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) for all x ∈ [0, 1], then for each N a dual process Y to X (with respect to a specific duality function) exists if and only if 1 -p is completely monotone with p(0) = 0. A probabilistic interpretation of Y in terms of an ancestral process of a multi-type Moran model with a random number of types is presented. It is shown that under weak conditions on p the process Y , properly time-and space-scaled, converges to an Ornstein-Uhlenbeck process as N tends to infinity. The asymptotics of the stationary distribution of Y is studied as N tends to infinity. Examples are presented involving selection mechanisms.

Introduction

Assume that X = (X t ) t∈T and Y = (Y t ) t∈T are two time-homogeneous Markov processes with state spaces (E 1 , F 1 ) and (E 2 , F 2 ) respectively. Typical time sets are T = {0, . . . , n} for some n ∈ N := {1, 2, . . .}, countable sets T = N 0 := {0, 1, 2, . . .} or as well continuous time sets such as the unit interval T = [0, 1] or T = [0, ∞). Let B(E 1 × E 2 ) denote the set of all real-valued bounded measurable functions on E 1 × E 2 . We recall the definition of duality of Markov processes in the sense of Liggett [START_REF] Liggett | Interacting particles systems[END_REF].

Definition 1.1 The process X is said to be dual to Y with respect to

H ∈ B(E 1 × E 2 ) if E x H(X t , y) = E y H(x, Y t ) (1) 
for all x ∈ E 1 , y ∈ E 2 and t ∈ T , where E x denotes the expectation given that the process X starts in X 0 = x and E y denotes the expectation given that the process Y starts in Y 0 = y.

Dual processes occur in many applications, usually when considering some phenomena forwards and backwards in time. For typical dual processes in the mathematics and physics literature on interacting particle systems we refer to [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF][START_REF] Griffeath | Frank Spitzer's pioneering work on interacting particle systems[END_REF][START_REF] Liggett | Interacting particles systems[END_REF][START_REF] Liggett | Stochastic interacting systems: contact, voter and exclusion processes[END_REF][START_REF] Spitzer | Interaction of Markov processes[END_REF][START_REF] Sudbury | Quantum operators in classical probability theory: II. The concept of duality in interacting particle systems[END_REF] and references therein. Other important examples occur in the context of mathematical population genetics [START_REF] Alkemper | Graphical representation of some duality relations in stochastic population models[END_REF][START_REF] Athreya | Branching-coalescing particle systems[END_REF][START_REF] Bertoin | Stochastic flows associated to coalescent processes[END_REF][START_REF] Blythe | The propagation of a cultural or biological trait by neutral genetic drift in a subdivided population[END_REF][START_REF] Donnelly | Dual processes and an invariance result for exchangeable models in population genetics[END_REF][START_REF] Donnelly | Dual processes in population genetics[END_REF][START_REF] Donnelly | Convergence to stationarity in the Moran model[END_REF][START_REF] Ethier | Comparing Fleming-Viot and Dawson-Watanabe processes[END_REF][START_REF] Ethier | Markov Processes. Characterization and Convergence[END_REF][START_REF] Huillet | A duality approach to the genealogies of discrete non-neutral Wright-Fisher models[END_REF][START_REF] Möhle | The concept of duality and applications to Markov processes arising in population genetics models[END_REF][START_REF] Möhle | Forward and backward diffusion approximations for haploid exchangeable population models[END_REF] and essentially go back to similar duality results for stochastically monotone Markov processes [START_REF] Siegmund | The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes[END_REF].

Here we are interested in a particular class of Markov chains X of the following form. Let p : [0, 1] → [0, 1] be some function. For fixed N ∈ N consider a Markov chain X = (X n ) n∈N0 with state space {0, . . . , N } and tridiagonal transition matrix

Π = (π ij ) i,j∈{0,...,N } =          r 0 p 0 0 • • • 0 q 1 r 1 p 1 . . . . . . 0 . . . . . . . . . 0 . . . . . . q N -1 r N -1 p N -1 0 • • • 0 q N r N          , (2) 
where, for i ∈ {0, . . . , N },

p i := 1 - i N p i N , q i := i N 1 -p i N (3) 
and

r i := 1 -p i -q i = 1 - i N 1 -p i N + i N p i N . (4) 
For particular choices of the function p the Markov chain X is well known from the literature on mathematical population genetics. For p = id (identity) the chain X counts the number of descendants in the classical haploid Moran model [START_REF] Moran | Random processes in genetics[END_REF] with population size N (see also (3.45) -(3.47) on p. 105 of Ewens [START_REF] Ewens | Mathematical Population Genetics, 2nd Edition[END_REF]). For p(x) = 1 -(1 -x) 2 , x ∈ [0, 1], the chain X is the forward process of a two-sex model introduced by Kämmerle [START_REF] Kämmerle | Looking forwards and backwards in a bisexual Moran model[END_REF]. For closely related Moran models in continuous time we refer to Coop and Griffiths [START_REF] Coop | Ancestral inference on gene trees under selection[END_REF], Donnelly [START_REF] Donnelly | The transient behaviour of the Moran model in population genetics[END_REF] and Donnelly and Rodrigues [START_REF] Donnelly | Convergence to stationarity in the Moran model[END_REF]. In Section 3 we provide (for a suitable subclass of functions p) a population model such that X counts the number of 'mating units' forwards in time in this model.

Note that E(X n+1 | X n = i) = i + p(i/N ) -i/N for all i ∈ {0, . . . , N }. Thus, if p(x) ≤ x for all x ∈ [0, 1], then X is a super-martingale. If p(x) ≥ x for all x ∈ [0, 1], then X is a sub-martingale. The article is organised as follows. In Section 2 the main duality result (Theorem 2.3) and its proof is given. Afterwards, in Section 3, a probabilistic interpretation of X and of the dual process Y in terms of a multi-type Moran model is presented. Section 4 deals with the convergence of Y , properly time-and space-scaled, to an Ornstein-Uhlenbeck limiting process as N tends to infinity (Theorem 4.2). In Section 5 details on the extinction probabilities of the forward chain X and on the stationary distribution of the ancestral chain Y are provided. The asymptotics of the mean and the variance of the stationary distribution of Y is given. We state a conjecture on the asymptotic normality (Conjecture 5.5) of the stationary distribution and indicate possible approaches to verify this conjecture. The article finishes with a collection of typical examples (Section 6) involving selection mechanisms.

Throughout the paper we will use the notation (x) 0 := 1 and (x) k := x(x -1) • • • (x -k + 1), x ∈ R, k ∈ N for the descending factorials. Furthermore, S(i, j), i, j ∈ N 0 , denote the Stirling numbers of the second kind.

A duality result

Before we state the main duality result (Theorem 2.3) we briefly recall some basics about completely monotone functions. In the literature (see, for example, [4, Section 2]), complete monotonicity is mostly considered for functions q with domain (0, ∞) or [0, ∞). Here we are interested in functions q with domain [0, 1], the unit interval.

Definition 2.1 A function q : [0, 1] → R is called completely monotone if it is C ∞ on (0, 1) with (-1) k q (k) (x) ≥ 0 for all k ∈ N 0 and all x ∈ (0, 1).

The following lemma is essentially a version of the classical Bernstein theorem.

Lemma 2.2 A continuous function q : [0, 1] → R is completely monotone if and only if there exists a finite measure µ on N 0 with q(1 -x) = ∞ n=0 x n µ({n}) for all x ∈ [0, 1].

Proof. If there exists a finite measure µ on N 0 with q(1 -x)

= ∞ n=0 x n µ({n}) for all x ∈ [0, 1], then (-1) k q (k) (x) = ∞ n=k n!/(n -k)!(1 -x) n-k µ({n})
≥ 0 for all k ∈ N 0 and all x ∈ (0, 1), i.e., q is completely monotone. Conversely, if q is completely monotone, then the function u :

[0, 1] → R, defined via u(x) := q(1 -x) for x ∈ [0, 1], satisfies u (n) (x) = (-1) n q (n) (1 -x) ≥ 0
for all n ∈ N 0 and all x ∈ (0, 1). Bernstein's theorem [16, Chp. VII.2, Theorem 2] for bounded functions u ensures the existence of a measure µ on N 0 such that u has power series representation u

(x) = ∞ n=0 x n µ({n}), x ∈ [0, 1]. The measure µ is finite as µ(N 0 ) = u(1) < ∞. 2 
Remark. Suppose that q : [0, 1] → R is a continuous, completely monotone function. The measure µ in Lemma 2.2 is a probability measure if and only if q(0) = 1. In this case, there exists a random variable η with distribution P (η = n) = µ({n}), n ∈ N 0 , and u(x) := q(1 -x) = E(x η ) for all x ∈ [0, 1], i.e., u is the probability generating function (p.g.f.) of η.

We now turn to the duality result. If the state spaces E 1 and E 2 of the processes X and Y in Definition 1.1 are finite, then the function H ∈ B(E 1 ×E 2 ) in Definition 1.1 can be considered as a matrix H = (h ij ) i∈E1,j∈E2 . In the literature on duality for Markov chains with identical finite state spaces E 1 = E 2 = {0, . . . , N }, the particular non-singular symmetric left upper matrix H = (h ij ) i,j∈{0,...,N } with entries

h ij := N -i j N j = N -j i N i = i-1 k=0 N -j -k N -k = j-1 k=0 N -i -k N -k (5) 
plays an important role. For example, this matrix turns out to be a suitable choice to obtain duality results for a large class of exchangeable population models [START_REF] Möhle | The concept of duality and applications to Markov processes arising in population genetics models[END_REF]. It was also used (see also the remark at the end of this section) to derive duality results for a class of nonneutral Wright-Fisher models [START_REF] Huillet | A duality approach to the genealogies of discrete non-neutral Wright-Fisher models[END_REF]. The following theorem shows that this matrix is also an appropriate choice for Moran models. (i) There exists a random variable η taking values in

N 0 such that 1 -p(1 -x) = E(x η ) for all x ∈ [0, 1].
(ii) The function q := 1 -p is completely monotone and p satisfies p(0) = 0.

