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KILLING INITIAL DATA ON TOTALLY UMBILICAL & COMPACT
HYPERSURFACES

DANIEL MAERTEN

ABsTRACT. In this note, we give a geometric characterization of the compact and totally
umbilical hypersurfaces that carry a non trivial locally static Killing Initial Data (KID).
More precisely, such compact hypersurfaces (M",g,cg) endowed with a Riemannian
metric g and a second fundamental form cg (where ¢ € C°°(M) a priori) have constant
mean curvature and are isometric to one of the following manifolds:

(i) S™ the standard sphere,

(i) a finite quotient of a warped product (S' x Y,dt* 4+ h?(t)go), where (Y™™ go) is

Einstein with positive scalar curvature.

In particular, they have harmonic curvature and strictly positive constant scalar curva-
ture.

1. INTRODUCTION

A good starting point for this article is the study of the scalar curvature application
u: M — C°(M), g+— Scal?,

where .# denotes the cone of the Riemannian metrics on M. If we denote by U, the
differential of u at a metric g € .#, then for any h € T'(S*T*M) we have (see [7] for
details)

Ug(h) = A(trg(h)) + 6(5h) — (Ric?, h)
where A is the positive Laplacian with respect to g, (-, -) is the inner product extended to
tensors of any type and ¢ is the g—divergence operator defined as

5S(X15 U ,Xp) = _Zveis(ei,Xla U ,Xp) )
i=1
for any (p+ 1)-tensor S (p > 0) and for any local orthonormal g-basis (e;)}_;. The formal
adjoint of Uy is given by

VfeC™ U,(f)=Hess! f — fRic! +(Af)g .

From a geometric point of view, the fact that Ker Uy # {0} is a necessary condition for the
scalar curvature application u not to be a submersion at g, and so a necessary condition for
the level set u~!(Scal?) C .# not to be a submanifold (in the sense of infinite dimensional
submanifolds, see once again [7]). A natural issue is to study the compact and connected
manifolds (M"™, g) that admit a non trivial function solution to the equation

Hess? f — fRic9 +(Af)g =0 (*) ,
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which has been extensively studied (notably by Lafontaine, that is why we will call (x)
the Lafontaine equation). As a matter of fact, Fischer and Marsden [I0] believed that
the standard sphere S™ was the unique compact and connected Riemannian manifold (ex-
cept the Ricci flat compact manifolds) that have non trivial solutions to the Lafontaine
equation [I0]. Their conjecture is false, since Lafontaine listed in [I2] all the compact and
conformally flat manifolds admitting solutions to (x), in particular some non Ricci flat, non
spherical warped product metrics appear in that list. However, without the conformally
flatness assumption, we do not have to our disposal an exhaustive list of manifolds that
have non trivial solutions of (x). This question still remains open nowadays. Another inter-
esting geometric interpretation of (x) that is particularly relevant from General Relativity,
deals with the classification of static solutions of the Einstein equations. More precisely, if
v = —f2dt? + g is a static Lorentzian warped product metric on R x M, then the metric v
is Einstein (which is equivalent to be a solution of the Einstein vacuum equations) if and
only if f is a solution of (x). Thus, determining the solutions of (k) is strictly equivalent
to classify the static solutions of Einstein vacuum equations. This fact is closely related to
the Lorentzian metrics obtained thanks to a Killing development (see below for details).
An important feature is that (%) reduces (up to a normalization) to Obata’s equation
Hess? f = — fg when the metric g is assumed to be Einstein, and therefore it is a general-
ization of Obata’s equation. It is well known that the existence of a non trivial function
solution of Obata’s equation characterizes the geometry of the standard sphere S™ [14].
When we fix a metric gg € .# and restrict u to the space ¥ of metrics that have the same
Riemannian volume form than gg, namely " = {g € .# / dVol, = dVoly}, then if u is not
a submersion at g then Ker (U;)O # {0} with (U;)O the traceless part of Uy namely

VfeCo® (U;(f))0 :Hessgf—fRicg%—%g,

where Ric{ denotes the traceless part of the Ricci curvature. In [12], Lafontaine exhibited
a large family of metrics that admit non trivial solutions to Hess? f — f Ric] —1—% g=0.
One can also be interested in the (positive) constants that could be the scalar curvature
of a metric g among the metrics of a certain fixed volume, let us say Vol(S™). This is
equivalent to restrict u to the space ¢ = {g € .#/dScal; = 0 and Vol(M, g) = Vol(S")}.
In that case, if w is not a submersion at g then there exists a non trivial solution f of
Uz (f) = Ric§. All these results are summarized in the following statement.

1.1. Theorem. Let M™ be a compact and connected manifold (n > 3).

(i) (Obata [14]) If u is not a submersion at an Einstein metric g € 4 then
(M™",g) is isometric to a standard sphere and Ker Uy = Span{zq,2g, -+ ,Zn11}
with (v;)4}! the standard coordinates on S™.

