xYn+1 |Yn = i) =
N∑

j=0

pijx
j

=
N − i

N
xi +

i

N
xi−1

N−i+1∑
l=0

(
N − i + 1

l

)
q

(
l

N

)
xN−i+1−l(1− x)l

=
N − i

N
xi +

i

N
xi−1BN−i+1,q(1− x),

where BN−i+1,q(1−x) is the (N − i+1)-th Bernstein polynomial of the function q evaluated
at the point 1− x. Now rewrite this equation for i = 1 as

BN,q(1− x) = x + N(E(xYn+1 |Yn = 1)− x). (13)

As q is continuous, the left hand side converges uniformly for x ∈ [0, 1] to q(1−x) as N →∞.
Therefore, the right hand side in (13) converges as well uniformly for x ∈ [0, 1], and from the
structure of this right hand side it follows that

q(1− x) =
∞∑

k=0

akxk, (14)

for some non-negative real coefficients ak, k ∈ N0. Note that, in particular, the coefficient a1

is non-negative, as it is the limit as N →∞ of

1 + N(p11 − 1) = 1 + N

(
N − 1

N
+ p(1)− p

(
N − 1

N

)
− 1

)
= N

(
p(1)− p

(
N − 1

N

))
,

which is non-negative as p satisfies p(x) ≤ p(1) for all x ∈ [0, 1]. Thus, q is completely
monotone. Since P is a stochastic matrix we have

∑N
j=0 pij = 1 for all i ∈ {0, . . . , N}. On

the other hand, as in the previous part of the proof, it follows that
∑N

j=0 pij = 1− (i/N)p(0)
for all i ∈ {0, . . . , N}. Thus, the equality p(0) = 0 must hold, which completes the proof. 2
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Remark. In Theorem 2.3 it is assumed that the function p : [0, 1] → [0, 1] satisfies

p(x) ≤ p(1) for all x ∈ [0, 1]. (15)

This condition is automatically satisfied if p(1) = 1. If (15) is not satisfied, then the situation
becomes more subtle. Consider for example, the function p(x) := x(1 − x), x ∈ [0, 1]. In
this case, 0 is the only absorbing state of the chain X and all other states 1, . . . , N are
communicating. The matrix P in (7), with entries defined via (8), (9) and (11), is a stochastic
matrix. More precisely, P is tridiagonal with entries

pij =


i/N − i(i− 1)(N − i + 1)/N3 for j = i− 1,
(N − i)/N + i(N − i + 1)(N − 2i + 1)/N3 for j = i,
i(N − i)(N − i + 1)/N3 for j = i + 1,
0 for |i− j| > 1,

i, j ∈ {0, . . . , N}. Therefore, if Y is a Markov chain having this transition matrix P , then
Y is dual to X with respect to H. However, 1 − p is not completely monotone (even not
monotone). The stationary distribution of Y is concentrated in zero.
In general it can be deduced from (9) that certain negative values of the coefficient a1 in (14)
are allowed without destroying the property that P is a stochastic matrix. For simplicity, in
Theorem 2.3 we restrict our considerations to the situation when p satisfies (15).

Remark. In [19] a class of Markov chains X = (Xn)n∈N0 with state space {0, . . . , N} and
modified Wright-Fisher transition probabilities πij =

(
N
j

)
(p(i/N))j(1 − p(i/N))N−j , i, j ∈

{1, . . . , N}, is studied. It is shown that, if p : [0, 1] → [0, 1] is continuous, then for each
N ∈ N there exists a Markov chain Y = (Yn)n∈N0 such that X is dual to Y with respect
to H = (hij)i,j∈{0,...,N} with entries (5) if and only if the function q := 1 − p is completely
monotone and p satisfies p(0) = 0. This duality result essentially coincides with that of
Theorem 2.3 and was the starting point to study similar properties for other models, which
finally led us to Theorem 2.3. The transition matrix P = (pij)i,j∈{0,...,N} of the dual chain
Y in [19] has entries

pij =
(

N

j

) j∑
k=0

(−1)j−k

(
j

k

)
qi

(
1− k

N

)
, i, j ∈ {0, . . . , N}, (16)

where qi denotes the i-th power of q. There is the following alternative formula for these
transition probabilities. The remark after Lemma 2.2 ensures that there exists a random
variable η taking values in N0 such that q(1− x) = E(xη) for all x ∈ [0, 1]. Let η1, η2, . . . be
independent copies of η. Then,

pij = (N)jE(N−LiS(Li, j)), i, j ∈ {0, . . . , N}, (17)

where L0 := 0 and Li := η1 + · · · + ηi for i ∈ N, and with the notations for the
descending factorials and for the Stirling numbers of the second kind as mentioned at
the end of the introduction. The formula (17) follows easily from (16) using the con-
volution property E(xLi) = qi(1 − x) (applied to x := k/N) and the explicit formula
j!S(i, j) =

∑j
k=0(−1)j−k

(
j
k

)
ki for the Stirling numbers of the second kind. From (17) it

is obvious that P is a stochastic matrix. In that sense the Markov chain Y in [19] has a
simpler structure than the chain Y in Theorem 2.3.
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3 A multi-type Moran model

Fix a constant K ∈ N and consider a population where each individual has one of K possible
types. Each generation consists of N ∈ N mating units, where a mating unit is (by definition)
a set of K individuals of different types. Hence, the total population size is KN . In each
generation, K children are born, one of each type, and each of this K children chooses
randomly one of the ancestral mating units as its parental unit. These K new born individuals
form a new mating unit of the following generation. One of the N parental mating units is
chosen at random and removed from the population. For K = 1 this model coincides with
the standard haploid Moran model with population size N (see, for example, (3.45) - (3.47)
on p. 105 of Ewens [15]). For K = 2 we arrive at Kämmerle’s two-sex Moran model [20].
Some more details for this particular model are given at the end of this section.
Fix i ∈ {1, . . . , N}. A descendant-unit of the mating units 1, . . . , i of generation 0 is any
mating unit of any generation which has at least one member descending from one of these
i mating units of generation 0. If Xn denotes the number of descendant-units in generation
n ∈ N0, then, it is easily seen that X := (Xn)n∈N0 is a Markov chain with state space
{0, . . . , N} and transition matrix Π of the form (2) with

p(x) := 1− (1− x)K , x ∈ [0, 1]. (18)

If we instead look back into the past and let An denote the number of ancestral mating units
n generations backwards in time, we obtain the so-called ancestral chain A := (An)n∈N0 ,
sometimes also called the backward chain. The following lemma provides the transition prob-
abilities of the Markov chain A.

Lemma 3.1 The transition probabilities pij := P (An+1 = j |An = i), i, j ∈ {0, . . . , N}, of
the ancestral chain A = (An)n∈N0 are

pi,i−1 =
i

N

(
i− 1
N

)K

, i ∈ {1, . . . , N},

p00 = 1, pii =
N − i

N
+

i

N
(N − i + 1)

((
i

N

)K

−
(

i− 1
N

)K)
, i ∈ {1, . . . , N},

pij =
i

N

(
N − i + 1
j − i + 1

) j−i+1∑
k=0

(−1)j−i+1−k

(
j − i + 1

k

)(
i− 1 + k

N

)K

for j ∈ {i + 1, . . . , i + K − 1}, and pij = 0 otherwise.

Proof. Assume that there are i ancestral mating units present in generation n. One gener-
ation backwards in time there will be i− 1 ancestral mating units present if and only if one
of the i mating units is removed and all K new-born individuals choose their parental unit
among the i− 1 remaining ancestral units. One of the i mating units is removed with proba-
bility i/N and each new-born individual chooses its parental unit among the i− 1 remaining
units with probability (i− 1)/N . Thus, the formula for pi,i−1 follows immediately.
One generation backwards in time there will be i ancestral mating units present if and only
if either one of the N − i non-ancestral units is removed or if one of the i ancestral units is
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removed and, for some l ∈ {1, . . . ,K}, exactly K − l of the K new born individuals choose
their ancestral unit among the remaining i − 1 ancestral units and the other l new born
individuals all choose the same unit among the other N − (i− 1) mating units. Thus,

pii =
N − i

N
+

i

N

K∑
l=1

(
K

l

)
N − (i− 1)

N l

(
i− 1
N

)K−l

=
N − i

N
+

i

N
(N − i + 1)

K∑
l=1

(
K

l

)(
1
N

)l(
i− 1
N

)K−l

=
N − i

N
+

i

N
(N − i + 1)

((
i

N

)K

−
(

i− 1
N

)K)
.