(iii) For each N ∈ N there exists a Markov chain Y = (Y n ) n∈N0 such that X is dual to Y with respect to H = (h ij ) i,j∈{0,...,N } with entries (5), i.e., ΠH = HP , where P denotes the transpose of the transition matrix P = (p ij ) i,j∈{0,...,N } of Y .

Remark. Note that p does not need to satisfy p(1) = 1. The transition matrix P of the dual Markov chain Y can be expressed explicitly in terms of p. See ( 7), ( 8), ( 9) and ( 11) below. It turns out that Y is skip-free to the left, i.e., p ij = 0 for all j < i -1. In Section 3 a probabilistic interpretation of Y is provided.

Proof. The equivalence of (i) and (ii) follows immediately from the remark after Lemma 2.2.

(ii) ⇒ (iii): For i, j ∈ {0, . . . , N },

(ΠH) ij = q i h i-1,j + r i h ij + p i h i+1,j = q i N -i+1 j N j + r i N -i j N j + p i N -i-1 j N j
with p i , q i and r i as defined in ( 3) and ( 4). Define the matrix P := (p ij ) i,j∈{0,...,N } recursively over its columns via

p i0 := (ΠH) N i h N 0 =      1 for i = 0, 1 -p(1) N for i = 1, 0 for i ∈ {2, . . . , N } and 
p ij := (ΠH) N -j,i - j-1 k=0 h N -j,k p ik h N -j,j , i ∈ {0, . . . , N }, (6) 
for j ∈ {1, . . . , N }. From this definition it follows immediately that

(ΠH) N -j,i = j k=0 h N -j,k p ik = N k=0 h N -j,k p ik = (HP ) N -j,i
for all i, j ∈ {0, . . . , N }. Thus, the duality equation ΠH = HP is satisfied. It remains to verify that P is a stochastic matrix. Note that p 00 = 1 and that p ij = 0 for j < i -1. Thus, the matrix P has the form

P = (p ij ) i,j∈{0,...,N } =        1 0 • • • 0 0 • • • 0 • • • . . . . . . . . . . . . . . . 0 • • • 0        , (7) 
where the -entries are those which are now studied in more detail. From (6) it follows that, for i ∈ {1, . . . , N },

p i,i-1 = (ΠH) N -i+1,i h N -i+1,i-1 = q N -i+1 h N -i,i h N -i+1,i-1 = N -i + 1 N 1 -p N -i + 1 N 1 N i N i -1 = i N 1 -p N -i + 1 N . (8) 
In particular, p i,i-1 ≥ 0. For the diagonal entries of P we obtain from (6) that p 00 = 1 and that, for i ∈ {1, . . . , N },

p ii = (ΠH) N -i,i -h N -i,i-1 p i,i-1 h N -i,i = q N -i h N -i-1,i + r N -i h N -i,i + p N -i h N -i+1,i -h N -i,i-1 p i,i-1 h N -i,i = (i + 1)q N -i + r N -i -(N -i + 1)p i,i-1 = (i + 1) N -i N 1 -p N -i N + i N + N -2i N p N -i N -(N -i + 1) i N 1 -p N -i + 1 N = N -i N + i N (N -i + 1) p N -i + 1 N -p N -i N . (9) 
In particular, p ii ≥ 0 as the function p is increasing by condition (ii). We now proceed in the same way and obtain

p i,i+1 = (ΠH) N -i-1,i - i k=i-1 h N -i-1,k p ik h N -i-1,i+1 = (ΠH) N -i-1,i -h N -i-1,i-1 p i,i-1 -h N -i-1,i p ii h N -i-1,i+1 = (N -i) i + 2 2 q N -i-1 + r N -i-1 + 1 i + 1 p N -i-1 - N -i + 1 2 p i,i-1 - N -i 1 p ii .
Plugging in the expressions for p N -i-1 , q N -i-1 and r N -i-1 and as well the already available formulas ( 8) and (9) for p i,i-1 and p ii , and sorting afterwards with respect to the values p((N -i -1)/N ), p((N -i)/N ) and p((N -i + 1)/N ), we obtain after some straightforward manipulation that, for i ∈ {1, . . . , N -1},

p i,i+1 = i N N -i + 1 2 2p N -i N -p N -i -1 N -p N -i + 1 N . ( 10 
)
Since q is completely monotone, differences of differences of p are non-negative from which it follows that p i,i+1 ≥ 0. We now verify by induction on j ∈ {i + 1, i + 2, . . . , N } that

p ij = i N N -i + 1 j -i + 1 j-i+1 k=0 j -i + 1 k (-1) j-i-k p N -i + 1 -k N . (11) 
For j = i + 1, (11) coincides with [START_REF] Donnelly | Dual processes and an invariance result for exchangeable models in population genetics[END_REF]. Thus, [START_REF] Donnelly | Dual processes in population genetics[END_REF] is already proven for j = i + 1. The induction step from {1, . . . , j -1} to j (> i) works as follows. For j > i, we have

p ij = (ΠH) N -j,i - j-1 k=i-1 h N -j,k p ik h N -j,j = q N -j h N -j-1,i + r N -j h N -j,i + p N -j h N -j+1,i h N -j,j - j-1 k=i-1 h N -j,k h N -j,j p ik = N -i N -j q N -j j + 1 j -i + 1 + r N -j + p N -j j -i j - j-1 k=i-1 N -k j -k p ik .
As before, plugging in the expressions for p N -j , q N -j and r N -j and as well the (by induction already known) formulas for p ik , k ∈ {i -1, i, . . . , j -1}, we obtain -after some tedious but straightforward manipulations -that the latter expression coincides with the right hand side in [START_REF] Donnelly | Dual processes in population genetics[END_REF], which completes the induction. Since q is completely monotone, the sum on the right hand side in ( 11) is non-negative, which shows that p ij is non-negative for j > i. For i ∈ {1, . . . , N } it follows furthermore from ( 8), ( 9) and ( 11) that, for x ∈ [0, 1],

N j=0 p ij x j = p i,i-1 x i-1 + p ii x i + N j=i+1 p ij x j = ix i-1 N 1 -p N -i + 1 N + N -i N x i + ix i N (N -i + 1) p N -i + 1 N -p N -i N + N j=i+1 ix j N N -i + 1 j -i + 1 j-i+1 k=0 j -i + 1 k (-1) j-i-k p N -i + 1 -k N = i N x i-1 + N -i N x i + i N N j=i-1 x j N -i + 1 j -i + 1 • • j-i+1 k=0 j -i + 1 k (-1) j-i-k p N -i + 1 -k N = i N x i-1 + N -i N x i - i N N -i+1 k=0 N -i + 1 k p N -i + 1 -k N x i+k-1 • • N j=k+i-1 N -i + 1 -k j -i + 1 -k (-x) j-i+1-k = i N x i-1 + N -i N x i - i N N -i+1 k=0 N -i + 1 k • •p N -i + 1 -k N x i+k-1 (1 -x) N -i+1-k = i N x i-1 + N -i N x i - i N N -i+1 l=0 N -i + 1 l p l N x N -l (1 -x) l = N -i N x i + i N N -i+1 l=0 N -i + 1 l q l N x N -l (1 -x) l . (12) 
For x = 1, only the summand for l = 0 differs from 0, and we obtain

N j=0 p ij = (N -i)/N + i/N q(0) = 1 -i/N p(0) = 1,
as p(0) = 0 by condition (ii). Thus, P is a stochastic matrix.

(iii) ⇒ (ii): If X is dual to Y with respect to H, then the recursion (6) holds. As in the previous part of the proof it follows that the matrix P has the structure [START_REF] Coop | Ancestral inference on gene trees under selection[END_REF] with the -entries given by ( 8), ( 9) and [START_REF] Donnelly | Dual processes in population genetics[END_REF]. Consequently, ( 12) is valid, and we obtain, for x ∈ [0, 1],

E(x Yn+1 | Y n = i) = N j=0 p ij x j = N -i N x i + i N x i-1 N -i+1 l=0 N -i + 1 l q l N x N -i+1-l (1 -x) l = N -i N x i + i N x i-1 B N -i+1,q (1 -x),
where B N -i+1,q (1 -x) is the (N -i + 1)-th Bernstein polynomial of the function q evaluated at the point 1 -x. Now rewrite this equation for i = 1 as

B N,q (1 -x) = x + N (E(x Yn+1 | Y n = 1) -x). ( 13 
)
As q is continuous, the left hand side converges uniformly for x ∈ [0, 1] to q(1 -x) as N → ∞. Therefore, the right hand side in (13) converges as well uniformly for x ∈ [0, 1], and from the structure of this right hand side it follows that

q(1 -x) = ∞ k=0 a k x k , (14) 
for some non-negative real coefficients a k , k ∈ N 0 . Note that, in particular, the coefficient a 1 is non-negative, as it is the limit as

N → ∞ of 1 + N (p 11 -1) = 1 + N N -1 N + p(1) -p N -1 N -1 = N p(1) -p N -1 N ,
which is non-negative as p satisfies p(x) ≤ p(1) for all x ∈ [0, 1]. Thus, q is completely monotone. Since P is a stochastic matrix we have N j=0 p ij = 1 for all i ∈ {0, . . . , N }. On the other hand, as in the previous part of the proof, it follows that N j=0 p ij = 1 -(i/N )p(0) for all i ∈ {0, . . . , N }. Thus, the equality p(0) = 0 must hold, which completes the proof. 2 Remark. In Theorem 2.3 it is assumed that the function p :

[0, 1] → [0, 1] satisfies p(x) ≤ p(1) for all x ∈ [0, 1]. ( 15 
)
This condition is automatically satisfied if p(1) = 1. If [START_REF] Ewens | Mathematical Population Genetics, 2nd Edition[END_REF] is not satisfied, then the situation becomes more subtle. Consider for example, the function p(x) := x(1 -x), x ∈ [0, 1]. In this case, 0 is the only absorbing state of the chain X and all other states 1, . . . , N are communicating. The matrix P in [START_REF] Coop | Ancestral inference on gene trees under selection[END_REF], with entries defined via (8), ( 9) and [START_REF] Donnelly | Dual processes in population genetics[END_REF], is a stochastic matrix. More precisely, P is tridiagonal with entries

p ij =        i/N -i(i -1)(N -i + 1)/N 3 for j = i -1, (N -i)/N + i(N -i + 1)(N -2i + 1)/N 3 for j = i, i(N -i)(N -i + 1)/N 3 for j = i + 1, 0 for |i -j| > 1, i, j ∈ {0, . . . , N }.
Therefore, if Y is a Markov chain having this transition matrix P , then Y is dual to X with respect to H. However, 1 -p is not completely monotone (even not monotone). The stationary distribution of Y is concentrated in zero.