(ii) (Lafontaine [12]) If u is not a submersion at a conformally flat metric g € A
then (M™, g) is isometric to one of the following manifolds:

1) A flat compact manifold and Ker Us =R,
2) The standard sphere S™ and Ker Uy = Span{xy, X9, , Tpi1}-
3) A finite quotient of (S' x S"71,dt? 4+ ggn-1) and dim Ker U, =2.
4) A finite quotient of a warped product (S'xS™ ™1, dt*+h?(t)gsn-1) and Ker Uy =
(iii) (Lafontaine [12]) If Y™ ' is a compact and connected manifold that carries an
Einstein metric of positive scalar curvature, then there exists an infinite dimen-
sional set in V(S x Y) =¥ where ujy is not a submersion.

RA'.
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(iv) (Lafontaine [12]) If ujx is not a submersion at a conformally flat metric g € ¢
then (M™, g) is isometric to the standard sphere S™.

(v) (Bessiéres—Lafontaine—Rozoy [4]) If n = 3 and v is not a submersion at a
metric g € € then (M3, g) is isometric to the standard sphere S?.

A natural generalization of these questions is obtained by considering the natural ex-
tension (due to the General Relativity context) of the scalar curvature application u: the
constraints application ®. More precisely, if we consider (M™, g,k) C (N"*1 4) a Rie-
mannian submanifold in a Lorentzian manifold, endowed with the induced metric g and
the second fundamental form k, the constraints application is given by

‘ Scal? +(trgk)? — k2 \ _ [ ®1(g,k) -~ §
®: (g, k) — < —2(5kidtrgk) > = ( <1>;(z,k) ) € C®(M) x T(T* M),

where (g, k) € .# x T(S?T*M). When the Lorentzian manifold (N1 4) is a solution of
the Einstein equations (it is not necessarily the case for our problem) that is to say when
the metric v satisfies

1
Ric” —3 Scal"~v =T |

where T is the stress—energy tensor, then the Hamiltonian constraint ®;(g, k) corresponds
to T'(9y,0;) and the moment constraint ®o(g,k) corresponds to (up to a multiplicative
constant) T'(9;,-)rps (here J; denotes a unit normal to M — N). The other pieces of
the tensor 7' are usually called the Einstein evolution equations and are characterized by
the occurrences of the 0; derivatives of the metric v (on the contrary to the constraints
equations). The constraints equations are also the traced Gauss and Codazzi equations of
the embedding M — N.

We denote by L) (= L in short) the differential of ® at (g,k), and by L* its formal
adjoint. Analogously to the scalar curvature application u, ® is not a submersion at some
couple (g, k) if and only if Ker Lzﬁg,k) # {0} . The formal adjoint of L, ) is given by the
following rather complicated coupled differential operator

{ Li(f;0) = B(f,0) = (trgB(f,0)) g = $((L3(f,0) k) + o, @a(g, k) +2/@1(g. k) ) g
Li(f,a) = =2(6"a+ fk) +2try(0*a+ fk)g

where (f,a) € C°(M) x I'(T*M) and
E(f,a) :=Hess? f — f(Ric? +2(trgk)k — 2k o k) + Lk + (da)k .

Here .Z stands for the Lie derivative, k o k means (k o k);; = ki-ksjg™ and finally 6«
is the symmetric part of the covariant derivative Vo ie. §*a(X,Y) = 1(Vxa(Y) +
Vya(X)). The condition Ker Ly # {0} is equivalent to the existence of a non trivial

couple (f,a) € C°(M) x I'(T*M) such that

Hess? f + Zaok = f(Ric? +(trgh)k — 2k o k) — 5ris ( (o, ®(g, k) + 2f®1 (g, k))g
Zag+2fk=0

In this context we can address the following issue concerning the existence of Killing Initial

Data (KID, which are by definition [I3] the non trivial elements of Ker L, 5 Or equiva-

lently the non trivial solutions of the differential system above).
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Question: Does the existence of a non trivial KID (i.e. an element in Ker Lz‘g k)) charac-

terize the geometry of the Riemannian hypersurface (M",g,k) 7

This problem is very difficult in general, however Beig, Chrugciel and Schoen proved in
[2] that KIDs are non generic for a large class of slices (M", g, k). More explicitly, they

proved that the family {(g, k)€ .# x T(S*T*M)/ Ker L{, 1) = {0}}, was an open and

dense set for a C*# x C*# type topology. Unfortunately, they were not able to give the
geometry of (M", g, k) under the exceptional condition that Ker L?g’k) is non zero. The
aim of the present paper is to study a particular situation that generalizes the Lafontaine
equation, namely the KID equations on a compact and totally umbilical hypersurface. In
other words, we consider (M", g, k) such that

1) 3ee C®(M),c#0, k=cg,
2) H(f, Od) 3—'& (070) L>(kg7k)(f7 Oé) =0.