Similarly, there will be j (> i) ancestral mating units present one generation backward in
time, if and only if one of the i ancestral mating units is removed and, for some l ∈ {0, . . . ,K},
exactly K − l of the new-born individuals choose their ancestral unit among the remaining
i− 1 ancestral units and the other l new born individuals altogether choose j − i + 1 among
the other N − (i− 1) mating units. Thus,

pij =
i

N

K∑
l=0

(
K

l

)
(N − (i− 1))j−i+1S(l, j − i + 1)

N l

(
i− 1
N

)K−l

.

Note that pij = 0 for j > i + K − 1. Plugging in the explicit formula

S(l, j − i + 1) =
1

(j − i + 1)!

j−i+1∑
k=0

(−1)j−i+1−k

(
j − i + 1

k

)
kl

for the Stirling numbers of the second kind and interchanging the sums yields

pij =
i

N

(
N − i + 1
j − i + 1

) j−i+1∑
k=0

(−1)j−i+1−k

(
j − i + 1

k

) K∑
l=0

(
K

l

)(
k

N

)l(
i− 1
N

)K−l

=
i

N

(
N − i + 1
j − i + 1

) j−i+1∑
k=0

(−1)j−i+1−k

(
j − i + 1

k

)(
i− 1 + k

N

)K

,

which completes the proof. 2

The main consequence of Lemma 3.1 is that the transition probabilities of the ancestral chain
A = (An)n∈N0 coincide with those in (8), (9) and (11) of the dual process Y in Theorem
2.3 (iii) with p defined via (18). Note that q := 1 − p is completely monotone and that
p(0) = 0, i.e., the condition (ii) (and, therefore, also (i) and (iii)) of Theorem 2.3 holds. The
random variables Yn and An have therefore the same distribution. Consequently, Yn can be
interpreted as the number of ancestral mating units n generations backwards in time under
the K-type Moran model.
We can also include the case K = 0 (p(x) ≡ 0) with the interpretation of a population
consisting of N individuals of the same type in each generation. In each step (forwards

10



in time) one randomly chosen individual is (by definition) replaced by a non-descendant
individual. In this case we have pi,i−1 = i/N and pii = 1 − i/N in agreement with Lemma
3.1 for K = 0.
Fortunately, these arguments carry over to a much larger class of functions p. Suppose that
p : [0, 1] → [0, 1] is any continuous function satisfying p(0) = 0 and that q := 1 − p is
completely monotone. Then, as pointed out in the remark after Lemma 2.2, there exists a
random variable η taking values in N0 such that p(x) = 1 − E((1 − x)η) for all x ∈ [0, 1].
In this situation, the Markov chains X and Y can be interpreted probabilistically in the
following way. Consider a population where each individual has one of max(η, 1) possible
types. The population consists in each generation of N mating units, where a mating unit is
(by definition) a set of max(η, 1) individuals of different types. Assume that, conditioned on
η = K (K ∈ N0), the population evolves according to the K-type Moran model introduced
before. Then, X counts the number of mating units forwards in time and Y those backwards
in time. We therefore have found - for continuous functions p : [0, 1] → [0, 1] satisfying
p(0) = 0 and such that q := 1 − p is completely monotone - a meaningful probabilistic
interpretation for the dual chain Y : The random variable Yn can be interpreted as the number
of ancestral mating units n generations backwards in time under the multi-type Moran model
with random number η of types.

4 A weak convergence result for the ancestral process

In this section it is always assumed that the continuous function p : [0, 1] → [0, 1] satisfies
p(0) = 0 and that q := 1− p is completely monotone such that the existence of the ancestral
process Y = (Yn)n∈N0 is guaranteed by Theorem 2.3. We are interested in the asymptotic
behaviour of Y as N tends to infinity. Before the main convergence result (Theorem 4.2) is
presented, the moments of Yn+1, conditioned on Yn = i, are studied in some more detail.

Lemma 4.1 For all i ∈ {0, . . . , N},

E(Yn+1 − i |Yn = i) =
i(N − i + 1)

N
p

(
1
N

)
− i

N
(19)

and

E((Yn+1 − i)2 |Yn = i) =
i

N
+

i(N − i + 1)(2N − 2i− 1)
N

p

(
1
N

)
− i(N − i + 1)(N − i)

N
p

(
2
N

)
. (20)

Proof. Taking the r-th derivative (r ∈ N0) with respect to x in (12) yields (Leibniz rule)(
∂

∂x

)r

E(xYn+1 |Yn = i) =
N − i

N
(i)rx

i−r +
i

N

N−i+1∑
l=0

(
N − i + 1

l

)
q

(
l

N

)
·

·
r∑

k=0

(
r

k

)
(N − l)kxN−l−k(l)r−k(1− x)l−r+k(−1)r−k.

11



For x = 1 only the index k = r − l contributes to the last sum. Thus, Yn+1, conditioned on
Yn = i, has descending factorial moments

E((Yn+1)r |Yn = i) =
N − i

N
(i)r +

i

N

N−i+1∑
l=0

(
N − i + 1

l

)
q

(
l

N

)(
r

l

)
(N − l)r−ll!(−1)l.

For r = 1,

E(Yn+1 |Yn = i) =
i(N − i)

N
+

i

N

(
Nq(0)− (N − i + 1)q

(
1
N

))
=

i

N

(
N − 1 + (N − i + 1)p

(
1
N

))
,

as q(0) = 1, and (19) follows immediately. For r = 2,

E((Yn+1)2 |Yn = i) =
(N − i)(i)2

N

+
i

N

(
(N)2q(0)− 2(N − i + 1)(N − 1)q

(
1
N

)
+ (N − i + 1)2q

(
2
N

))
=

i

N

(
(i− 1)(N − 2) + 2(N − i + 1)(N − 1)p

(
1
N

)
− (N − i + 1)2p

(
2
N

))
.

Therefore,

E((Yn+1 − i)2 |Yn = i)
= E(Y 2

n+1 |Yn = i)− 2iE(Yn+1 |Yn = i) + i2

= E((Yn+1)2 |Yn = i) + (1− 2i)E(Yn+1 |Yn = i) + i2

=
i

N

(
(i− 1)(N − 2) + 2(N − i + 1)(N − 1)p

(
1
N

)
− (N − i + 1)2p

(
2
N

))
+(1− 2i)

i

N

(
N − 1 + (N − i + 1)p

(
1
N

))
+ i2

=
i

N

(
1 + (N − i + 1)(2N − 2i− 1)p

(
1
N

)
− (N − i + 1)2p

(
2
N

))
,

which completes the proof of the lemma. 2

We are able to verify a weak convergence result for the ancestral process Y under the addi-
tional condition that the random variable η in Theorem 2.3 satisfies E(η) > 1 and E(η3) < ∞.
In terms of the function p it is therefore assumed that p′(0+) > 1 and that p′′′(0+) < ∞.
For N ∈ N and n ∈ N0 define Ŷn := (Yn − αN)/

√
N , where α := 1 − 1/p′(0+) ∈ (0, 1).

Consider the space- and time-scaled process (V (N)
t )t≥0, defined via

V
(N)
t := ŶbNtc =

YbNtc − αN
√

N
, N ∈ N, t ≥ 0. (21)
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Theorem 4.2 Suppose (see Theorem 2.3) that the continuous function p : [0, 1] → [0, 1]
satisfies p(0) = 0 and that q := 1 − p is completely monotone. Furthermore, suppose that
p′(0+) > 1 and that p′′′(0+) < ∞. If the sequence (V (N)

0 )N∈N converges in distribution to
a random variable V0, then the time- and space-scaled backward process (V (N)

t )t≥0, defined
via (21), converges weakly as N → ∞ to an Ornstein-Uhlenbeck process (Vt)t≥0 with drift
parameter µ(x) = −µx and diffusion parameter σ2(x) = σ2, where

µ :=
α

1− α
= p′(0+)− 1 ∈ (0,∞)

and

σ2 := −α(1− α)2p′′(0+) =
(1− p′(0+))p′′(0+)

(p′(0+))3
∈ (0,∞).