In general it can be deduced from ( 9) that certain negative values of the coefficient a 1 in ( 14) are allowed without destroying the property that P is a stochastic matrix. For simplicity, in Theorem 2.3 we restrict our considerations to the situation when p satisfies [START_REF] Ewens | Mathematical Population Genetics, 2nd Edition[END_REF].

Remark. In [START_REF] Huillet | A duality approach to the genealogies of discrete non-neutral Wright-Fisher models[END_REF] a class of Markov chains X = (X n ) n∈N0 with state space {0, . . . , N } and modified Wright-Fisher transition probabilities

π ij = N j (p(i/N )) j (1 -p(i/N )) N -j , i, j ∈ {1, . . . , N }, is studied. It is shown that, if p : [0, 1] → [0, 1] is continuous, then for each N ∈ N there exists a Markov chain Y = (Y n ) n∈N0 such that X is dual to Y with respect to H = (h ij ) i,j∈{0,.
..,N } with entries (5) if and only if the function q := 1 -p is completely monotone and p satisfies p(0) = 0. This duality result essentially coincides with that of Theorem 2.3 and was the starting point to study similar properties for other models, which finally led us to Theorem 2.3. The transition matrix P = (p ij ) i,j∈{0,...,N } of the dual chain Y in [START_REF] Huillet | A duality approach to the genealogies of discrete non-neutral Wright-Fisher models[END_REF] has entries

p ij = N j j k=0 (-1) j-k j k q i 1 - k N , i, j ∈ {0, . . . , N }, (16) 
where q i denotes the i-th power of q. There is the following alternative formula for these transition probabilities. The remark after Lemma 2.2 ensures that there exists a random variable η taking values in

N 0 such that q(1 -x) = E(x η ) for all x ∈ [0, 1]. Let η 1 , η 2 , .
. . be independent copies of η. Then,

p ij = (N ) j E(N -Li S(L i , j)), i, j ∈ {0, . . . , N }, (17) 
where L 0 := 0 and

L i := η 1 + • • • + η i for i ∈ N,
and with the notations for the descending factorials and for the Stirling numbers of the second kind as mentioned at the end of the introduction. The formula [START_REF] Griffeath | Frank Spitzer's pioneering work on interacting particle systems[END_REF] follows easily from ( 16) using the convolution property E(x Li ) = q i (1 -x) (applied to x := k/N ) and the explicit formula j!S(i, j) = j k=0 (-1) j-k j k k i for the Stirling numbers of the second kind. From (17) it is obvious that P is a stochastic matrix. In that sense the Markov chain Y in [START_REF] Huillet | A duality approach to the genealogies of discrete non-neutral Wright-Fisher models[END_REF] has a simpler structure than the chain Y in Theorem 2.3.

A multi-type Moran model

Fix a constant K ∈ N and consider a population where each individual has one of K possible types. Each generation consists of N ∈ N mating units, where a mating unit is (by definition) a set of K individuals of different types. Hence, the total population size is KN . In each generation, K children are born, one of each type, and each of this K children chooses randomly one of the ancestral mating units as its parental unit. These K new born individuals form a new mating unit of the following generation. One of the N parental mating units is chosen at random and removed from the population. For K = 1 this model coincides with the standard haploid Moran model with population size N (see, for example, (3.45) -(3.47) on p. 105 of Ewens [START_REF] Ewens | Mathematical Population Genetics, 2nd Edition[END_REF]). For K = 2 we arrive at Kämmerle's two-sex Moran model [START_REF] Kämmerle | Looking forwards and backwards in a bisexual Moran model[END_REF]. Some more details for this particular model are given at the end of this section. Fix i ∈ {1, . . . , N }. A descendant-unit of the mating units 1, . . . , i of generation 0 is any mating unit of any generation which has at least one member descending from one of these i mating units of generation 0. If X n denotes the number of descendant-units in generation n ∈ N 0 , then, it is easily seen that X := (X n ) n∈N0 is a Markov chain with state space {0, . . . , N } and transition matrix Π of the form (2) with

p(x) := 1 -(1 -x) K , x ∈ [0, 1]. (18) 
If we instead look back into the past and let A n denote the number of ancestral mating units n generations backwards in time, we obtain the so-called ancestral chain A := (A n ) n∈N0 , sometimes also called the backward chain. The following lemma provides the transition probabilities of the Markov chain A.

Lemma 3.1 The transition probabilities

p ij := P (A n+1 = j | A n = i), i, j ∈ {0, . . . , N }, of the ancestral chain A = (A n ) n∈N0 are p i,i-1 = i N i -1 N K , i ∈ {1, . . . , N }, p 00 = 1, p ii = N -i N + i N (N -i + 1) i N K - i -1 N K , i ∈ {1, . . . , N }, p ij = i N N -i + 1 j -i + 1 j-i+1 k=0 (-1) j-i+1-k j -i + 1 k i -1 + k N K for j ∈ {i + 1, . . . , i + K -1}, and p ij = 0 otherwise.
Proof. Assume that there are i ancestral mating units present in generation n. One generation backwards in time there will be i -1 ancestral mating units present if and only if one of the i mating units is removed and all K new-born individuals choose their parental unit among the i -1 remaining ancestral units. One of the i mating units is removed with probability i/N and each new-born individual chooses its parental unit among the i -1 remaining units with probability (i -1)/N . Thus, the formula for p i,i-1 follows immediately. One generation backwards in time there will be i ancestral mating units present if and only if either one of the N -i non-ancestral units is removed or if one of the i ancestral units is removed and, for some l ∈ {1, . . . , K}, exactly K -l of the K new born individuals choose their ancestral unit among the remaining i -1 ancestral units and the other l new born individuals all choose the same unit among the other N -(i -1) mating units. Thus,

p ii = N -i N + i N K l=1 K l N -(i -1) N l i -1 N K-l = N -i N + i N (N -i + 1) K l=1 K l 1 N l i -1 N K-l = N -i N + i N (N -i + 1) i N K - i -1 N K .
Similarly, there will be j (> i) ancestral mating units present one generation backward in time, if and only if one of the i ancestral mating units is removed and, for some l ∈ {0, . . . , K}, exactly K -l of the new-born individuals choose their ancestral unit among the remaining i -1 ancestral units and the other l new born individuals altogether choose j -i + 1 among the other N -(i -1) mating units. Thus,

p ij = i N K l=0 K l (N -(i -1)) j-i+1 S(l, j -i + 1) N l i -1 N K-l .
Note that p ij = 0 for j > i + K -1. Plugging in the explicit formula

S(l, j -i + 1) = 1 (j -i + 1)! j-i+1 k=0 (-1) j-i+1-k j -i + 1 k k l
for the Stirling numbers of the second kind and interchanging the sums yields

p ij = i N N -i + 1 j -i + 1 j-i+1 k=0 (-1) j-i+1-k j -i + 1 k K l=0 K l k N l i -1 N K-l = i N N -i + 1 j -i + 1 j-i+1 k=0 (-1) j-i+1-k j -i + 1 k i -1 + k N K , which completes the proof. 2 
The main consequence of Lemma 3.1 is that the transition probabilities of the ancestral chain A = (A n ) n∈N0 coincide with those in ( 8), ( 9) and ( 11) of the dual process Y in Theorem 2.3 (iii) with p defined via [START_REF] Harper | Stirling behavior is asymptotically normal[END_REF]. Note that q := 1 -p is completely monotone and that p(0) = 0, i.e., the condition (ii) (and, therefore, also (i) and (iii)) of Theorem 2.3 holds. The random variables Y n and A n have therefore the same distribution. Consequently, Y n can be interpreted as the number of ancestral mating units n generations backwards in time under the K-type Moran model. We can also include the case K = 0 (p(x) ≡ 0) with the interpretation of a population consisting of N individuals of the same type in each generation. In each step (forwards in time) one randomly chosen individual is (by definition) replaced by a non-descendant individual. In this case we have p i,i-1 = i/N and p ii = 1 -i/N in agreement with Lemma 3.1 for K = 0. Fortunately, these arguments carry over to a much larger class of functions p. Suppose that p : [0, 1] → [0, 1] is any continuous function satisfying p(0) = 0 and that q := 1 -p is completely monotone. Then, as pointed out in the remark after Lemma 2.2, there exists a random variable η taking values in

N 0 such that p(x) = 1 -E((1 -x) η ) for all x ∈ [0, 1].
In this situation, the Markov chains X and Y can be interpreted probabilistically in the following way. Consider a population where each individual has one of max(η, 1) possible types. The population consists in each generation of N mating units, where a mating unit is (by definition) a set of max(η, 1) individuals of different types. Assume that, conditioned on η = K (K ∈ N 0 ), the population evolves according to the K-type Moran model introduced before. Then, X counts the number of mating units forwards in time and Y those backwards in time. We therefore have found -for continuous functions p : [0, 1] → [0, 1] satisfying p(0) = 0 and such that q := 1 -p is completely monotone -a meaningful probabilistic interpretation for the dual chain Y : The random variable Y n can be interpreted as the number of ancestral mating units n generations backwards in time under the multi-type Moran model with random number η of types.