It is clear that the standard (constant mean curvature and totally umbilical) spherical slices
in de Sitter space—time satisfy all these conditions. Analogously to the Fischer and Marsden
conjecture, one could think that the conditions 1) and 2) characterize the spherical slices in
de Sitter. This conjecture is false once again because of a result owed to Lafontaine. To see
that we first need to reformulate our problem. In virtue of of the umbilicity condition 1),
the moment constraints becomes ®5(g, cg) = —2(n —1)dc. The Hamiltonian one forces the
scalar curvature of g to satisfy: ®1(g,cg) = Scal? +n(n — 1)c?. The second KID equation
is exactly Z,g + 2¢fg = 0, which means that « is a Killing conformal 1-form (it is non
isometric as soon as f # 0). Finally, the first KID equation is equivalent to

Hess? f = f(Ric? +nclg — 2c¢%g) — La(cg)

—ﬁ ( —2(n —1)(a,dc) + 2f(Scal? +n(n — 1)02)>g
ot [ = (R +neg = 26%0) — g — Valeq) + (o) — 1 (225 ) g = npitg

Scal?
Hess? f = fRicg—f< « >g,
n—1
which is equivalent to Uj(f) = Hess? f — fRic? +(Af)g = 0 where we have used the
relation obtained thanks to the traced equation. As a consequence, the conditions 1) and
2) are equivalent to the system

Zng+2cfg=0
&) { Uz () =0

The conjecture a la Fischer and Marsden now reads as: the only metric g (except the
Ricci flat) that has non trivial solutions to (X) is the standard metric on the sphere S™.
This is clearly false since any compact manifold (M™, g) having a non zero Killing field «
provides a non trivial solution of (X) of the form (0, ) and whatever the mean curvature
¢ is. Consequently, from now on we define as a non trivial KID a solution (f,«) such
that f # 0. Even under this new definition of non trivial KID, the conjecture a la Fischer
and Marsden is false in virtue of the following result (which is a corollary of classification
results of Derdzinski about compact manifolds with harmonic curvature [8] 9]).
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1.2. Proposition (Lafontaine [12]). Let (M™,g) be a compact manifold (n > 3) with
harmonic curvature which carries a closed Killing conformal and non isometric 1-form,
then Ker Uy # {0} and (M™", g) is isometric to one of the following manifolds:

(i) S™ the standard sphere,

(ii) a finite quotient of a warped product (S* x Y,dt? + h2(t)go), where (Y"1 go) is
FEinstein with positive scalar curvature.

Indeed, under the assumptions of Proposition[[.2] the harmonic curvature and the second
Bianchi identity compel the scalar curvature Scal? to be a (positive) constant. We denote
by « the closed Killing conformal and non isometric 1-form i.e. dao =0 and Z,g + ¢g =0
(this equation was studied by Tashiro [I5]) for a certain function ¢ # 0. It is proved in [12]
that U;(¢) = 0, and thereby the couple (a, f := 57) for any constant ¢ € R*, is a solution
of (X) as soon as (M™,g) is isometric to one of the manifolds listed in Proposition
Moreover, the slice (M", g,cg) is constant mean curvature and satisfies the vacuum con-
straints equations with the positive cosmological constant A = % (Scal? +n(n — 1)c?) > 0.
The first main result of this article is to consider a system (%) slightly stronger than (X),
since we moreover demand the Killing conformal form to be closed, and give the geometry
of the manifolds that carry non trivial solutions of this system.

1.3. Theorem. Let (M™,g) be a compact and connected manifold (n > 3) with C3 metric,
which has a non trivial solution (f,«) of

Va+cfg=0
% ;
( 1) { U;(f) =0
for a certain ¢ € C°(M),c # 0. Then c is a non—zero constant and (M",g) is isometric
to one of the following manifolds:

(i) S™ the standard sphere,
(ii) a finite quotient of a warped product (S* x Y,dt? + h2(t)go), where (Y"1 go) is
FEinstein with positive scalar curvature.
From the KID point of view, the vacuum slice (M™,g,cg) has positive constant scalar
curvature and constant mean curvature ¢ given by Scal? +n(n —1)c? = ®1(g, cg) = const..

The original definition of the KID is owed to Beig and Chrusciel [3] and is the following.
Consider a Killing field X on the ambient Lorentzian manifold (IV,v) and decompose it in
terms of a lapse function f and a shift 1-form (or vector) a.. Then the Killing equation of X
restricted to the Riemannian hypersurface (M", g, k) gives birth to a system of equations
satisfied by the couple (f, ) which is by definition a Killing Initial Data. Now when the
constraints are vacuum (possibly with a cosmological constant) then being a KID in the
original sense of [3] is equivalent to belong to Ker L?g,k). The existence of a KID allows us

to make a Killing deyelopment of (M™,g,k) i.e. to construct a Lorentzian manifold with
topology R x M = N which is endowed with the metric

7= (lal* = f)dt* + 2t O a+g,
where the functions f,a;, g;; are trivially extended along the product R x M, and dt ® «
denotes the symmetric part of dt ® «. By construction, the metric ¥ is stationary and
the spatial slices {¢ = const.} are isometric to our initial manifold (M™,g,k). The im-

portant fact is that the Lorentzian manifold (N,7) is a solution of the vacuum Einstein
equations (possibly with a cosmological constant) that carries a Killing field 0;. In fact,
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O, extends the vector field (fv + o'd;) € F(TN| u) (where v denotes a unit normal to the

slice {t = 0} = (M™, g,k)) along the whole Lorentzian manifold (N,%). As already said,
the space-time (]\7 ,7) is stationary by construction, but when we assume that the spatial
part « is closed, it forces the Killing development to be locally static, in the sense of the
local integrability of the orthogonal distribution of 0;. In particular, by making a Killing
development of the metrics that are classified in the result above, we obtain a class of
static solutions of the vacuum Einstein equations with a positive cosmological constant:
the Schwarzschild-de Sitter metrics. These metrics had been studied in [6] with A < 0
(the Schwarzschild—anti de Sitter metrics), but all the computations of Birmingham can
be carried out with A > 0. As a conclusion, we can claim that the Schwarzschild—de Sitter
solutions are characterized by the existence of non trivial solutions of (X;), and we will
call the metrics listed in the theorem above the spatial Schwarzschild-de Sitter metrics (S™
corresponds to the spatial de Sitter metrics).