Remark. In terms of η the parameters α, µ and σ2 are given by

α = 1− 1
E(η)

, µ = E(η)− 1 and σ2 =
(E(η)− 1)E(η(η − 1))

(E(η))3
.

Proof. We essentially generalize Kämmerle’s proof on p. 883 of [20]. The process (Ŷn)n∈N0

is a Markov chain with state space EN := {(i − αN)/
√

N | i ∈ {0, . . . , N}}. For x ∈ EN let
i := αN + x

√
N ∈ {0, . . . , N} and note that

E(Ŷn+1−x | Ŷn = x) = E
(

Yn+1 − αN − x
√

N√
N

∣∣∣∣Yn − αN√
N

= x

)
=

1√
N

E(Yn+1− i|Yn = i).

From (19) and the expansion p(1/N) = p′(0+)/N + O(1/N2) it follows that

E(Yn+1 − i |Yn = i) =
i(N − i + 1)

N
p

(
1
N

)
− i

N

=
i

N

N − i + 1
N

p′(0+)− i

N
+ O

(
1
N

)
=

i

N

N − i

N
p′(0+)− i

N
+ O

(
1
N

)
=

(
α +

x√
N

)(
1− α− x√

N

)
1

1− α
−

(
α +

x√
N

)
+ O

(
1
N

)
= − α

1− α

x√
N
− x2

1− α

1
N

+ O

(
1
N

)
,

where the O(1/N)-term holds uniformly for all x ∈ EN . Suppose now in addition that x ∈ K
for some arbitrary but fixed compact set K ⊂ R. Then,

E(Yn+1 − i |Yn = i) = − α

1− α

x√
N

+ O

(
1
N

)
= −µ

x√
N

+ O

(
1
N

)
uniformly for all x ∈ EN ∩K. Thus it is shown that

E(Ŷn+1 | Ŷn = x) = −µ
x

N
+ O

(
1

N3/2

)
(22)
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uniformly for all x ∈ EN ∩K. Analogously,

E((Ŷn+1 − x)2 | Ŷn = x) = E
((

Yn+1 − αN − x
√

N√
N

)2 ∣∣∣∣ Yn − αN√
N

= x

)
=

1
N

E((Yn+1 − i)2 |Yn = i).

From (20) and the expansions p(1/N) = p′(0+)/N +p′′(0+)/(2N2)+O(1/N3) and p(2/N) =
2p′(0+)/N + 2p′′(0+)/N2 + O(1/N3) it follows that

E((Yn+1 − i)2 |Yn = i)

=
i

N
+

i(N − i + 1)(2N − 2i− 1)
N

p

(
1
N

)
− i(N − i + 1)(N − i)

N
p

(
2
N

)
=

i

N
+

i(N − i + 1)(2N − 2i− 1)
N

(
p′(0+)

N
+

p′′(0+)
2N2

)
− i(N − i + 1)(N − i)

N

(
2p′(0+)

N
+

2p′′(0+)
N2

)
+ O

(
1
N

)
=

i

N
− i(N − i + 1)

N2
p′(0+)−

i(N − i + 1)(N − i + 1
2 )

N3
p′′(0+) + O

(
1
N

)
= α− α(1− α)p′(0+)︸ ︷︷ ︸

=0

− α(1− α)2p′′(0+) + O

(
1√
N

)
= σ2 + O

(
1√
N

)

uniformly for all x ∈ EN ∩K. Thus,

E((Ŷn+1 − i)2 | Ŷn = x) =
σ2

N
+ O

(
1

N3/2

)
(23)

uniformly for all x ∈ EN ∩K for any arbitrary but fixed compact set K ⊂ R.
Let C∞c (R) denote the set of all functions f ∈ C∞(R) with compact support. For x ∈ EN

and f ∈ C∞c (R) let TNf(x) := E(f(Ŷn+1) | Ŷn = x). Taylor expansion yields

TNf(x)− f(x)

= f ′(x) E(Ŷn+1 − x | Ŷn = x) +
f ′′(x)

2
E((Ŷn+1 − x)2 | Ŷn = x) + RN (x)

with Lagrange remainder

RN (x) :=
f ′′′(ξ)

3!
E((Ŷn+1 − x)3 | Ŷn = x),

where ξ is a (random) point between x and Ŷn+1. In the following it is verified that RN (x) =
O(N−3/2) uniformly for all x ∈ EN . Since f ∈ C∞c (R), there exists C > 0 with |f ′′′(x)| ≤ C
for all x ∈ R. Thus,

|RN (x)| ≤ C

3!
E(|Ŷn+1 − x|3 | Ŷn = x) =

C

3!
1

N3/2
E(|Yn+1 − i|3 |Yn = i).
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From the results of Section 3 (see Theorem 3.1 and the remarks afterwards) it follows that,
conditioned on Yn = i and η = K ∈ N, the random variable Yn+1 can take only values in
{i − 1, i, i + 1, . . . , i + K − 1} with positive probability. Conditioned on Yn = i and η = 0,
Yn+1 can take only the two values i− 1 and i with positive probability. Thus, conditioned on
Yn = i, we have |Yn+1 − i| ≤ max(η, 1) ≤ η + 1. Therefore,

|RN (x)| ≤ C

3!
1

N3/2
E((η + 1)3).

In particular it is shown that RN (x) = O(N−3/2) uniformly for all x ∈ EN , since E(η3) < ∞
by assumption (p′′′(0+) < ∞).
The generator A of the Ornstein-Uhlenbeck process with drift parameter µ(x) = −µx and
diffusion parameter σ2(x) = σ2 satisfies Af(x) = 1

2σ2f ′′(x) − µxf ′(x). Thus, for all N ∈ N
and x ∈ EN ,

|N(TNf(x)− f(x))−Af(x)| ≤ |f ′(x)| |NE(Ŷn+1 − x | Ŷn − x) + µx|

+
|f ′′(x)|

2
|NE((Ŷn+1 − x)2 | Ŷn = x)− σ2|+ N |RN (x)|.

Since f has compact support, say K, the derivatives f ′(x) and f ′′(x) are both equal to zero
for x 6∈ K, and these derivatives are both bounded for x ∈ EN ∩K. Together with (22) and
(23) it follows that

lim
N→∞

sup
x∈EN

|N(TNf(x)− f(x))−Af(x)| = 0 for all f ∈ C∞c (R).

As C∞c (R) is a core for A (see [14, p. 371, Theorem 2.1]), the statement follows from [14,
p. 31, Theorem 6.5] and [14, p. 233, Corollary 8.9]. 2

Remarks. 1. The stationary distribution of the limiting Ornstein-Uhlenbeck process (Vt)t≥0

in Theorem 4.2 is the normal distribution N(0, τ2) with

τ2 :=
σ2

2µ
=

−p′′(0+)
2(p′(0+))3)

=
E(η(η − 1))
2(E(η))3

. (24)

The constant τ2 will appear later again (see Conjecture 5.5).
2. The presented proof of Theorem 4.2 uses the technical condition p′′′(0+) < ∞ in order
to control the rest term RN (x). We leave open the question whether or not Theorem 4.2
remains valid if this technical condition is replaced by the weaker condition p′′(0+) > −∞.