A weak convergence result for the ancestral process

In this section it is always assumed that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and that q := 1 -p is completely monotone such that the existence of the ancestral process Y = (Y n ) n∈N0 is guaranteed by Theorem 2.3. We are interested in the asymptotic behaviour of Y as N tends to infinity. Before the main convergence result (Theorem 4.2) is presented, the moments of Y n+1 , conditioned on Y n = i, are studied in some more detail.

Lemma 4.1 For all i ∈ {0, . . . , N },

E(Y n+1 -i | Y n = i) = i(N -i + 1) N p 1 N - i N (19) 
and

E((Y n+1 -i) 2 | Y n = i) = i N + i(N -i + 1)(2N -2i -1) N p 1 N - i(N -i + 1)(N -i) N p 2 N . (20) 
Proof. Taking the r-th derivative (r ∈ N 0 ) with respect to x in ( 12) yields (Leibniz rule)

∂ ∂x r E(x Yn+1 | Y n = i) = N -i N (i) r x i-r + i N N -i+1 l=0 N -i + 1 l q l N • • r k=0 r k (N -l) k x N -l-k (l) r-k (1 -x) l-r+k (-1) r-k .
For x = 1 only the index k = r -l contributes to the last sum. Thus, Y n+1 , conditioned on

Y n = i, has descending factorial moments E((Y n+1 ) r | Y n = i) = N -i N (i) r + i N N -i+1 l=0 N -i + 1 l q l N r l (N -l) r-l l!(-1) l . For r = 1, E(Y n+1 | Y n = i) = i(N -i) N + i N N q(0) -(N -i + 1)q 1 N = i N N -1 + (N -i + 1)p 1 N ,
as q(0) = 1, and ( 19) follows immediately. For r = 2,

E((Y n+1 ) 2 | Y n = i) = (N -i)(i) 2 N + i N (N ) 2 q(0) -2(N -i + 1)(N -1)q 1 N + (N -i + 1) 2 q 2 N = i N (i -1)(N -2) + 2(N -i + 1)(N -1)p 1 N -(N -i + 1) 2 p 2 N .
Therefore,

E((Y n+1 -i) 2 | Y n = i) = E(Y 2 n+1 | Y n = i) -2iE(Y n+1 | Y n = i) + i 2 = E((Y n+1 ) 2 | Y n = i) + (1 -2i)E(Y n+1 | Y n = i) + i 2 = i N (i -1)(N -2) + 2(N -i + 1)(N -1)p 1 N -(N -i + 1) 2 p 2 N +(1 -2i) i N N -1 + (N -i + 1)p 1 N + i 2 = i N 1 + (N -i + 1)(2N -2i -1)p 1 N -(N -i + 1) 2 p 2 N ,
which completes the proof of the lemma. 2

We are able to verify a weak convergence result for the ancestral process Y under the additional condition that the random variable η in Theorem 2.3 satisfies E(η) > 1 and E(η 3 ) < ∞.

In terms of the function p it is therefore assumed that p (0+) > 1 and that p (0+) < ∞.

For N ∈ N and n ∈ N 0 define Ŷn := (Y n -αN )/ √ N , where α := 1 -1/p (0+) ∈ (0, 1). Consider the space-and time-scaled process (V

(N ) t ) t≥0 , defined via V (N ) t := Ŷ N t = Y N t -αN √ N , N ∈ N, t ≥ 0. ( 21 
)
Theorem 4.2 Suppose (see Theorem 2.3) that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and that q := 1 -p is completely monotone. Furthermore, suppose that p (0+) > 1 and that p (0+) < ∞. If the sequence (V (N ) 0

) N ∈N converges in distribution to a random variable V 0 , then the time-and space-scaled backward process (V (N ) t ) t≥0 , defined via [START_REF] Liggett | Interacting particles systems[END_REF], converges weakly as N → ∞ to an Ornstein-Uhlenbeck process (V t ) t≥0 with drift parameter µ(x) = -µx and diffusion parameter σ 2 (x) = σ 2 , where

µ := α 1 -α = p (0+) -1 ∈ (0, ∞)
and

σ 2 := -α(1 -α) 2 p (0+) = (1 -p (0+))p (0+) (p (0+)) 3 ∈ (0, ∞).
Remark. In terms of η the parameters α, µ and σ 2 are given by

α = 1 - 1 E(η) , µ = E(η) -1 and σ 2 = (E(η) -1)E(η(η -1)) (E(η)) 3 .
Proof. We essentially generalize Kämmerle's proof on p. 883 of [START_REF] Kämmerle | Looking forwards and backwards in a bisexual Moran model[END_REF]. The process ( Ŷn ) n∈N0 is a Markov chain with state space

E N := {(i -αN )/ √ N | i ∈ {0, . . . , N }}. For x ∈ E N let i := αN + x √ N ∈ {0, . . . , N } and note that E( Ŷn+1 -x | Ŷn = x) = E Y n+1 -αN -x √ N √ N Y n -αN √ N = x = 1 √ N E(Y n+1 -i|Y n = i).
From [START_REF] Huillet | A duality approach to the genealogies of discrete non-neutral Wright-Fisher models[END_REF] and the expansion p

(1/N ) = p (0+)/N + O(1/N 2 ) it follows that E(Y n+1 -i | Y n = i) = i(N -i + 1) N p 1 N - i N = i N N -i + 1 N p (0+) - i N + O 1 N = i N N -i N p (0+) - i N + O 1 N = α + x √ N 1 -α - x √ N 1 1 -α -α + x √ N + O 1 N = - α 1 -α x √ N - x 2 1 -α 1 N + O 1 N ,
where the O(1/N )-term holds uniformly for all x ∈ E N . Suppose now in addition that x ∈ K for some arbitrary but fixed compact set

K ⊂ R. Then, E(Y n+1 -i | Y n = i) = - α 1 -α x √ N + O 1 N = -µ x √ N + O 1 N uniformly for all x ∈ E N ∩ K. Thus it is shown that E( Ŷn+1 | Ŷn = x) = -µ x N + O 1 N 3/2 (22) 
uniformly for all x ∈ E N ∩ K. Analogously,

E(( Ŷn+1 -x) 2 | Ŷn = x) = E Y n+1 -αN -x √ N √ N 2 Y n -αN √ N = x = 1 N E((Y n+1 -i) 2 | Y n = i).
From [START_REF] Kämmerle | Looking forwards and backwards in a bisexual Moran model[END_REF] and the expansions p

(1/N ) = p (0+)/N +p (0+)/(2N 2 )+O(1/N 3 ) and p(2/N ) = 2p (0+)/N + 2p (0+)/N 2 + O(1/N 3 ) it follows that E((Y n+1 -i) 2 | Y n = i) = i N + i(N -i + 1)(2N -2i -1) N p 1 N - i(N -i + 1)(N -i) N p 2 N = i N + i(N -i + 1)(2N -2i -1) N p (0+) N + p (0+) 2N 2 - i(N -i + 1)(N -i) N 2p (0+) N + 2p (0+) N 2 + O 1 N = i N - i(N -i + 1) N 2 p (0+) - i(N -i + 1)(N -i + 1 2 ) N 3 p (0+) + O 1 N = α -α(1 -α)p (0+) =0 -α(1 -α) 2 p (0+) + O 1 √ N = σ 2 + O 1 √ N uniformly for all x ∈ E N ∩ K. Thus, E(( Ŷn+1 -i) 2 | Ŷn = x) = σ 2 N + O 1 N 3/2 (23) 
uniformly for all x ∈ E N ∩ K for any arbitrary but fixed compact set

K ⊂ R. Let C ∞ c (R) denote the set of all functions f ∈ C ∞ (R) with compact support. For x ∈ E N and f ∈ C ∞ c (R) let T N f (x) := E(f ( Ŷn+1 ) | Ŷn = x).
Taylor expansion yields

T N f (x) -f (x) = f (x) E( Ŷn+1 -x | Ŷn = x) + f (x) 2 E(( Ŷn+1 -x) 2 | Ŷn = x) + R N (x)
with Lagrange remainder

R N (x) := f (ξ) 3! E(( Ŷn+1 -x) 3 | Ŷn = x),
where ξ is a (random) point between x and Ŷn+1 . In the following it is verified that R