The second main result concerns the restriction of the constraints application to the set
¥ x T'(S?T*M) which gives rise to the problem of finding some (f, @) such that

Log+2cfg=0 Zag+2cfg=0
.9 AF e % 1 g
Hess? f — fRic]+=Lg =0 Ug(f)—ﬁ<(n—1)Af—fScal )g

n

It is pointless to prove that the function ¢ is a constant as in the situation of the system
(31), since there exist some examples (the standard sphere S™ is one of them) of manifolds
(M™, g) that have non trivial solutions (f,«) with a non constant functions c¢. We will
discuss this point later on. However, we can classify the solutions of this system when we
assume that c is a non—zero constant and that the Killing conformal form « is closed. We
surprisingly obtain the same family of manifolds than for the system (X;).

1.4. Theorem. Let (M™,g) be a compact and connected manifold (n > 3) with C3 metric,
which has a non trivial solution (f,«) of

. Va+cfg=0
(32) U;(f):%«n—l)Af—fScalg)g ;

for a certain ¢ € R*. Then (M",g) is isometric to one of the following manifolds:

(i) S™ the standard sphere,
(ii) a finite quotient of a warped product (S* x Y,dt? + h2(t)go), where (Y"1, go) is
FEinstein with positive scalar curvature.
From the KID point of view, the slice (M™, g,cq) is a spatial Schwarzschild—de Sitter metric
i.e. it is vacuum and has positive constant scalar curvature and constant mean curvature
¢ given by Scald +n(n — 1)c? = ®1(g,cg) = const..

The third main result concerns the restriction of the constraints application to the set
€ x I(S?T*M) which gives rise to the problem of finding some (f, a) such that

{ Zog+2cfg=0
Uy (f) = Ric ’

which must be related to the result in dimension 3 of Bessiéres—Lafontaine-Rozoy evocated
earlier. Here again, we study this system assuming the closed character of the Killing
conformal form .



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 7

1.5. Theorem. Let (M™,g) be a compact and connected manifold (n > 2) with C3 metric
and constant scalar curvature. Suppose there exists a non trivial solution (f,a) of

o {
Uy (f) =Ricg -
ce€ C®(M),c#0. Then c is a non-zero constant and (M"™, g) is isometric to the standard
sphere S™. From the KID point of view, the slice (M™,g) is a spatial de Sitter metric.

This article is organized as follows: in Section [2] we give some technical preliminary
results that will be used in Section [Blin order to prove the main Theorems. Section [B] also
contains specific results in small dimension n = 2 or 3. Finally, Section [l is devoted to the
study of another interesting system of equations.

2. PRELIMINARY RESULTS

In this article, (M™, g) is a compact and connected n—dimensional manifold with Levi—
Civita connection V. A 1-form « is said to be Killing conformal and non isometric if it
satisfies the equation %, g = 1 g for a certain function i #Z 0. Such a form « is not closed
in general, but if it is, then a and d¢ are closely related.

2.1. Proposition. Let (M",g) be a compact and connected manifold (n > 2). Suppose
there exist a non trivial couple (¥, «) such that ZL,g = 1g. If the Killing conformal « is
closed then oo A\ dyp = 0.

Proof. The covariant derivative Va € T'(®?T*M) is the sum of a symmetric part and a
skew symmetric part since Va = %(da + fag), where

{da(X,Y) = Vxa(Y)—Vya(X) =dVa(X,Y)
Z.g(X,Y) = Vyxa(Y)+ Vya(X) =20a(X,Y)

and dVS(X,Y, Xy, -+, X,) == VxS, X1, -+, X,)-VyS(X, Xy, , X,) forany (p + 1)-
tensor S. The condition d2a = 0 implies
Vzda(X,Y) = -dVda(X,Y, Z) .
We apply the Ricci identity to «
R(X,Y,Z,0) = Viya(Z)—Vyxa(Z)

= dV(Va)(X,Y,2)

= %dv(da)(X, Y, Z) +dV(6*a)(X,Y, Z)
= —%Vzda(X, Y) +dY(¢g)(X,Y, Z)

1
= —5Vzda(X,Y) +dv A g(X,Y.Z) ,

where (WA S)(X,Y,Z) :=w(X)S(Y,Z) —w(Y)S(X, Z), for every w € I'(T* M) and every
S € T'(S?T*M). By plugging Z = « in this relation and assuming that « is closed, we
immediately get diy A a = 0. |

We can wonder if we can do without the closed assumption in the Lafontaine Propo-
sition [L2l The proposition above seems to show that we indeed cannot. The following
lemma enumerates equations that will be useful in the sequel.
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2.2. Lemma. Let (M"™, g) be a compact and connected manifold (n > 2) that admits a
closed Killing conformal and non isometric 1-form «, i.e. Va = g for a certain ¢ €