Example 4.3 For the K-type Moran model with parameter K ∈ {2, 3, . . .} introduced in the
previous Section 3, p(x) = 1 − (1 − x)K . Thus, p′(0+) = K > 1, p′′(0+) = −K(K − 1)
and p′′′(0+) = K(K − 1)(K − 2) < ∞. If (V (N)

0 )N∈N converges in distribution to some V0,
then, by Theorem 4.2, the time- and space-scaled ancestral process (V (N)

t )t≥0, defined via
V

(N)
t := (YbNtc − (1− 1/K)N)/

√
N for N ∈ N and t ≥ 0, converges weakly to an Ornstein-

Uhlenbeck process (Vt)t≥0 with drift parameter µ(x) = −(K − 1)x and diffusion parameter
σ2(x) = σ2 = (1− 1/K)2.
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5 Extinction probability and stationary distribution

In the following it is assumed that p(0) = 0, or, equivalently (π00 = r0 = 1− p(0)), that 0 is
an absorbing state of the Markov chain X. For i ∈ {0, . . . , N} let

βi := P (Xn = 0 eventually |X0 = i) = lim
n→∞

P (Xn = 0 |X0 = i) (25)

denote the extinction probability given that the chain X starts in X0 = i. Note that β0 = 1.
It is straightforward to check that the column vector β := (β0, . . . , βN )′ is a solution of the
fixed point equation Πβ = β, i.e. β is an eigenvector to the eigenvalue 1 of Π. Since Π is
tridiagonal, β can be computed explicitly. For example, if the state N is as well absorbing
(⇔ p(1) = 1) and if p(x) > 0 for all x > 0, then (see Eq. (2.158) of [15])

βi = 1− ϕ(i)
ϕ(N)

, i ∈ {0, . . . , N}, (26)

where

ϕ(i) :=
i−1∑
j=0

j∏
k=1

qk

pk
=

i−1∑
j=0

1(
N−1

j

) j∏
k=1

1− p( k
N )

p( k
N )

, i ∈ {0, . . . , N}, (27)

with the convention that empty sums are equal to 0 and empty products are equal to 1. Note
that ϕ(0) = 0, ϕ(1) = 1, ϕ(2) = 1 + q1/p1 and that ϕ(i) is increasing in i. For example, for
the haploid Moran model ϕ(i) = i and, hence, βi = 1 − i/N , i ∈ {0, . . . , N}. The column
vector (ϕ(0), . . . , ϕ(N))′ is as well an eigenvector to the eigenvalue 1 of Π. Thus,

qiϕ(i− 1) + piϕ(i + 1) = (pi + qi)ϕ(i), i ∈ {1, . . . , N − 1}. (28)

Lemma 5.1 If p(x) ≥ x for all x ∈ [0, 1], then the sequence (ϕ(i))i∈{0,...,N} is log-concave,
i.e., ϕ(i− 1)ϕ(i + 1) ≤ (ϕ(i))2 for all i ∈ {1, . . . , N − 1}.

Proof. For i ∈ {1, . . . , N} define the differences di := ϕ(i) − ϕ(i − 1) and note that (28)
implies that di+1 = hidi for i ∈ {1, . . . , N − 1}, where hi := qi/pi for i ∈ {1, . . . , N − 1}.
From p(x) ≥ x, x ∈ [0, 1], it follows that hi ≤ 1 for i ∈ {1, . . . , N − 1}. In the following let
i ∈ {1, . . . , N − 1} be fixed. It is easily checked that the inequality ϕ(i− 1)ϕ(i + 1) ≤ (ϕ(i))2

is equivalent to di+1di ≥ ϕ(i)(di+1 − di). Using di+1 = hidi this is in turn equivalent to
hid

2
i ≥ ϕ(i)(hidi − di), and, hence, equivalent to hidi ≥ ϕ(i)(hi − 1), because di > 0.

Plugging in di = ϕ(i)−ϕ(i− 1) it follows that this in turn is equivalent to hiϕ(i− 1) ≤ ϕ(i).
But this inequality is obviously satisfied, because ϕ(i− 1) ≤ ϕ(i) and hi ≤ 1. 2

Assume now that 1− p is completely monotone. Then, by Theorem 2.3, for each population
size N there exists a Markov chain Y which is dual to X with respect to H. We are now able
to repeat the arguments already used in Section 6 of [24] and as well in Section 5 of [25]. The
choice k = N in the duality relation

N∑
j=0

π
(n)
ij hjk =

N∑
j=0

hijp
(n)
kj
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leads to

P (Xn = 0 |X0 = i) =
E

((
N − Yn

i

))
(

N

i

) . (29)

The iN -th component of the matrix (Pn)′ = H−1ΠnH is

P (Yn = i |Y0 = N) = p
(n)
Ni =

N∑
k,l=0

(H−1)ikπ
(n)
kl hlN

=
N∑

k=0

(H−1)ikπ
(n)
k0

=
(

N

i

) N∑
k=N−i

(−1)i+k−N

(
i

N − k

)
P (Xn = 0 |X0 = k) (30)

=
(

N

i

) i∑
j=0

(−1)j−i

(
i

j

)
P (Xn = 0 |X0 = N − j).

By definition, the limit βi := limn→∞ P (Xn = 0 |X0 = i) exists for each i ∈ {0, . . . , N}.
Hence, by (30), also the limit πi := limn→∞ P (Yn = i |Y0 = N) exists for each i ∈ {0, . . . , N}.
Moreover,

N∑
i=0

πi =
N∑

i=0

lim
n→∞

P (Yn = i |Y0 = N) = lim
n→∞

N∑
i=0

P (Yn = i |Y0 = N) = 1.

Taking the limit n →∞ in (29) and (30) leads to the one-to-one correspondence

πi =
(

N

i

) i∑
j=0

(−1)i−j

(
i

j

)
βN−j , i ∈ {0, . . . , N} (31)

and

βi =
1(
N
i

) N∑
j=i

(
j

i

)
πN−j , i ∈ {0, . . . , N}. (32)

Obviously, π := (π0, . . . , πN ) is a stationary distribution of Y . Note that π0 = βN = 0.
If p(1) = 1 (N is an absorbing state of X), then the dual chain Y is not irreducible as the
state 0 is disconnected from the rest of the state space. In this case, (31) and (32) relate the
extinction probabilities β0, . . . , βN of X with the invariant measure of Y restricted to the
connected states 1, . . . , N .
If p(1) < 1 (N is a partially reflecting state of X), then the dual chain Y becomes itself
absorbing at 0. Let T0 := inf{n ∈ N0 |Yn = 0} denote the extinction time of Y . If we write
down - in analogy to the calculations around (30) - the 0j-th entries on both sides of the
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duality equation (Pn)′ = H−1ΠnH, we obtain

P (T0 ≤ n |Y0 = j) = P (Yn = 0 |Y0 = j) = p
(n)
j0

=
N∑

k,l=0

(H−1)0kπ
(n)
kl hlj =

N∑
l=0

π
(n)
Nl hlj

=
N∑

l=0

P (Xn = l |X0 = N)

(
N − l

j

)
(

N

j

) =
E

((
N −Xn

j

) ∣∣∣∣ X0 = N

)
(

N

j

) ,

giving a relationship between the distribution function of the extinction time T0 of the chain
Y started in Y0 = j and the factorial moments of N −Xn conditioned that the chain X is
started in the state X0 = N .
From (31) and (26) it follows that

πi = −
(
N
i

)
ϕ(N)

i∑
j=0

(−1)i−j

(
i

j

)
ϕ(N − j), i ∈ {1, . . . , N}. (33)

Using (27), the probability πi can be expressed in terms of the function p. However, this does
not seem to result in a simple formula for πi. We verify the following property.

Lemma 5.2 The sequence (πi)i∈{1,...,N} is log-concave (LC), positive and, hence, unimodal.

Proof. For j ∈ {0, . . . , N} define αj := ϕ(j)/ϕ(N) and α̃j := αN−j/j! and rewrite (33) in
the form

πi = (N)i

i∑
j=0

(−1)i−j+1

(i− j)!
α̃j , i ∈ {1, . . . , N}.

The sequence (αj)j∈{0,...,N} is LC because (ϕ(j))j∈{0,...,N} is LC by Lemma 5.1. The reversed
sequence (αN−j)j∈{0,...,N} is clearly LC. Thus, the sequence α̃ := (α̃j)j∈{0,...,N} is LC as a
product of two positive LC sequences. Now (

∑i
j=0 α̃j(−1)i−j+1/(i − j)!)i∈{0,...,N} = ((α̃ ∗

u)i)i∈{0,...,N} is the convolution of the two sequences α̃ and u := (ui)i∈{0,...,N}, where ui :=
(−1)i+1/i! for i ∈ {0, . . . , N}. Note that u is alternating but LC. The convolution of two LC
sequences is LC (see Wang and Yeh [30] for instance). So ((α̃∗u)i)i∈{0,...,N} is LC and positive
(because πi is positive). The sequence ((N)i)i∈{0,...,N} is positive and LC, so (πi)i∈{1,...,N}
is positive and LC as a product of two positive LC sequences. Positive LC sequences are
unimodal. 2

Let ZN be a random variable with distribution π. As in Section 6 of [24] it follows that ZN

has p.g.f.