N (x) = O(N -3/2 ) uniformly for all x ∈ E N . Since f ∈ C ∞ c (R), there exists C > 0 with |f (x)| ≤ C for all x ∈ R. Thus, |R N (x)| ≤ C 3! E(| Ŷn+1 -x| 3 | Ŷn = x) = C 3! 1 N 3/2 E(|Y n+1 -i| 3 | Y n = i).
From the results of Section 3 (see Theorem 3.1 and the remarks afterwards) it follows that, conditioned on Y n = i and η = K ∈ N, the random variable Y n+1 can take only values in {i -1, i, i + 1, . . . , i + K -1} with positive probability. Conditioned on Y n = i and η = 0, Y n+1 can take only the two values i -1 and i with positive probability. Thus, conditioned on Y n = i, we have |Y n+1 -i| ≤ max(η, 1) ≤ η + 1. Therefore,

|R N (x)| ≤ C 3! 1 N 3/2 E((η + 1) 3 ).
In particular it is shown that R N (x) = O(N -3/2 ) uniformly for all x ∈ E N , since E(η 3 ) < ∞ by assumption (p (0+) < ∞). The generator A of the Ornstein-Uhlenbeck process with drift parameter µ(x) = -µx and diffusion parameter σ 2 (x) = σ 2 satisfies Af (x) = 1 2 σ 2 f (x) -µxf (x). Thus, for all N ∈ N and x ∈ E N ,

|N (T N f (x) -f (x)) -Af (x)| ≤ |f (x)| |N E( Ŷn+1 -x | Ŷn -x) + µx| + |f (x)| 2 |N E(( Ŷn+1 -x) 2 | Ŷn = x) -σ 2 | + N |R N (x)|.
Since f has compact support, say K, the derivatives f (x) and f (x) are both equal to zero for x ∈ K, and these derivatives are both bounded for x ∈ E N ∩ K. Together with ( 22) and ( 23) it follows that lim

N →∞ sup x∈E N |N (T N f (x) -f (x)) -Af (x)| = 0 for all f ∈ C ∞ c (R).
As C ∞ c (R) is a core for A (see [14, p. 371, Theorem 2.1]), the statement follows from [14, p. 31, Theorem 6.5] and [14, p. 233, Corollary 8.9].
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Remarks. 1. The stationary distribution of the limiting Ornstein-Uhlenbeck process (V t ) t≥0 in Theorem 4.2 is the normal distribution N (0, τ 2 ) with

τ 2 := σ 2 2µ = -p (0+) 2(p (0+)) 3 ) = E(η(η -1)) 2(E(η)) 3 . (24) 
The constant τ 2 will appear later again (see Conjecture 5.5). 

(x) = 1 -(1 -x) K . Thus, p (0+) = K > 1, p (0+) = -K(K -1) and p (0+) = K(K -1)(K -2) < ∞. If (V (N ) 0
) N ∈N converges in distribution to some V 0 , then, by Theorem 4.2, the time-and space-scaled ancestral process (V

(N ) t ) t≥0 , defined via V (N ) t := (Y N t -(1 -1/K)N )/
√ N for N ∈ N and t ≥ 0, converges weakly to an Ornstein-Uhlenbeck process (V t ) t≥0 with drift parameter µ(x) = -(K -1)x and diffusion parameter

σ 2 (x) = σ 2 = (1 -1/K) 2 .

Extinction probability and stationary distribution

In the following it is assumed that p(0) = 0, or, equivalently (π 00 = r 0 = 1 -p(0)), that 0 is an absorbing state of the Markov chain X. For i ∈ {0, . . . , N } let

β i := P (X n = 0 eventually | X 0 = i) = lim n→∞ P (X n = 0 | X 0 = i) (25) 
denote the extinction probability given that the chain X starts in X 0 = i. Note that β 0 = 1.

It is straightforward to check that the column vector β := (β 0 , . . . , β N ) is a solution of the fixed point equation Πβ = β, i.e. β is an eigenvector to the eigenvalue 1 of Π. Since Π is tridiagonal, β can be computed explicitly. For example, if the state N is as well absorbing (⇔ p(1) = 1) and if p(x) > 0 for all x > 0, then (see Eq. (2.158) of [START_REF] Ewens | Mathematical Population Genetics, 2nd Edition[END_REF])

β i = 1 - ϕ(i) ϕ(N ) , i ∈ {0, . . . , N }, (26) 
where

ϕ(i) := i-1 j=0 j k=1 q k p k = i-1 j=0 1 N -1 j j k=1 1 -p( k N ) p( k N ) , i ∈ {0, . . . , N }, (27) 
with the convention that empty sums are equal to 0 and empty products are equal to 1. Note that ϕ(0) = 0, ϕ(1) = 1, ϕ(2) = 1 + q 1 /p 1 and that ϕ(i) is increasing in i. For example, for the haploid Moran model ϕ(i) = i and, hence, β i = 1 -i/N , i ∈ {0, . . . , N }. The column vector (ϕ(0), . . . , ϕ(N )) is as well an eigenvector to the eigenvalue 1 of Π. Thus,

q i ϕ(i -1) + p i ϕ(i + 1) = (p i + q i )ϕ(i), i ∈ {1, . . . , N -1}. ( 28 
)
Lemma 5.1 If p(x) ≥ x for all x ∈ [0, 1], then the sequence (ϕ(i)) i∈{0,...,N } is log-concave, i.e., ϕ(i -1)ϕ(i + 1) ≤ (ϕ(i)) 2 for all i ∈ {1, . . . , N -1}.

Proof. For i ∈ {1, . . . , N } define the differences d i := ϕ(i) -ϕ(i -1) and note that [START_REF] Spitzer | Interaction of Markov processes[END_REF] implies that d i+1 = h i d i for i ∈ {1, . . . , N -1}, where h i := q i /p i for i ∈ {1, . . . , N -1}. From p(x) ≥ x, x ∈ [0, 1], it follows that h i ≤ 1 for i ∈ {1, . . . , N -1}. In the following let i ∈ {1, . . . , N -1} be fixed. It is easily checked that the inequality ϕ(i -1)ϕ(i + 1)

≤ (ϕ(i)) 2 is equivalent to d i+1 d i ≥ ϕ(i)(d i+1 -d i ). Using d i+1 = h i d i this is in turn equivalent to h i d 2 i ≥ ϕ(i)(h i d i -d i )
, and, hence, equivalent to

h i d i ≥ ϕ(i)(h i -1), because d i > 0. Plugging in d i = ϕ(i) -ϕ(i -1) it follows that this in turn is equivalent to h i ϕ(i -1) ≤ ϕ(i).
But this inequality is obviously satisfied, because ϕ(i -1) ≤ ϕ(i) and h i ≤ 1.
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Assume now that 1 -p is completely monotone. Then, by Theorem 2.3, for each population size N there exists a Markov chain Y which is dual to X with respect to H. We are now able to repeat the arguments already used in Section 6 of [START_REF] Möhle | Forward and backward processes in bisexual models with fixed population sizes[END_REF] and as well in Section 5 of [START_REF] Möhle | The concept of duality and applications to Markov processes arising in population genetics models[END_REF]. The choice k = N in the duality relation

N j=0 π (n) ij h jk = N j=0 h ij p (n) kj leads to P (X n = 0 | X 0 = i) = E N -Y n i N i . ( 29 
)
The iN -th component of the matrix

(P n ) = H -1 Π n H is P (Y n = i | Y 0 = N ) = p (n) N i = N k,l=0 (H -1 ) ik π (n) kl h lN = N k=0 (H -1 ) ik π (n) k0 = N i N k=N -i (-1) i+k-N i N -k P (X n = 0 | X 0 = k) (30) = N i i j=0 (-1) j-i i j P (X n = 0 | X 0 = N -j).
By definition, the limit

β i := lim n→∞ P (X n = 0 | X 0 = i) exists for each i ∈ {0, . . . , N }.
Hence, by (30), also the limit

π i := lim n→∞ P (Y n = i | Y 0 = N ) exists for each i ∈ {0, . . . , N }. Moreover, N i=0 π i = N i=0 lim n→∞ P (Y n = i | Y 0 = N ) = lim n→∞ N i=0 P (Y n = i | Y 0 = N ) = 1.
Taking the limit n → ∞ in ( 29) and ( 30) leads to the one-to-one correspondence

π i = N i i j=0 (-1) i-j i j β N -j , i ∈ {0, . . . , N } (31) 
and

β i = 1 N i N j=i j i π N -j , i ∈ {0, . . . , N }. ( 32 
)
Obviously, π := (π 0 , . . . , π N ) is a stationary distribution of Y . Note that π 0 = β N = 0. If p(1) = 1 (N is an absorbing state of X), then the dual chain Y is not irreducible as the state 0 is disconnected from the rest of the state space. In this case, (31) and (32) relate the extinction probabilities β 0 , . . . , β N of X with the invariant measure of Y restricted to the connected states 1, . . . , N . If p(1) < 1 (N is a partially reflecting state of X), then the dual chain Y becomes itself absorbing at 0. Let T 0 := inf{n ∈ N 0 | Y n = 0} denote the extinction time of Y . If we write down -in analogy to the calculations around (30) -the 0j-th entries on both sides of the duality equation (P n ) = H -1 Π n H, we obtain

P (T 0 ≤ n | Y 0 = j) = P (Y n = 0 | Y 0 = j) = p (n) j0 = N k,l=0 (H -1 ) 0k π (n) kl h lj = N l=0 π (n) N l h lj = N l=0 P (X n = l | X 0 = N ) N -l j N j = E N -X n j X 0 = N N j
, giving a relationship between the distribution function of the extinction time T 0 of the chain Y started in Y 0 = j and the factorial moments of N -X n conditioned that the chain X is started in the state X 0 = N . From ( 31) and ( 26) it follows that

π i = - N i ϕ(N ) i j=0 (-1) i-j i j ϕ(N -j), i ∈ {1, . . . , N }. ( 33 
)
Using [START_REF] Siegmund | The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes[END_REF], the probability π i can be expressed in terms of the function p. However, this does not seem to result in a simple formula for π i . We verify the following property.

Lemma 5.2 The sequence (π i ) i∈{1,...,N } is log-concave (LC), positive and, hence, unimodal.