(M), v #0.
Then the following equations hold:

(21)  R(X,Y,Za) = deg<XYZ>

(2.2) dy N =

23) Ric/(Y,a) = <n 1 (Y)

(24)  VxRic/(Y,a) = <(n DU () + n Rie? —(n — 1)(Azp)g> (X,Y)
(25)  VaRicd(X,Y) = <(n 2)U7 () + np Ricd —(n — 1)(A1/))g> (X,Y)

2.5
(2.6) dYRic/(a, X,Y) = U;¥)(X,Y)
(2.7)  dVRic/(X,Y,a) = 0

Proof. Formula (ZIH2Z2]) were proved in the previous proposition. Equation (23] is ob-
tained by taking the trace in (ZI). Equation (24]) is the covariant derivative of (Z3)),
namely

VxRic?(Y,a) = —(n — 1)Hess? (X, Y) — ¢ Ric?(X,Y) ,

where we have expressed Hess? ¢ in terms of U (¢)). Equation (Z3]) is a corollary of the
first variation formula of the Ricci curvature (cf. formula (d) of Theorem 1.174 in [5] with

Zong = 20g) i.e.
Vo Ricd(X,Y) = —(n—2)Hess? (X,Y) — 2¢ Ric?(X,Y) + (A¢)g(X,Y) ,

where we have expressed again Hess? ¢ in terms of U;(¢)). Finally, Equation ([2.6) is the
result of the difference between (Z3]) and ([Z4]), and Equation (Z7) is the skew symmetric

part of (Z4)). [ |

It is important to notice that we neither need to fix the value of Uj (1)) nor to suppose
that the scalar curvature is a constant to have the formulas of Lemma 221 The only
assumption is to have a closed Killing conformal and non isometric 1-form on the manifold.
The manifold (M™, g) is said to have harmonic curvature if d¥ RicY = 0. In view of (Z7), it
seems natural to ask if the existence of a closed Killing conformal and non isometric 1-form
implies that ¢ has harmonic curvature. It is not true in general, but we can nonetheless
deduce some interesting information on dV RicY.

2.3. Lemma. Let (M™,g) be a compact and connected manifold (n > 2) that admits a
closed Killing conformal and non isometric 1-form «, i.e. Va = g for a certain ¢ €

(M), v #0.
Then the following equation holds:

28)  $dU; () = dv AU () — a7 Rie? +(vd(Ay) = (Ay)dy ) A
Proof. To prove Equation (2.8) we take the covariant derivative of (2.))

(29)  VyR(Y,ZT,a) = {Hessg (X, Y)g(Z,T) — Hess? f(X, Z)g(Y, T)}
—YR(Y,Z,T,X) .
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We work on the expression U (¢)), by computing dvU;(@Z)) ie.

dV Uz (1) = d¥ Hess? ¢ + d(Avp) A g — dY Ric? —dyp A Ric? .
The Ricci identity applied to dv gives dY Hess? (X,Y, Z) = R(X,Y, Z, V1), and therefore
(2.10) dVUF () = R(-,-,-, V) + d(Ag) A g — 1pdY Ric? —dip A Ric? .
Besides if we set T'= « in ([Z9) and use Va = g, we find (thanks to the symmetry of the
curvature tensor)

VxRY,Z,a,a) = X -R(Y,Z,a,a)— R(VxY,Z,a,a) — R(Y,VxZ, )
=0 =0 =0
—¢(R(Y,Z,X,0) + R(Y, Z, a,X)J) )

=0

Thanks to the relation a A dyp = 0, we can use once again ([2.9) and the previous formula
to get
0=VxR(Y,ZVi,a) = {Hess? p(X,Y)g(Z,Ve) - Hess? ¥(X, 2)g(Y, Vo)) }
_T/JR(K Za VT/% X)
= —di/) A Hess? w(K Za X) + ¢R(Y, Za Xa V?,Z)) )
that we write in short ¢ R(-,-, -, Vi) = dip A Hess? . Finally, by multiplying (ZI0) by
and using our curvature formula it comes out

pdVU; () = dp AHess?1p +pd(Awh) A g — pdep A Ric? —p*dY Ric?
= A AU () — 62 Rie? + (vd(A) — (Ap)dw) Ag .
[

2.4. Remark . Unfortunately, Formula (2.8) is more complicated than we could have
expected. Nevertheless, when 1 is an eigenfunction for the Riemannian Laplacian A i.e.

A = M\ for a constant X > 0 then d(Ay) — (Ay)dy = 0, which clearly simplifies (2.8).

The following result gives additional information when the scalar curvature is supposed
to be a constant.

2.5. Theorem. Let (M",g) be a compact and connected manifold (n > 2) with constant
scalar curvature that admits a closed Killing conformal and non isometric 1-form «, i.e.
Va =g for a certain v € C*°(M), 1p # 0.
Then we have:
(i) Ay = 5230,
(i) Scal? >0,
(i) YdVU; () = dyp AU () — ¢p*dY Ric?.