E(sZN ) =
N∑

j=0

βj

(
N

j

)
sN−j(1− s)j , s ∈ C, (34)

and factorial moments

E((ZN )k) = (N)k

k∑
j=0

βj

(
k

j

)
(−1)j , k ∈ N0. (35)
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In particular, µN := E(ZN ) = N(1 − β1) = N/ϕ(N) and σ2
N := Var(ZN ) = N(β1 − β2 +

N(β2−β2
1)), N ∈ N. In the following we are interested in the distributional behaviour of ZN

as N →∞.

Proposition 5.3 (Weak law of large numbers for ZN )
Suppose that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and p(1) = 1 and
that 1−p is completely monotone. If p 6= id (identity), then ZN/µN → 1 in probability and in
Lr, r ≥ 1, as N →∞ and E(Zk

N ) ∼ (αN)k for all k ∈ N0, where α := 1− 1/p′(0+) ∈ (0, 1].

Proof. Theorem 2.3 (i) together with p(1) = 1 ensures that there exists a random variable
η taking values in N such that p(x) = 1−E((1−x)η) for all x ∈ [0, 1]. From p 6= id it follows
that E(η) ∈ (1,∞] and that P (η = 1) < 1. In particular,

p′(0+) := lim
x↘0

p′(x) = lim
x↘0

E(η(1− x)η−1) = E(η) ∈ (1,∞]

and
p′(1−) := lim

x↗1
p′(x) = lim

x↗1
E(η(1− x)η−1) = P (η = 1) ∈ [0, 1).

Furthermore, p(x) = 1 − E((1 − x)η) > 1 − E(1 − x) = x and, hence, 1 − p(x) < 1 − x for
x ∈ (0, 1), and, therefore,

h(x) :=
x(1− p(x))
(1− x)p(x)

∈ (0, 1) (36)

for all x ∈ (0, 1). Together with limx↘0 h(x) = 1/p′(0+) < 1 and limx↗1 h(x) = p′(1−) < 1 it
follows that γ := supx∈(0,1) h(x) < 1. For each fixed k ∈ N and all N ≥ k, qk/pk = h(k/N) →
1/p′(0+) =: β as N →∞. It follows that, for each fixed i ∈ N0,

ϕ(i) =
i−1∑
j=0

j∏
k=1

qk

pk
→

i−1∑
j=0

βj =
1− βi

α
, N →∞,

where α := 1−β ∈ (0, 1]. We now verify that limN→∞ ϕ(N) = 1/α. Clearly, ϕ(N) ≥ ϕ(i) for
N ≥ i and, hence, lim infN→∞ ϕ(N) ≥ limN→∞ ϕ(i) = (1−βi)/α for all i ∈ N0, which implies
that lim infN→∞ ϕ(N) ≥ 1/α, since 0 ≤ β < 1. In order to see that lim supN→∞ ϕ(N) ≤ 1/α
fix ε > 0 and choose i = i(ε) ∈ N such that γi/(1− γ) ≤ ε, which is possible as γ < 1. From
qk/pk = h(k/N) ≤ γ we conclude that, for N > i,

ϕ(N) = ϕ(i) +
N−1∑
j=i

j∏
k=1

qk

pk
≤ ϕ(i) +

N−1∑
j=i

γj ≤ ϕ(i) +
γi

1− γ
≤ ϕ(i) + ε.

Therefore, lim supN→∞ ϕ(N) ≤ (1−βi)/α+ε ≤ 1/α+ε. Since ε > 0 can be chosen arbitrary,
it follows that lim supN→∞ ϕ(N) ≤ 1/α. Thus, limN→∞ ϕ(N) = 1/α. Therefore, for each
fixed i ∈ N, the extinction probability βi satisfies βi = 1−ϕ(i)/ϕ(N) → βi as N →∞. From
(35) it follows that E((ZN/N)k) → αk as N → ∞ for all k ∈ N0, which is equivalent to the
assertion of the proposition, since 0 ≤ ZN/N ≤ 1 for all N ∈ N. 2

The next lemma provides precise information about the asymptotics of the mean µN = E(ZN )
and the variance σ2

N := Var(ZN ) of the stationary distribution of the ancestral process.
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Lemma 5.4 Suppose that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and
p(1) = 1 and that 1− p is completely monotone. If −∞ < p′′(0+) < 0, then

lim
N→∞

(µN − αN) = 1− p′′(0+)
2p′(0+)(1− p′(0+))

and lim
N→∞

σ2
N

N
= τ2,

with α := 1− 1/p′(0+) ∈ (0, 1) and τ2 defined in (24).

Proof. As in the proof of Proposition 5.3, consider the auxiliary function h : (0, 1) → (0, 1)
defined via (36). Recall that h(0+) := limx↘0 h(x) = 1/p′(0+) =: β ∈ (0, 1), as p′(0+) =
E(η) ∈ (1,∞). It is straightforward to check that

h′(x) =
p(x)(1− p(x))− x(1− x)p′(x)

(1− x)2(p(x))2
, x ∈ (0, 1).

Using p(x)/x ∼ p′(0+) = 1/β and applying L’Hospitals’ rule yields

h′(0+) := lim
x↘0

h′(x) = lim
x↘0

p(x)(1− p(x))− x(1− x)p′(x)
(p(x))2

= −1 + lim
x↘0

p(x)− x(1− x)p′(x)
(p(x))2

= −1 + β2 lim
x↘0

p(x)− (x− x2)p′(x)
x2

= −1 + β2 lim
x↘0

p′(x)− (1− 2x)p′(x)− x(1− x)p′′(x)
2x

= −1 + β2 lim
x↘0

(
p′(x)− (1− x)

p′′(x)
2

)
= −1 + β2

(
p′(0+)− p′′(0+)

2

)
= −α− β2

2
p′′(0+),

where α := 1− β ∈ (0, 1). For each fixed k ∈ N and all N ≥ k,

qk

pk
= h

(
k

N

)
= h(0+) + h′(0+)

k

N
+ O

(
1

N2

)
= β + h′(0+)

k

N
+ O

(
1

N2

)
,

and, therefore, for fixed j ∈ N0 and N > j,

j∏
k=1

qk

pk
= βj +

h′(0+)
N

j(j + 1)
2

βj−1 + O

(
1

N2

)
.

It follows that, for each fixed i ∈ N0,

ϕ(i) =
i−1∑
j=0

j∏
k=1

qk

pk
=

i−1∑
j=0

(
βj +

h′(0+)
2N

j(j + 1)βj−1 + O

(
1

N2

))

=
1− βi

α
+

h′(0+)Mi,β

2N
+ O

(
1

N2

)
,
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where

Mi,β :=
i−1∑
j=0

j(j + 1)βj−1 =
∂2

∂2β

i−1∑
j=0

βj+1 =
∂2

∂2β

(
1− βi+1

1− β
− 1

)

=
∂

∂β

(
1− βi+1

(1− β)2
− (i + 1)

βi

1− β

)
=

2(1− βi+1)
(1− β)3

+ (i + 1)
(

βi−1

1− β
− 2βi

(1− β)2

)
− (i + 1)2

βi−1

1− β
.

Note that M1,β = 0, M2,β = 2 and that limi→∞Mi,β = 2/(1− β)3 = 2/α3, since β < 1.
In the following it is shown that

ϕ(N) =
1
α

+
h′(0+)

α3

1
N

+ O

(
1

N2

)
, N →∞. (37)

As in the previous proof let γ := supx∈(0,1) h(x) < 1. For fixed ε ∈ (0, 1) and all N ∈ N,

0 ≤ N2(ϕ(N)− ϕ(bNεc)) = N2
N−1∑

j=bNεc

j∏
k=1

h

(
k

N

)
≤ N2

N−1∑
j=bNεc

γj ≤ N2 γbN
εc

1− γ
→ 0

as N →∞. Thus, it suffices to show that, for some ε ∈ (0, 1),

ϕ(bNεc) =
1
α

+
h′(0+)

α3

1
N

+ O

(
1

N2

)
, N →∞.