Proof. For j ∈ {0, . . . , N } define α j := ϕ(j)/ϕ(N ) and αj := α N -j /j! and rewrite (33) in the form

π i = (N ) i i j=0 (-1) i-j+1 (i -j)! αj , i ∈ {1, . . . , N }.
The sequence (α j ) j∈{0,...,N } is LC because (ϕ(j)) j∈{0,...,N } is LC by Lemma 5.1. The reversed sequence (α N -j ) j∈{0,...,N } is clearly LC. Thus, the sequence α := (α j ) j∈{0,...,N } is LC as a product of two positive LC sequences. Now ( i j=0 αj (-1) i-j+1 /(i -j)!) i∈{0,...,N } = ((α * u) i ) i∈{0,...,N } is the convolution of the two sequences α and u := (u i ) i∈{0,...,N } , where u i := (-1) i+1 /i! for i ∈ {0, . . . , N }. Note that u is alternating but LC. The convolution of two LC sequences is LC (see Wang and Yeh [START_REF] Wang | Log-concavity and LC-positivity[END_REF] for instance). So ((α * u) i ) i∈{0,...,N } is LC and positive (because π i is positive). The sequence ((N ) i ) i∈{0,...,N } is positive and LC, so (π i ) i∈{1,...,N } is positive and LC as a product of two positive LC sequences. Positive LC sequences are unimodal.
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Let Z N be a random variable with distribution π. As in Section 6 of [START_REF] Möhle | Forward and backward processes in bisexual models with fixed population sizes[END_REF] it follows that Z N has p.g.f.

E(s Z N ) = N j=0 β j N j s N -j (1 -s) j , s ∈ C, (34) 
and factorial moments

E((Z N ) k ) = (N ) k k j=0 β j k j (-1) j , k ∈ N 0 . ( 35 
)
In particular,

µ N := E(Z N ) = N (1 -β 1 ) = N/ϕ(N ) and σ 2 N := Var(Z N ) = N (β 1 -β 2 + N (β 2 -β 2 1
)), N ∈ N. In the following we are interested in the distributional behaviour of Z N as N → ∞. Proof. Theorem 2.3 (i) together with p(1) = 1 ensures that there exists a random variable η taking values in N such that p(x) = 1 -E((1 -x) η ) for all x ∈ [0, 1]. From p = id it follows that E(η) ∈ (1, ∞] and that P (η = 1) < 1. In particular,

p (0+) := lim x 0 p (x) = lim x 0 E(η(1 -x) η-1 ) = E(η) ∈ (1, ∞] and p (1-) := lim x 1 p (x) = lim x 1 E(η(1 -x) η-1 ) = P (η = 1) ∈ [0, 1). Furthermore, p(x) = 1 -E((1 -x) η ) > 1 -E(1 -x) = x and, hence, 1 -p(x) < 1 -x for x ∈ (0 , 1), and, therefore, h(x) := x(1 -p(x)) (1 -x)p(x) ∈ (0, 1) (36) 
for all x ∈ (0, 1). Together with lim x 0 h(x) = 1/p (0+) < 1 and lim x 1 h(x) = p (1-) < 1 it follows that γ := sup x∈(0,1) h(x) < 1. For each fixed k ∈ N and all N ≥ k, q k /p k = h(k/N ) → 1/p (0+) =: β as N → ∞. It follows that, for each fixed i ∈ N 0 ,

ϕ(i) = i-1 j=0 j k=1 q k p k → i-1 j=0 β j = 1 -β i α , N → ∞,
where α := 1 -β ∈ (0, 1]. We now verify that lim

N →∞ ϕ(N ) = 1/α. Clearly, ϕ(N ) ≥ ϕ(i) for N ≥ i and, hence, lim inf N →∞ ϕ(N ) ≥ lim N →∞ ϕ(i) = (1-β i )/α for all i ∈ N 0 , which implies that lim inf N →∞ ϕ(N ) ≥ 1/α, since 0 ≤ β < 1. In order to see that lim sup N →∞ ϕ(N ) ≤ 1/α fix ε > 0 and choose i = i(ε) ∈ N such that γ i /(1 -γ) ≤ ε, which is possible as γ < 1. From q k /p k = h(k/N ) ≤ γ we conclude that, for N > i, ϕ(N ) = ϕ(i) + N -1 j=i j k=1 q k p k ≤ ϕ(i) + N -1 j=i γ j ≤ ϕ(i) + γ i 1 -γ ≤ ϕ(i) + ε.
Therefore, lim sup N →∞ ϕ(N ) ≤ (1-β i )/α+ε ≤ 1/α+ε. Since ε > 0 can be chosen arbitrary, it follows that lim sup N →∞ ϕ(N ) ≤ 1/α. Thus, lim N →∞ ϕ(N ) = 1/α. Therefore, for each fixed i ∈ N, the extinction probability β i satisfies

β i = 1 -ϕ(i)/ϕ(N ) → β i as N → ∞. From (35) it follows that E((Z N /N ) k ) → α k as N → ∞ for all k ∈ N 0 , which is equivalent to the assertion of the proposition, since 0 ≤ Z N /N ≤ 1 for all N ∈ N. 2 
The next lemma provides precise information about the asymptotics of the mean µ N = E(Z N ) and the variance σ 2 N := Var(Z N ) of the stationary distribution of the ancestral process.

Lemma 5.4 Suppose that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and p(1) = 1 and that 1 -p is completely monotone. If -∞ < p (0+) < 0, then

lim N →∞ (µ N -αN ) = 1 - p (0+) 2p (0+)(1 -p (0+))
and lim

N →∞ σ 2 N N = τ 2 ,
with α := 1 -1/p (0+) ∈ (0, 1) and τ 2 defined in [START_REF] Möhle | Forward and backward processes in bisexual models with fixed population sizes[END_REF].

Proof. As in the proof of Proposition 5.3, consider the auxiliary function h : (0, 1) → (0, 1) defined via (36). Recall that h(0+)

:= lim x 0 h(x) = 1/p (0+) =: β ∈ (0, 1), as p (0+) = E(η) ∈ (1, ∞). It is straightforward to check that h (x) = p(x)(1 -p(x)) -x(1 -x)p (x) (1 -x) 2 (p(x)) 2 ,
x ∈ (0, 1).

Using p(x)/x ∼ p (0+) = 1/β and applying L'Hospitals' rule yields

h (0+) := lim x 0 h (x) = lim x 0 p(x)(1 -p(x)) -x(1 -x)p (x) (p(x)) 2 = -1 + lim x 0 p(x) -x(1 -x)p (x) (p(x)) 2 = -1 + β 2 lim x 0 p(x) -(x -x 2 )p (x) x 2 = -1 + β 2 lim x 0 p (x) -(1 -2x)p (x) -x(1 -x)p (x) 2x = -1 + β 2 lim x 0 p (x) -(1 -x) p (x) 2 = -1 + β 2 p (0+) - p (0+) 2 = -α - β 2 2 p (0+),
where α := 1 -β ∈ (0, 1). For each fixed k ∈ N and all N ≥ k,

q k p k = h k N = h(0+) + h (0+) k N + O 1 N 2 = β + h (0+) k N + O 1 N 2 ,
and, therefore, for fixed j ∈ N 0 and N > j,

j k=1 q k p k = β j + h (0+) N j(j + 1) 2 β j-1 + O 1 N 2 .
It follows that, for each fixed i ∈ N 0 ,

ϕ(i) = i-1 j=0 j k=1 q k p k = i-1 j=0 β j + h (0+) 2N j(j + 1)β j-1 + O 1 N 2 = 1 -β i α + h (0+)M i,β 2N + O 1 N 2 ,
where

M i,β := i-1 j=0 j(j + 1)β j-1 = ∂ 2 ∂ 2 β i-1 j=0 β j+1 = ∂ 2 ∂ 2 β 1 -β i+1 1 -β -1 = ∂ ∂β 1 -β i+1 (1 -β) 2 -(i + 1)
β i 1 -β = 2(1 -β i+1 ) (1 -β) 3 + (i + 1) β i-1 1 -β - 2β i (1 -β) 2 -(i + 1) 2 β i-1 1 -β . Note that M 1,β = 0, M 2,β = 2 and that lim i→∞ M i,β = 2/(1 -β) 3 = 2/α 3 , since β < 1.
In the following it is shown that

ϕ(N ) = 1 α + h (0+) α 3 1 N + O 1 N 2 , N → ∞. (37) 
As in the previous proof let γ := sup x∈(0,1) h(x) < 1. For fixed ε ∈ (0, 1) and all N ∈ N,

0 ≤ N 2 (ϕ(N ) -ϕ( N ε )) = N 2 N -1 j= N ε j k=1 h k N ≤ N 2 N -1 j= N ε γ j ≤ N 2 γ N ε 1 -γ → 0
as N → ∞. Thus, it suffices to show that, for some ε ∈ (0, 1),

ϕ( N ε ) = 1 α + h (0+) α 3 1 N + O 1 N 2 , N → ∞.
In order to see this, fix some ε ∈ (0, 1/2) (for example ε = 1/4) and adapt the previous arguments to the case when i := i N := N ε depends on N . For all k ∈ {1, . . . , i N },

q k p k = h k N = β + h (0+) k N + O k 2 N 2 , N → ∞.
Therefore, for j ∈ {0, . . . , i N -1},

j k=1 q k p k = β j + h (0+) N j(j + 1) 2 β j-1 + O j 4 β j-2 N 2 , N → ∞.