Proof. (i) The trace of Equation (23] leads to
dScald(a) =2(n — 1)Ay — 2¢pScaly =0,

since the scalar curvature is a constant and (i) immediately follows.
(ii) Thanks to (i) we know that % is an eigenvalue for the Riemannian Laplacian on a
compact and connected manifold and consequently Scal? > 0. In particular, Scaly = 0 if
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and only if the eigenfunction ¢ is a constant. But it is in fact impossible. By contradiction,
suppose dy =0 = %d&a on M, so dda = 0. By integrating by parts we find

O:/ (d5a,a>:/ 16a|*
M M

and thereby da = 0 on M which is impossible since « is non isometric. We deduce that ¢
cannot be a constant and thus Scal? > 0.
(iii) This is a simplification of Equation (Z.8]) thanks to (i) and the previous remark. W

We finish this section by recalling a classical result of Bourguignon which is omnipresent
throughout this article.

2.6. Theorem (Bourguignon [7]). Let (M™, g) be a compact and connected manifold (n > 2).
Suppose that there exists some 1) € Ker Uy \ {0}, then Scal? is a nonnegative constant and

the level set 1)~1(0) is either empty (1 is a constant) or composed with embedded hyper-
surfaces of M.

Proof. Firstly, taking the trace of Uj(¢) = 0 gives Ay = % , so that it becomes
Hess9 ¢ — 1) RicY —i—SnC—illgwg = 0. Secondly, take z € M and ¢ — o(t) a geodesic curve such
that 0(0) = . Consider the function F' := 1 o o which has to satisfy the order 2 ordinary

differential equation

F(t) = F(t) {Ricg(a'(t)ﬂ’(t)) - 9(0'(75)70’(75))} =0,

with the initial conditions F'(0) = ¢(x), F'(0) = d ¢ (c’(0)). Now, if one supposes that
x € ¢~1(0) is critical for ¢, then the initial conditions vanish and F has to be identically
zero. Since we can cover a dense part of M with geodesics starting at x, v should also
vanish on the whole M, which is not permitted. We conclude that if vy is not constant,
1~1(0) contains no critical point and so is composed with embedded hypersurfaces of M.
Besides ) is a non-zero constant if and only if ¢ is Ricci flat, and in that case ¢¥~1(0) = 0.
As regards the scalar curvature, the trick is to compute the divergence of Uy (1) = 0

Scaly

n—1

0 = 86U (1) = 6 Hess? b + Ric? (V) — 18 Ric? —d(Aw)) = %¢d Scalf |

where we have used § RicY = —2d Scal? (cf. 3.135 i) in [II]), § Hess? f = d(Af)—Ric!(V f)
(cf. the proof of 4.14 in [I1]). In any case ¢p~}(R*) is dense in M, thereby d Scal? = 0 on
the whole manifold. But % is an eigenvalue of the Riemannian Laplacian on a compact
manifold, which implies Scal? > 0. |

3. PROOF OF THE THEOREMS

3.1. The system (X;). We first prove a general result stating that the existence of a non
trivial KID on a compact and totally umbilical hypersurface, has to be constant mean
curvature in any dimension greater than 2.

3.1. Theorem. Let (M",g) be a compact and connected manifold (n > 2) which has a
solution (f,«), f £ 0, of
{ Zog+2cfg=0
Ug(f) =0 ’
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for a certain ¢ € C°(M),c # 0. Then the scalar curvature Scal? is a positive constant and
c 18 a non zero constant.

Proof. Thanks to Theorem 2.6] we know that Scal? is a nonnegative constant and that the
function f is an eigenfunction since Af = SnCTallg . The first variation Formula (23]) of the
Ricci curvature applies since Z,g = —2cfg:

VaRic(X,Y) = —(n — 2)Hess?(cf)(X,Y) — 2¢f Ric/(X,Y) + (A(cef))9(X,Y) ,

whose trace is zero since Scal? is constant. We derive A(cf) = %c f. Suppose now
that Scal? = 0 then fc should be constant and so the Killing conformal form « should be
isometric, which is in contradiction with ¢ Z 0, f £ 0. We have then proved that Scal? > 0,
and also that the function cf is an eigenfunction which lies in the same eigenspace than f.
Now consider a nodal domain of f that we denote by Q. Using Theorem 2.6l we conclude
that 0f) is a regular hypersurface of M, and f is a solution of the usual Dirichlet problem

on §) since by construction we have

Af=52lr onQ
f=0 on 00 ’

. o . . g
with positive eigenvalue Scal’
n—1

Scal9

so 5= > 0 has to be the first Dirichlet eigenvalue of the domain (£2,g) which is always
simple. Now, the function (cf) also satisfies

Alcf) = S;f%llgcf on
cf=0 on 9 '

> 0. But, since 2 is a nodal domain, f cannot vanish and

and consequently, there exists a non zero constant K € R* (otherwise f should be zero on
an open set which is excluded by Theorem [2.0]) such that Kc¢f = f. But f never vanishes
on 2, so that ¢ = K ~! has to be a non zero constant on €. This argument is true on any
nodal domain of f whose union is a dense open set in M, which means that ¢ has to be a
non zero constant on the whole M. |

As a consequence we can completely answer the question of characterizing the totally
umbilical KID in dimension 2.