In order to see this, fix some ε ∈ (0, 1/2) (for example ε = 1/4) and adapt the previous
arguments to the case when i := iN := bNεc depends on N . For all k ∈ {1, . . . , iN},

qk

pk
= h

(
k

N

)
= β + h′(0+)

k

N
+ O

(
k2

N2

)
, N →∞.

Therefore, for j ∈ {0, . . . , iN − 1},
j∏

k=1

qk

pk
= βj +

h′(0+)
N

j(j + 1)
2

βj−1 + O

(
j4βj−2

N2

)
, N →∞.

It follows that

ϕ(iN ) =
iN−1∑
j=0

j∏
k=1

qk

pk
=

iN−1∑
j=0

(
βj +

h′(0+)
2N

j(j + 1)βj−1 + O

(
j4βj−2

N2

))

=
1− βiN

α
+

h′(0+)MiN ,β

2N
+ O

(
1

N2

)
=

1
α

+
h′(0+)

α3

1
N

+ O

(
1

N2

)
,

since βiN = O(1/N2) and MiN ,β = 2/α3 + O(i2NβiN ) = 2/α3 + O(1/N). The proof of (37) is
complete. Taylor expansion of f(x) := 1/x at the point 1/α yields

1
ϕ(N)

= f(ϕ(N)) = f

(
1
α

)
+ f ′

(
1
α

)(
ϕ(N)− 1

α

)
+ O

((
ϕ(N)− 1

α

)2)

21



= α− α2

(
ϕ(N)− 1

α

)
+ O

((
ϕ(N)− 1

α

)2)
= α− h′(0+)

α

1
N

+ O

(
1

N2

)
, N →∞,

where the last equality follows from (37). Hence, for each fixed i ∈ N, the extinction proba-
bility βi satisfies

βi = 1− ϕ(i)
ϕ(N)

= 1−
(

1− βi

α
+

h′(0+)Mi,β

2
1
N

+ O

(
1

N2

))(
α− h′(0+)

α

1
N

+ O

(
1

N2

))
= βi +

(
1− βi

α2
− α

2
Mi,β

)
h′(0+)

N
+ O

(
1

N2

)
, N →∞.

In particular, β1 = β + h′(0+)/(αN) + O(1/N2) and β2 = β2 + β(3 − β)h′(0+)/(αN) +
O(1/N2). The mean µN := E(ZN ) and the variance σ2

N := Var(ZN ) of the stationary distri-
bution thus satisfy

lim
N→∞

(µN −Nα) = lim
N→∞

N(1− β1 − α) = −h′(0+)
α

= 1 +
β2

2α
p′′(0+) = 1− p′′(0+)

2p′(0+)(1− p′(0+))

and

lim
N→∞

σ2
N

N
= lim

N→∞
(β1 − β2 + N(β2 − β2

1))

= β(α + h′(0+)) = −β3

2
p′′(0+) =

−p′′(0+)
2(p′(0+))3

= τ2,

which completes the proof. 2

As already mentioned at the end of Section 4, the limiting Ornstein-Uhlenbeck process in
Theorem 4.2 has stationary distribution N(0, τ2). Based on the intuition that it is allowed
to interchange the time limit t → ∞ and the space-limit N → ∞, it is therefore natural to
state the following conjecture.

Conjecture 5.5 (Central limit theorem for ZN )
Suppose that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and p(1) = 1 and that
1− p is completely monotone. If −∞ < p′′(0+) < 0, then (ZN − αN)/

√
N weakly converges

to the normal law N(0, τ2) as N → ∞, with α = 1 − 1/p′(0+) ∈ (0, 1) and τ2 ∈ (0,∞)
defined in (24).

Remarks. If Conjecture 5.5 holds, then Lemma 2 on p. 99 of Bender [3] even shows that
ZN is locally asymptotic normal, since (πi)i is log-concave by Lemma 5.2.
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We comment on possible approaches to prove Conjecture 5.5. Let ϕN denote the characteristic
function of ZN . By (34),

ϕN (t) := E(eitZN ) =
N∑

j=0

βj

(
N

j

)
eit(N−j)(1− eit)j , t ∈ R.

In order to verify Conjecture 5.5 one could apply the continuity theorem and try to show the
pointwise convergence

E(eit(ZN−αN)/
√

N ) = e−itα
√

NϕN (t/
√

N) → e−
1
2 (t/τ)2 , t ∈ R, (38)

of the corresponding characteristic functions. However, this seems to be not a simple task
because all the extinction probabilities βj (also with index j of order N) enter the formula
for ϕN (t) and, therefore, it seems to be not sufficient to work with expansions of βj (in terms
of powers of 1/N) for fixed j. Moreover, high order expansions for βj seem to be needed.
Another possibility to verify Conjecture 5.5 would be to apply the method of moments, i.e.,
to verify that, for all k ∈ N0,

lim
N→∞

E
((

ZN − αN

τ
√

N

)k)
= E(Zk), (39)

where Z is a standard normal distributed random variable. Because of the formula (35) for
the factorial moments of ZN , only the extinction probabilities βj with indices j ∈ {0, . . . , k}
enter the expectation on the left hand side in (39). Thus, this approach has the advantage
that one can work with expansions of βj with j fixed (bounded by k). However, still high
order expansions of βj are needed. Such expansions are in principle obtainable as follows. For
k ∈ {1, . . . , N}

qk

pk
= h

(
k

N

)
=

∞∑
l=0

h(l)(0+)
l!

(
k

N

)l

.

and, therefore, for j ∈ {1, . . . , N},

j∏
k=1

qk

pk
=

j∏
k=1

∞∑
l=0

h(l)(0+)
l!

(
k

N

)l

=
∑

l1,...,lj∈N0

j∏
k=1

h(lk)(0+)
lk!

(
k

N

)lk

=
∞∑

l=0

1
N l

∑
l1,...,lj∈N0
l1+···+lj=l

j∏
k=1

h(lk)(0+)
lk!

klk .

Summation yields the following expansion of ϕ(i) in powers of 1/N

ϕ(i) = 1 +
i−1∑
j=1

j∏
k=1

qk

pk
= 1 +

∞∑
l=0

1
N l

i−1∑
j=1

∑
l1,...,lj∈N0
l1+···+lj=l

j∏
k=1

h(lk)(0+)
lk!

klk .
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This finally leads to expansions for βi := 1 − ϕ(i)/ϕ(N). However, these expansions look
rather complicated and the approach does not look very promising.
A third approach to verify Conjecture 5.5 would be to verify that, for each N ∈ N, all the N
roots of the polynomial

PN (z) :=
N∑

j=0

βN−j

(
N

j

)
zj =

N∑
j=0

βj

(
N

j

)
zN−j , z ∈ C,

are real. By Theorem 2 of Bender [3] (see also Harper [18]), even the local asymptotic nor-
mality of ZN would follow immediately. Note that

PN (z) =
N∑

j=0

πj(z + 1)N−jzj , N ∈ N, z ∈ C.

Thus PN has no real roots outside the interval [−1, 0]. It is therefore in principle possible to
count the number of real roots of PN using Sturm’s theorem. Unfortunately, as Example 6.2
in the following section shows, PN does not always have N real roots. This third approach
therefore, if at all, may only work for particular models.

6 Examples

In Section 3 we got already familiar with a fundamental example, the multi-type Moran
model. In this section we provide some more details for this model. Afterwards further con-
crete examples are presented, some of them involving selective forces acting on particular
genes or genotypes. The functions p in these examples have been also considered in [19] in
the context of a modified Wright-Fisher model.