It follows that

ϕ(i N ) = i N -1 j=0 j k=1 q k p k = i N -1 j=0 β j + h (0+) 2N j(j + 1)β j-1 + O j 4 β j-2 N 2 = 1 -β i N α + h (0+)M i N ,β 2N + O 1 N 2 = 1 α + h (0+) α 3 1 N + O 1 N 2 , since β i N = O(1/N 2 ) and M i N ,β = 2/α 3 + O(i 2 N β i N ) = 2/α 3 + O(1/N ).
The proof of (37) is complete. Taylor expansion of f (x) := 1/x at the point 1/α yields

1 ϕ(N ) = f (ϕ(N )) = f 1 α + f 1 α ϕ(N ) - 1 α + O ϕ(N ) - 1 α 2 = α -α 2 ϕ(N ) - 1 α + O ϕ(N ) - 1 α 2 = α - h (0+) α 1 N + O 1 N 2 , N → ∞,
where the last equality follows from (37). Hence, for each fixed i ∈ N, the extinction probability β i satisfies

β i = 1 - ϕ(i) ϕ(N ) = 1 - 1 -β i α + h (0+)M i,β 2 1 N + O 1 N 2 α - h (0+) α 1 N + O 1 N 2 = β i + 1 -β i α 2 - α 2 M i,β h (0+) N + O 1 N 2 , N → ∞.
In particular,

β 1 = β + h (0+)/(αN ) + O(1/N 2 ) and β 2 = β 2 + β(3 -β)h (0+)/(αN ) + O(1/N 2 )
. The mean µ N := E(Z N ) and the variance σ 2 N := Var(Z N ) of the stationary distribution thus satisfy lim

N →∞ (µ N -N α) = lim N →∞ N (1 -β 1 -α) = - h (0+) α = 1 + β 2 2α p (0+) = 1 - p (0+) 2p (0+)(1 -p (0+)) and lim N →∞ σ 2 N N = lim N →∞ (β 1 -β 2 + N (β 2 -β 2 1 )) = β(α + h (0+)) = - β 3 2 p (0+) = -p (0+) 2(p (0+)) 3 = τ 2 ,
which completes the proof. 2

As already mentioned at the end of Section 4, the limiting Ornstein-Uhlenbeck process in Theorem 4.2 has stationary distribution N (0, τ 2 ). Based on the intuition that it is allowed to interchange the time limit t → ∞ and the space-limit N → ∞, it is therefore natural to state the following conjecture.

Conjecture 5.5 (Central limit theorem for Z N ) Suppose that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and p(1) = 1 and that 1 -p is completely monotone. If -∞ < p (0+) < 0, then (Z N -αN )/ √ N weakly converges to the normal law N (0, τ 2 ) as N → ∞, with α = 1 -1/p (0+) ∈ (0, 1) and τ 2 ∈ (0, ∞) defined in [START_REF] Möhle | Forward and backward processes in bisexual models with fixed population sizes[END_REF].

Remarks. If Conjecture 5.5 holds, then Lemma 2 on p. 99 of Bender [START_REF] Bender | Central and local limit theorems applied to asymptotic enumeration[END_REF] even shows that Z N is locally asymptotic normal, since (π i ) i is log-concave by Lemma 5.2.

We comment on possible approaches to prove Conjecture 5.5. Let ϕ N denote the characteristic function of Z N . By (34),

ϕ N (t) := E(e itZ N ) = N j=0 β j N j e it(N -j) (1 -e it ) j , t ∈ R.
In order to verify Conjecture 5.5 one could apply the continuity theorem and try to show the pointwise convergence

E(e it(Z N -αN )/ √ N ) = e -itα √ N ϕ N (t/ √ N ) → e -1 2 (t/τ ) 2 , t ∈ R, (38) 
of the corresponding characteristic functions. However, this seems to be not a simple task because all the extinction probabilities β j (also with index j of order N ) enter the formula for ϕ N (t) and, therefore, it seems to be not sufficient to work with expansions of β j (in terms of powers of 1/N ) for fixed j. Moreover, high order expansions for β j seem to be needed. Another possibility to verify Conjecture 5.5 would be to apply the method of moments, i.e., to verify that, for all k ∈ N 0 , lim

N →∞ E Z N -αN τ √ N k = E(Z k ), (39) 
where Z is a standard normal distributed random variable. Because of the formula (35) for the factorial moments of Z N , only the extinction probabilities β j with indices j ∈ {0, . . . , k} enter the expectation on the left hand side in (39). Thus, this approach has the advantage that one can work with expansions of β j with j fixed (bounded by k). However, still high order expansions of β j are needed. Such expansions are in principle obtainable as follows. For k ∈ {1, . . . , N }

q k p k = h k N = ∞ l=0 h (l) (0+) l! k N l .
and, therefore, for j ∈ {1, . . . , N },

j k=1 q k p k = j k=1 ∞ l=0 h (l) (0+) l! k N l = l1,...,lj ∈N0 j k=1 h (l k ) (0+) l k ! k N l k = ∞ l=0 1 N l l 1 ,...,l j ∈N 0 l 1 +•••+l j =l j k=1 h (l k ) (0+) l k ! k l k .
Summation yields the following expansion of ϕ(i) in powers of 1/N

ϕ(i) = 1 + i-1 j=1 j k=1 q k p k = 1 + ∞ l=0 1 N l i-1 j=1 l 1 ,...,l j ∈N 0 l 1 +•••+l j =l j k=1 h (l k ) (0+) l k ! k l k .
This finally leads to expansions for β i := 1 -ϕ(i)/ϕ(N ). However, these expansions look rather complicated and the approach does not look very promising.

A third approach to verify Conjecture 5.5 would be to verify that, for each N ∈ N, all the N roots of the polynomial

P N (z) := N j=0 β N -j N j z j = N j=0 β j N j z N -j , z ∈ C,
are real. By Theorem 2 of Bender [START_REF] Bender | Central and local limit theorems applied to asymptotic enumeration[END_REF] (see also Harper [18]), even the local asymptotic normality of Z N would follow immediately. Note that

P N (z) = N j=0 π j (z + 1) N -j z j , N ∈ N, z ∈ C.
Thus P N has no real roots outside the interval [-1, 0]. It is therefore in principle possible to count the number of real roots of P N using Sturm's theorem. Unfortunately, as Example 6.2 in the following section shows, P N does not always have N real roots. This third approach therefore, if at all, may only work for particular models.

Examples

In Section 3 we got already familiar with a fundamental example, the multi-type Moran model. In this section we provide some more details for this model. Afterwards further concrete examples are presented, some of them involving selective forces acting on particular genes or genotypes. The functions p in these examples have been also considered in [START_REF] Huillet | A duality approach to the genealogies of discrete non-neutral Wright-Fisher models[END_REF] in the context of a modified Wright-Fisher model.

Example 6.1 (The K-type Moran model) For a constant K ∈ N consider the K-type Moran model already introduced in Section 3. Kämmerle [START_REF] Kämmerle | Looking forwards and backwards in a bisexual Moran model[END_REF] showed that, for K = 2, the Markov chain X has extinction probabilities

β i = N -1 i / 2N i , i ∈ {0, . . . , N }. In particular, ϕ(i) = 2N N + 1 1 - N -1 i 2N i , i ∈ {0, . . . , N }
and, hence, ϕ(N ) = 2N/(N +1) → 2. Kämmerle furthermore verified that, for K = 2, the stationary distribution of the chain Y is the hypergeometric distribution

π i = N i N i-1 / 2N N +1 , i ∈ {1, . . . , N }. In particular, E(Z N ) = (N + 1)/2 ∼ N/2, Var(Z N ) = (N 2 -1)/(4(2N -1)) ∼ N/8, Z N /N → 1/2 in
probability and (Z N -N/2)/N 1/2 weakly converges to the normal law with mean 0 and variance 1/8 as N → ∞, in agreement with Proposition 5.3 and Conjecture 5.5, as p (0+) = 2 and p (0+) = -2. For arbitrary parameter K ∈ {2, 3, . . .} we have p (0+) = K. Therefore, Z N /N → 1 -1/K in probability and in L r , r ≥ 1, as N → ∞ by Proposition 5.3. Moreover, p (0+) = -K(K -1). By Conjecture 5.5, we conjecture that (Z N -N (1 -1/K))/N 1/2 weakly converges to the normal law with mean 0 and variance τ 2 = -p (0+)/(2(p (0+)) 3 ) = (K -1)/(2K 2 ). Example 6.2 (A selection model) For some parameter s > 0 let p(x) := (1 + s)x/(1 + sx). This choice of p corresponds to the well known selection model in which two genes A and a are considered, where A is selectively advantageous with fitness 1 + s whereas a has standard fitness 1. The variable X n of the Markov chain X = (X n ) n∈N0 counts the number of genes A at time (generation) n of a population of size N . The case s = 0 is excluded because it corresponds to the standard Moran model. Negative values of s are also excluded because, in this case, the function 1 -p is not completely monotone. Note that p(x) = 1 -E((1 -x) η ), where η is a random variable with distribution

P (η = k) = s k-1 /(1 + s) k = βα k-1 , k ∈ N,
with α := s/(s + 1) ∈ (0, 1) and β := 1 -α. We have

ϕ(i) = s + 1 s 1 - 1 s + 1 i = 1 -β i α , i ∈ {0, . . . , N }.
For this particular example, ϕ(i) does not depend on N . The extinction probability is

β i = 1 -(1 -β i )/(1 -β N ), i ∈ {0, . . . , N }.
The chain Y has stationary distribution