3.2. Corollary. Let (M2, g) be a compact and connected Riemannian surface which has a

solution (f,«), f £ 0, of
{ Log+2cfg=0
Ug(f) =0 ’
for a certain ¢ € C*®(M),c # 0. Then c is a non zero constant and (M?,g) is isometric
to the standard sphere S?. In other words, any totally umbilical and compact hypersurface
having a non trivial KID is isometric to a spatial (spherical and constant mean curvature)
de Sitter metric.

Proof. From Theorem [B.1] we know that ¢ is a non zero constant and Scal? a positive con-
stant. Gauss-Bonnet formula claims that M? is homeomorphic to S? and Theorem 3.83 in
[11] says that M? is in fact isometric to a standard 2-dimensional sphere (since the scalar
curvature and the sectional curvature are equivalent for surfaces). |



12 DANIEL MAERTEN

For manifolds of dimension greater than 3, we need to make an additional assumption
(the Killing conformal 1-form « is supposed to be closed) in order to obtain geometric in-
formation. We then prove Theorem B3] that classifies the compact and connected manifolds
(M™, g) that carry non trivial solutions of (X1).

3.3. Theorem. Let (M™,g) be a compact and connected manifold (n > 3) with C3 metric,
which has a solution (f,«), f #0, of

Va+cfg=0
% ;
=0 {n s
for a certain ¢ € C°(M),c # 0. Then c is a non—zero constant and (M"™,g) is isometric
to one of the following manifolds:

(i) S™ the standard sphere,
(ii) a finite quotient of a warped product (S* x Y,dt? + h2(t)go), where (Y"1, go) is
Einstein with positive scalar curvature.
From the KID point of view, the vacuum slice (M",g,cq) has positive constant scalar
curvature and constant mean curvature c given by Scal? +n(n —1)c? = ®1(g,cg) = const..

Proof. We can use (iii) in Theorem with 1) = ¢f and ¢ a non zero constant. We obtain
0=cfAVU;(f) = Adf AUS(f) — f2dY Ric? = —* f?dY Ric? |

since Uy(f) = 0. It comes out dV Ric? = 0 on the dense open set f~!'(R*), and by a

continuation argument (dY Ric? € CY since the metric g is regular enough i.e. C3), we get

dVY Ric? = 0 on the whole M. We conclude by applying Proposition which gives the

announced classification.

From the KID point of view, (M", g, k) is totally umbilical with extrinsic curvature k = cg

by construction, and the constant ¢ € R* is the mean curvature of the slice. It is clear
that it satisfies the vacuum constraint equations with the positive cosmological constant

A = 3 (Scal? +n(n — 1)c?) > 0. [ |

3.4. Remark . The function h in the warped product metrics of (ii) in Theorem [3.3 has
to satisfy an order 2 differential equation which is given by the relation between Scal? and
Scal?? the scalar curvature of (Y, go). See [12]| for further details.

In the KID context, Theorems gives rise to the following natural issue.
Question: Let (M™, g) be a compact and connected manifold (n > 3) and ¢ € C*°(M), ¢ # 0.
Does the existence of non trivial solutions (i.e. f # 0) of

{ Zog+2cfg=0

Ug(f)=0 ’

characterize the spatial Schwarzschild—de Sitter metrics? In general, it is not clear since
we a priori lose the important geometric curvature identity (2.1I).

3.2. The system (X3). As already said in the introduction, we can focus on the restriction

of the constraints application to ¥ x I'(S?T*M) where ¥ = {g € .# /dVol, = dVoly,}.

In this context, the relevant operator is (U g )0 so that we consider the problem of finding
some (f,«) such that

Zng+2cfg=0

{ Hessgf—fRicg—i—Afg:O '

n
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where ¢ € C°(M), ¢ # 0. This problem is clearly equivalent to

Zag+2cfg=0
U (f) = %((n = DAS = fScal? ) g

The main difference with the system (X) is that there is no hope to prove that the function
¢ (remind that c is the mean curvature of the hypersurface (M", g,k = cg)) is a constant.
Indeed, let (M™, g) be an Einstein manifold with nonnegative scalar curvature that has a
non isometric Killing conformal 1-form « (such manifolds do exist, the standard sphere
S™ is one of them). Then any couple (f,a) with f any non zero constant, has to satisfy

Zag=—2cfg and (U}(f)), =0,

where we have defined the function ¢ as ¢ := ?—f‘z # 0 since « is non isometric. Expecting
the non isometric Killing conformal 1-form to be closed does not even guarantee that c
should be a constant. You just have to consider on the standard sphere S”, the non trivial
couples (f, fdc) where f is any non zero constant and ¢ € Ker Uy = Span {x1, 22, -+ , 7y},

with (mz)fjll the standard coordinates on S™. Such couples satisfy
Va=—cfg and (U;(f))o =0.

Now if we give up the closed character of «, then we can consider some non trivial couples
(f, fdc+ B) where f is any non zero constant, ¢ € Ker Uy = Span{z1,z2, - ,z,} and f3
any Killing form on S™. Then such couples has to verify

ZLng+2cfg=0 and (U;(f))o =0.