Example 6.1 (The K-type Moran model) For a constant K ∈ N consider the K-type Moran
model already introduced in Section 3. Kämmerle [20] showed that, for K = 2, the Markov
chain X has extinction probabilities βi =

(
N−1

i

)
/
(
2N
i

)
, i ∈ {0, . . . , N}. In particular,

ϕ(i) =
2N

N + 1

(
1−

(
N−1

i

)(
2N
i

) )
, i ∈ {0, . . . , N}

and, hence, ϕ(N) = 2N/(N+1) → 2. Kämmerle furthermore verified that, for K = 2, the sta-
tionary distribution of the chain Y is the hypergeometric distribution πi =

(
N
i

)(
N

i−1

)
/
(

2N
N+1

)
,

i ∈ {1, . . . , N}. In particular, E(ZN ) = (N +1)/2 ∼ N/2, Var(ZN ) = (N2−1)/(4(2N−1)) ∼
N/8, ZN/N → 1/2 in probability and (ZN −N/2)/N1/2 weakly converges to the normal law
with mean 0 and variance 1/8 as N →∞, in agreement with Proposition 5.3 and Conjecture
5.5, as p′(0+) = 2 and p′′(0+) = −2.
For arbitrary parameter K ∈ {2, 3, . . .} we have p′(0+) = K. Therefore, ZN/N → 1−1/K in
probability and in Lr, r ≥ 1, as N →∞ by Proposition 5.3. Moreover, p′′(0+) = −K(K−1).
By Conjecture 5.5, we conjecture that (ZN − N(1 − 1/K))/N1/2 weakly converges to the
normal law with mean 0 and variance τ2 = −p′′(0+)/(2(p′(0+))3) = (K − 1)/(2K2).
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Example 6.2 (A selection model) For some parameter s > 0 let p(x) := (1 + s)x/(1 + sx).
This choice of p corresponds to the well known selection model in which two genes A and a
are considered, where A is selectively advantageous with fitness 1+s whereas a has standard
fitness 1. The variable Xn of the Markov chain X = (Xn)n∈N0 counts the number of genes
A at time (generation) n of a population of size N . The case s = 0 is excluded because it
corresponds to the standard Moran model. Negative values of s are also excluded because, in
this case, the function 1− p is not completely monotone. Note that p(x) = 1− E((1− x)η),
where η is a random variable with distribution P (η = k) = sk−1/(1 + s)k = βαk−1, k ∈ N,
with α := s/(s + 1) ∈ (0, 1) and β := 1− α. We have

ϕ(i) =
s + 1

s

(
1−

(
1

s + 1

)i)
=

1− βi

α
, i ∈ {0, . . . , N}.

For this particular example, ϕ(i) does not depend on N . The extinction probability is βi =
1− (1− βi)/(1− βN ), i ∈ {0, . . . , N}. The chain Y has stationary distribution

πi =
1

1− βN

(
N

i

)
αiβN−i, i ∈ {1, . . . , N},

which is the binomial distribution with parameters N and α, conditioned that it does not take
the value 0. Consequently, (ZN−αN)/(Nαβ)1/2 weakly converges to the standard normal law
as N →∞, in agreement with Conjecture 5.5, as p′(0+) = 1+s and p′′(0+) = −2s(s+1) and,
therefore, τ2 := −p′′(0+)/(2(p′(0+))3) = s/(s + 1)2 = αβ. Theorem 4.2 is applicable. The
limiting Ornstein-Uhlenbeck process has drift parameter µ(x) = −sx and diffusion parameter
σ2(x) = σ2 = 2s2/(s+1)2. The p.g.f. z 7→ E(zZN ) =

∑N
i=1 πiz

i = ((αz+β)N−βN )/(1−βN ),
z ∈ C, has at most two real roots, namely always z = 0 and also z = −2β/α, if N is even.
Both this roots have multiplicity 1. This example shows that, in general, not all the N roots
of the p.g.f. of ZN are real. Thus, in general it is not possible to verify Conjecture 5.5 by
showing that all the roots of the p.g.f. of ZN are real.

Example 6.3 (Selection with dominance) Let s, h ∈ R be two parameters with s > −1 and
sh > −1. Suppose that

p(x) =
(1 + s)x2 + (1 + sh)x(1− x)

1 + sx2 + 2shx(1− x)
. (40)

In this model, genotype AA (respectively Aa and aa), with frequency x2 (respectively 2x(1−
x) and (1− x)2) has fitness 1 + s (respectively 1 + sh and 1). The parameter h measures the
degree of dominance of the heterozygote Aa. Note that (40) can be put into the canonical
form of deviation from neutrality as

p(x) = x + sx(1− x)
h− x(2h− 1)

1 + sx2 + 2shx(1− x)
,

where the fraction appearing on the right hand side is the ratio of difference of marginal
fitness of A and a to their mean fitness. The case s > 0 and h ∈ (0, 1) corresponds to
directional selection, where genotype AA has highest fitness and Aa has intermediate fitness.
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In this situation, the marginal fitness of A exceeds the one of a and selective sweeps are
expected.
For s > 0 and h ∈ (0, 1/2) allele A is dominant to a, whereas for s > 0 and h ∈ (1/2, 1) allele
A is recessive to a (a stabilizing effect slowing down the sweep). The critical value h = 1/2
corresponds to balancing selection with

p(x) = x +
s

2
x(1− x)
1 + sx

.

Note that if p(x) is the selection mechanism with dominance (40) with parameters s and
h, then p̄(x) := 1 − p(1 − x) is a selection with dominance mechanism with parameters
s̄ := −s/(s + 1) and h̄ := 1− h.
It is now verified that q := 1 − p is completely monotone if and only if s = 0 or h = 1/2 or
h ∈ (0, 1/2) and s ≥ (1− 2h)/h2 (> 0).
For s = 0 this is clear, because, in that case, the model reduces to the standard haploid Moran
model (p(x) = x). For h = 1/2, it is easily seen that p(x) = 1−E((1−x)η), where η is a random
variable with distribution P (η = 1) = (2+ s)/(2(1+ s)) and P (η = k) = sk−1/(2(1+ s)k) for
k ∈ {2, 3, . . .}. In particular, q is completely monotone for h = 1/2. Assume now that s 6= 0
and that h 6= 1/2. Then we shall see soon that q is completely monotone if and only if the
roots of the denominator D in (40) are real and negative. The roots are real if and only if
s2h2 ≥ s(1 − 2h). We have D := 1 + 2shx + s(1 − 2h)x2 = s(1 − 2h)(x2 + Sx + P ), where
S := 2h/(1 − 2h) and P := 1/(s(1 − 2h)). Thus, the roots are both negative if and only if
S > 0 and P > 0, or, equivalently, if and only if s > 0 or h ∈ (0, 1/2). Thus, q is completely
monotone if and only if s = 0 or h = 1/2 or h ∈ (0, 1/2) and s ≥ (1− 2h)/h2.
In the following the case h ∈ (0, 1/2) and s ≥ (1 − 2h)/h2 (> 0) is studied in more detail.
Let x+ and x− denote the two real negative roots, i.e.,

x± :=
−sh±

√
s2h2 − s(1− 2h)

s(1− 2h)
=

−h±
√

h2 − (1− 2h)/s

1− 2h
.

Note that x− ≤ x+ < 0. Both roots coincide (x+ = x− = −h/(1− 2h)) for s = (1− 2h)/h2.
Two cases are now distinguished.

Case 1. Assume that x+ 6= x−. Then, expansion into partial fractions yields

q(x) = 1− p(x) =
(1− x)(1 + shx)

s(1− 2h)(x− x+)(x− x−)
= A +

B

x− x+
+

C

x− x−

with

A :=
−h

1− 2h
, B :=

(1− x+)(1 + shx+)
s(1− 2h)(x+ − x−)

and C :=
(1− x−)(1 + shx−)
s(1− 2h)(x− − x+)

.

From s ≥ (1− 2h)/h2 it follows that 1 + shx+ ≥ 0 and 1 + shx− ≤ 0. Thus, B,C ≥ 0 from
which it follows that q is completely monotone. The p.g.f. of η is

E(xη) = q(1− x) = A +
B

1− x− x+
+

C

1− x− x−
= A +

Bα+

1− xα+
+

Cα−
1− xα−

,
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where α± := 1/(1 − x±) ∈ (0, 1). Thus, P (η = 0) = A + Bα+ + Cα− = 0 and P (η = k) =
Bαk+1

+ + Cαk+1
− for k ∈ N.