π i = 1 1 -β N N i α i β N -i , i ∈ {1, . . . , N },
which is the binomial distribution with parameters N and α, conditioned that it does not take the value 0. Consequently, (Z N -αN )/(N αβ) 1/2 weakly converges to the standard normal law as N → ∞, in agreement with Conjecture 5.5, as p (0+) = 1+s and p (0+) = -2s(s+1) and, therefore, τ 2 := -p (0+)/(2(p (0+)) 3 ) = s/(s + 1) 2 = αβ. Theorem 4.2 is applicable. The limiting Ornstein-Uhlenbeck process has drift parameter µ(x) = -sx and diffusion parameter σ 2 (x) = σ 2 = 2s 2 /(s+1) 2 . The p.g.f. z → E(z Z N ) = N i=1 π i z i = ((αz +β) N -β N )/(1-β N ), z ∈ C, has at most two real roots, namely always z = 0 and also z = -2β/α, if N is even. Both this roots have multiplicity 1. This example shows that, in general, not all the N roots of the p.g.f. of Z N are real. Thus, in general it is not possible to verify Conjecture 5.5 by showing that all the roots of the p.g.f. of Z N are real. Example 6.3 (Selection with dominance) Let s, h ∈ R be two parameters with s > -1 and sh > -1. Suppose that

p(x) = (1 + s)x 2 + (1 + sh)x(1 -x) 1 + sx 2 + 2shx(1 -x) . (40) 
In this model, genotype AA (respectively Aa and aa), with frequency x 2 (respectively 2x(1x) and (1 -x) 2 ) has fitness 1 + s (respectively 1 + sh and 1). The parameter h measures the degree of dominance of the heterozygote Aa. Note that (40) can be put into the canonical form of deviation from neutrality as

p(x) = x + sx(1 -x) h -x(2h -1) 1 + sx 2 + 2shx(1 -x)
,

where the fraction appearing on the right hand side is the ratio of difference of marginal fitness of A and a to their mean fitness. The case s > 0 and h ∈ (0, 1) corresponds to directional selection, where genotype AA has highest fitness and Aa has intermediate fitness.

In this situation, the marginal fitness of A exceeds the one of a and selective sweeps are expected.

For s > 0 and h ∈ (0, 1/2) allele A is dominant to a, whereas for s > 0 and h ∈ (1/2, 1) allele A is recessive to a (a stabilizing effect slowing down the sweep). The critical value h = 1/2 corresponds to balancing selection with

p(x) = x + s 2 x(1 -x) 1 + sx .
Note that if p(x) is the selection mechanism with dominance (40) with parameters s and h, then p(x) := 1 -p(1 -x) is a selection with dominance mechanism with parameters s := -s/(s + 1) and h := 1 -h.

It is now verified that q := 1 -p is completely monotone if and only if s = 0 or h = 1/2 or h ∈ (0, 1/2) and s ≥ (1 -2h)/h 2 (> 0). For s = 0 this is clear, because, in that case, the model reduces to the standard haploid Moran model (p(x) = x). For h = 1/2, it is easily seen that p(x) = 1-E((1-x) η ), where η is a random variable with distribution P (η = 1) = (2 + s)/(2(1 + s)) and P (η = k) = s k-1 /(2(1 + s) k ) for k ∈ {2, 3, . . .}. In particular, q is completely monotone for h = 1/2. Assume now that s = 0 and that h = 1/2. Then we shall see soon that q is completely monotone if and only if the roots of the denominator D in (40) are real and negative. The roots are real if and only if s 2 h 2 ≥ s(1 -2h). We have D := 1 + 2shx + s(1 -2h)x 2 = s(1 -2h)(x 2 + Sx + P ), where S := 2h/(1 -2h) and P := 1/(s(1 -2h)). Thus, the roots are both negative if and only if S > 0 and P > 0, or, equivalently, if and only if s > 0 or h ∈ (0, 1/2). Thus, q is completely monotone if and only if s = 0 or h = 1/2 or h ∈ (0, 1/2) and s ≥ (1 -2h)/h 2 .

In the following the case h ∈ (0, 1/2) and s ≥ (1 -2h)/h 2 (> 0) is studied in more detail. Let x + and x -denote the two real negative roots, i.e.,

x ± := -sh ± s 2 h 2 -s(1 -2h) s(1 -2h) = -h ± h 2 -(1 -2h)/s 1 -2h .

Note that x -≤ x + < 0. Both roots coincide (x + = x -= -h/(1 -2h)) for s = (1 -2h)/h 2 . Two cases are now distinguished.

Case 1. Assume that x + = x -. Then, expansion into partial fractions yields

q(x) = 1 -p(x) = (1 -x)(1 + shx) s(1 -2h)(x -x + )(x -x -) = A + B x -x + + C x -x - with A := -h 1 -2h , B := (1 -x + )(1 + shx + ) s(1 -2h)(x + -x -) and C := (1 -x -)(1 + shx -) s(1 -2h)(x --x + ) .
From s ≥ (1 -2h)/h 2 it follows that 1 + shx + ≥ 0 and 1 + shx -≤ 0. Thus, B, C ≥ 0 from which it follows that q is completely monotone. The p.g.f. of η is

E(x η ) = q(1 -x) = A + B 1 -x -x + + C 1 -x -x - = A + Bα + 1 -xα + + Cα - 1 -xα - ,
where α ± := 1/(1 -x ± ) ∈ (0, 1). Thus, P (η = 0) = A + Bα + + Cα -= 0 and P (η = k) = Bα k+1

+ + Cα k+1 - for k ∈ N.
Case 2. Assume that x + = x -= -h/(1 -2h). Then, s = (1 -2h)/h 2 and q reduces to

q(x) = (1 -x)(1 + shx) s(1 -2h)(x -x + ) 2 = 1 -x sh(x -x + ) = h(1 -x) x(1 -2h) + h = A + B x -x +
with A := -1/(sh) = -h/(1 -2h) as before but B := (1 -x + )/(sh) = h(1 -h)/(1 -2h) 2 . Again, q is completely monotone, as B ≥ 0. The p.g.f. of η is

E(x η ) = q(1 -x) = A + B 1 -x -x + = A + Bα + 1 -xα + ,
where α + := 1/(1 -x + ) ∈ (0, 1). Thus, P (η = 0) = A + Bα + = -h/(1 -2h) + 1/(sh) = 0 and P (η = k) = Bα k+1 + for k ∈ N. Suppose now that s = 0 and that h = 1/2 or that h ∈ (0, 1/2) and s ≥ (1 -2h)/h 2 . Then, the conditions of Proposition 5.3 are satisfied. Therefore, Z N /N → α in probability and in L r , r ≥ 1, where α := 1 -1/p (0+) = 1 -1/(sh + 1) = sh/(sh + 1) ∈ (0, 1). It is straightforward to check that p (0+) = -2s(2sh 2 + 3h -1). Thus, by Conjecture 5.5, we conjecture that (Z N -αN )/N 1/2 weakly converges to the normal distribution with mean 0 and variance τ 2 = -p (0+)/(2(p (0+)) 3 ) = s(2sh 2 + 3h -1)/(sh + 1) 3 ∈ (0, ∞). The limiting Ornstein-Uhlenbeck process in Theorem 4.2 has drift parameter µ(x) = -αx/(1 -α) = -shx and diffusion parameter σ 2 (x) = σ 2 = -α(1 -α) 2 p (0+) = 2s 2 h(2sh 2 + 3h -1)/(sh + 1) 3 .

In the following example the function p may have infinite moments (depending on a parameter a > 0) such that our results are only partly applicable. However, for a ≤ 3, E(η 3 ) = ∞, or, equivalently, p (0+) = ∞, and Theorem 4.2 is not applicable in that case.

Finally, an example is mentioned where all the moments of η are infinite.

Example 6.5 Fix a parameter 0 < γ < 1 and consider p(x) := x γ , or, equivalently, p(x) = 1 -E((1 -x) η ), where η is a random variable with distribution P (η = k) = (-1) k-1 γ k , k ∈ N. It seems that the expression (26) for the extinction probability β i cannot be further simplified in this case. Note that p (0+) = ∞, and, hence, Z N /N → 1 in probability and in L r , r ≥ 1, as N → ∞ by Proposition 5.3. However, Theorem 4.2 and Conjecture 5.5 are not applicable, as p (0+) = -∞. We therefore do not expect a normal limiting behaviour of the stationary distribution of Y . It would be interesting to find a non-degenerate weak limiting law of f N (Z N ) for an appropriate scaling function f N .

Theorem 2 . 3

 23 Let p : [0, 1] → [0, 1] be some continuous function satisfying p(x) ≤ p(1) for all x ∈ [0, 1]. Then, the following conditions are equivalent.

Proposition 5 . 3 (

 53 Weak law of large numbers for Z N ) Suppose that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and p(1) = 1 and that 1-p is completely monotone. If p = id (identity), then Z N /µ N → 1 in probability and in L r , r ≥ 1, as N → ∞ and E(Z k N ) ∼ (αN ) k for all k ∈ N 0 , where α := 1 -1/p (0+) ∈ (0, 1].

Example 6 . 4

 64 Fix a constant a > 0 and let η be a random variable taking values in N such that P (η ≥ k) = k -a for all k ∈ N. A simple representation for the function p(x) = 1 -E((1 -x) η ) = 1 -∞ k=1 (1 -x) k (k -a -(k + 1) -a ), x ∈ [0, 1], seems to be only available for a = 1, in which case p reduces to p(x) = x(-log x)/(1 -x), x ∈ [0, 1]. The variable η has moments E(η r ) = ∞ 0 rx r-1 P (η > x) dx = Note that E(η r ) < ∞ if and only if r < a. In particular, E(η) = ζ(a) for a > 1 and E(η 2 ) = 2ζ(a -1) -ζ(a)for a > 2, where ζ denotes the zeta function. By Proposition 5.3, Z N /N → 1 -1/ζ(a) (= 1 for a ≤ 1) in probability and in L r , r ≥ 1, as N → ∞. Theorem 4.2 is applicable if a > 3. In that case (see (24)) the limiting Ornstein-Uhlenbeck process has stationary distribution N (0, τ 2 ) with τ 2 = E(η(η -1))/(2(E(η)) 3 ) = (ζ(a -1) -ζ(a))/ζ 3 (a).
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