Case 2. Assume that x+ = x− = −h/(1− 2h). Then, s = (1− 2h)/h2 and q reduces to

q(x) =
(1− x)(1 + shx)

s(1− 2h)(x− x+)2
=

1− x

sh(x− x+)
=

h(1− x)
x(1− 2h) + h

= A +
B

x− x+

with A := −1/(sh) = −h/(1 − 2h) as before but B := (1 − x+)/(sh) = h(1 − h)/(1 − 2h)2.
Again, q is completely monotone, as B ≥ 0. The p.g.f. of η is

E(xη) = q(1− x) = A +
B

1− x− x+
= A +

Bα+

1− xα+
,

where α+ := 1/(1 − x+) ∈ (0, 1). Thus, P (η = 0) = A + Bα+ = −h/(1 − 2h) + 1/(sh) = 0
and P (η = k) = Bαk+1

+ for k ∈ N.
Suppose now that s 6= 0 and that h = 1/2 or that h ∈ (0, 1/2) and s ≥ (1−2h)/h2. Then, the
conditions of Proposition 5.3 are satisfied. Therefore, ZN/N → α in probability and in Lr,
r ≥ 1, where α := 1− 1/p′(0+) = 1− 1/(sh + 1) = sh/(sh + 1) ∈ (0, 1). It is straightforward
to check that p′′(0+) = −2s(2sh2 + 3h − 1). Thus, by Conjecture 5.5, we conjecture that
(ZN − αN)/N1/2 weakly converges to the normal distribution with mean 0 and variance
τ2 = −p′′(0+)/(2(p′(0+))3) = s(2sh2 + 3h − 1)/(sh + 1)3 ∈ (0,∞). The limiting Ornstein-
Uhlenbeck process in Theorem 4.2 has drift parameter µ(x) = −αx/(1 − α) = −shx and
diffusion parameter σ2(x) = σ2 = −α(1− α)2p′′(0+) = 2s2h(2sh2 + 3h− 1)/(sh + 1)3.

In the following example the function p may have infinite moments (depending on a parameter
a > 0) such that our results are only partly applicable.

Example 6.4 Fix a constant a > 0 and let η be a random variable taking values in N
such that P (η ≥ k) = k−a for all k ∈ N. A simple representation for the function p(x) =
1− E((1− x)η) = 1−

∑∞
k=1(1− x)k(k−a − (k + 1)−a), x ∈ [0, 1], seems to be only available

for a = 1, in which case p reduces to p(x) = x(− log x)/(1−x), x ∈ [0, 1]. The variable η has
moments

E(ηr) =
∫ ∞

0

rxr−1P (η > x) dx

=
∞∑

k=1

P (η ≥ k)
∫ k

k−1

rxr−1 dx =
∞∑

k=1

kr − (k − 1)r

ka
, r > 0.

Note that E(ηr) < ∞ if and only if r < a. In particular, E(η) = ζ(a) for a > 1 and
E(η2) = 2ζ(a − 1) − ζ(a) for a > 2, where ζ denotes the zeta function. By Proposition 5.3,
ZN/N → 1 − 1/ζ(a) (= 1 for a ≤ 1) in probability and in Lr, r ≥ 1, as N → ∞. Theorem
4.2 is applicable if a > 3. In that case (see (24)) the limiting Ornstein-Uhlenbeck process has
stationary distribution N(0, τ2) with τ2 = E(η(η − 1))/(2(E(η))3) = (ζ(a− 1)− ζ(a))/ζ3(a).
However, for a ≤ 3, E(η3) = ∞, or, equivalently, p′′′(0+) = ∞, and Theorem 4.2 is not
applicable in that case.

Finally, an example is mentioned where all the moments of η are infinite.
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Example 6.5 Fix a parameter 0 < γ < 1 and consider p(x) := xγ , or, equivalently, p(x) =
1 − E((1 − x)η), where η is a random variable with distribution P (η = k) = (−1)k−1

(
γ
k

)
,

k ∈ N. It seems that the expression (26) for the extinction probability βi cannot be further
simplified in this case. Note that p′(0+) = ∞, and, hence, ZN/N → 1 in probability and in
Lr, r ≥ 1, as N →∞ by Proposition 5.3. However, Theorem 4.2 and Conjecture 5.5 are not
applicable, as p′′(0+) = −∞. We therefore do not expect a normal limiting behaviour of the
stationary distribution of Y . It would be interesting to find a non-degenerate weak limiting
law of fN (ZN ) for an appropriate scaling function fN .

References

[1] Alkemper, R. and Hutzenthaler, M. (2007) Graphical representation of some du-
ality relations in stochastic population models. Electron. Commun. Probab. 12, 206–220.
MR2320823

[2] Athreya, S.R. and Swart, J.M. (2005) Branching-coalescing particle systems.
Probab. Theory Relat. Fields 131, 376–414. MR2123250

[3] Bender, E.A. (1973) Central and local limit theorems applied to asymptotic enumer-
ation. J. Combinatorial Theory Ser. A 15, 91-111. MR0375433

[4] Berg, C., Mateu, J., and Porcu, E. (2008) The Dagum family of isotropic correla-
tion functions. Bernoulli 14, 1134–1149. (MR number not yet available)

[5] Bertoin, J. and Le Gall, J.-F. (2003) Stochastic flows associated to coalescent
processes. Probab. Theory Relat. Fields 126, 261–288. MR1990057

[6] Blythe, R.A. (2007) The propagation of a cultural or biological trait by neutral genetic
drift in a subdivided population. Theor. Popul. Biol. 71, 454–472. Zbl 1122.92052

[7] Coop, C. and Griffiths, R.C. (2004) Ancestral inference on gene trees under selec-
tion. Theor. Popul. Biol. 66, 219–232. (MR number not available)

[8] Diaconis, P. and Fill, J.A. (1990) Strong stationary times via a new form of duality.
Ann. Probab. 18, 1483–1522. MR1071805

[9] Donnelly, P. The transient behaviour of the Moran model in population genetics.
Math. Proc. Camb. Phil. Soc. 95, 349–358. MR0735377

[10] Donnelly, P. (1985) Dual processes and an invariance result for exchangeable models
in population genetics. J. Math. Biol. 23, 103-118. MR0821686

[11] Donnelly, P. (1986) Dual processes in population genetics. In: Stochastic Spatial Pro-
cesses (Lecture Notes in Mathematics 1212), Springer, Berlin, pp. 95–105. MR0877767

[12] Donnelly, P. and Rodrigues, E.R. (2000) Convergence to stationarity in the Moran
model. J. Appl. Probab. 37, 705–717. MR1782447

[13] Ethier, S. N. and Krone, S. M. (1995) Comparing Fleming-Viot and Dawson-
Watanabe processes. Stoch. Process. Appl. 60, 401-421. MR1376800

28

http://www.ams.org/mathscinet-getitem?mr2320823
http://www.ams.org/mathscinet-getitem?mr2123250
http://www.ams.org/mathscinet-getitem?mr0375433
http://www.ams.org/mathscinet-getitem?mr1990057
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1122.92052&format=complete
http://www.ams.org/mathscinet-getitem?mr1071805
http://www.ams.org/mathscinet-getitem?mr0735377
http://www.ams.org/mathscinet-getitem?mr0821686
http://www.ams.org/mathscinet-getitem?mr0877767
http://www.ams.org/mathscinet-getitem?mr1782447
http://www.ams.org/mathscinet-getitem?mr1376800


[14] Ethier, S.N. and Kurtz, T.G. (1986) Markov Processes. Characterization and Con-
vergence. Wiley, New York. MR0838085

[15] Ewens, W.J. (2004) Mathematical Population Genetics, 2nd Edition, Springer, New
York. MR2026891

[16] Feller, W. (1971) An Introduction to Probability Theory and Its Applications, Volume
II, 2nd Edition, Wiley, New York. MR0270403

[17] Griffeath, D. (1993) Frank Spitzer’s pioneering work on interacting particle systems.
Ann. Probab. 21, 608–621. MR1217556

[18] Harper, L.H. (1967) Stirling behavior is asymptotically normal. Ann. Math. Statist.
38, 410–414. MR0211432

[19] Huillet, T. (2009) A duality approach to the genealogies of discrete non-neutral
Wright-Fisher models. Journal of Probability and Statistics, to appear.

[20] Kämmerle, K. (1989) Looking forwards and backwards in a bisexual Moran model. J.
Appl. Probab. 26, 880–885. MR1025405

[21] Liggett, T.M. (1985) Interacting particles systems. Springer, Berlin. MR0776231

[22] Liggett, T.M. (1999) Stochastic interacting systems: contact, voter and exclusion pro-
cesses. Springer, Berlin. MR1717346

[23] Moran, P.A.P. (1958) Random processes in genetics. Proc. Camb. Philos. Soc. 54,
60–71. MR0127989
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