This space of solutions is parametrized by R* x R"*! x so(n + 1) with the Lie algebra
n(n+1) . . .
so(n+1) =2 R 2 . It is the reason why we restrict our study to the case where ¢ is a

non zero constant. Then we can classify the solutions of this system when we assume in
addition that the Killing conformal form « is closed, as it is claimed in the following result.

3.5. Theorem. Let (M™,g) be a compact and connected manifold (n > 3) with C3 metric,
which has a non trivial solution (f,«), f #0, of

. Va+cfg=0
20 ) = 2 (n - naf - fSear)g

for a certain constant ¢ # 0. Then (M™, g) is isometric to one of the following manifolds:

(i) S™ the standard sphere,
(ii) a finite quotient of a warped product (S* x Y,dt? + h2(t)go), where (Y"1, go) is
Einstein with positive scalar curvature.

From the KID point of view, the vacuum slice (M™,g,cg) has positive constant scalar
curvature and constant mean curvature c given by Scal? +n(n —1)c? = ®1(g, cg) = const..

Proof. Our goal is to show that U;(f) = 0 and then use Theorem B3 Equation (28]
reads as

AV RicY(a, X,Y) = —cUZ (f)(X,Y) = —§<(n —1)Af — fScalg>g .

Let z € M, then there are exactly 2 possibilities
1) ap =0 and then Uj(f) = 0 at the point = since ¢ # 0.
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2) Otherwise a; # 0 and then
- <(n —DAf(z) — f(x) Scalg(az)>0zx =dV RicY (o, o, ), =0,
n
which entails (n — 1)Af(z) — f(z)Scal?(x) = 0 and so U;(f) = 0 at the point x.
We can apply Theorem [B.3] to conclude since U;(f) = 0 on the whole M. |

3.6. Remark . In [12] Section E1, Lafontaine gives a family of non trivial solutions of
the equation Hess? f + %g — fRic) = 0. These metrics are again warped product metrics
dt?2 + h%(t)go on S' x Y, where (Y, go) is Einstein with positive scalar curvature, and h a
periodic function. Theorem [Z1 shows that the non trivial solutions of (X2) are the metrics
in the class exhibited by Lafontaine in [12], that have positive constant scalar curvature.

The case of surfaces is easy to treat since the computations of Lemmas 2.2H2.3] and
Theorem are valid in dimension 2.

3.7. Corollary. Let (M?,g) be a compact and connected Riemmanian surface which has a
non trivial solution (f,«) of

Va+cfg=0
U (f) = %(Af—fScaW)g )

for a certain constant ¢ # 0. Then (M?,g) is isometric to the standard sphere S.

Proof. The computations in the proof of Theorem are still valid in dimension 2 so that
U, (f) = 0 on the whole M. We can conclude using the surface version of the classification
result on the system (31). [ |

In the KID context, Theorem gives rise to the natural issue
Question: Let (M", g) be a compact and connected manifold. Does the existence of non
trivial solutions (i.e. f # 0) of

ZLng+2cfg=0
Us(f) = (0= 1)AS = fScal? )g -

(with ¢ a non zero constant) characterize the spatial Schwarzschild—de Sitter metrics for
n > 3 (respectively the spatial de Sitter metrics for n = 2)7

3.3. The system (X3). The next main result deals with the restriction of the constraints
application to ¢ x T'(S?T*M) where ¢ = {g € .#/dScal? = 0 and Vol, = Vol(S")}. In
this context, Uy has to be equal to the traceless Ricci curvature, so that we need to consider
the problem of finding some (f, «) such that

{ Zog+2cfg=0
UZ(f) = Ricf

We could assume without loss of generality that Scal? is a constant, but it is in fact
not necessary in virtue of the following general result (which is the analogous version of
Theorem B1] for the restriction to ¢ x T'(S*T*M)).
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3.8. Theorem. Let (M™,g) be a compact and connected manifold (n > 2) with C3 metric,
which has a solution (f,«), f #0, of

{ Zng+2cfg=0
U;(f):Ricg ’

for a certain ¢ € C*°(M),c # 0. Then the scalar curvature Scal? is a positive constant and
c is a non zero constant.

Proof. We first prove that Scal? is a positive constant. By computing the divergence of
Us(f) = Ric] we get 1fdScal! = oUs(f) = dRicy = (£ —3)dScal’, which leads to
the identity (f = ”) dScal? = 0. Let us define F a closed subset as F := f~! (2n”)
and prove by contradiction that its interior Int(F') is empty. If Int(F) # () then, on
Int(F) we have Uy (f) = — (1) Ric? = Ric) whose trace gives Scal’ = 0. But on its
complement M ~ Int(F'), we have dScalY = 0 and so Scal! = 0 on the whole M by a
continuation argument. The first variation Formula (23] of the Ricci curvature applies
since Z,g = —2cfyg:

Vo Ricd(X,Y) = —(n —2)Hess?(cf)(X,Y) — 2¢f RicY(X,Y) + (A(cef))9(X,Y) ,

whose trace is zero since Scal? = 0 is a constant. We derive A(cf) = Scalg =cf = 0, which
implies that the function cf is a constant. This is in contradiction w1th the fact that « is
non isometric and f # 0,c¢ # 0. Therefore, Int(F) = () and so M \ F is an open and dense
subset of M where dScalY = 0. We finally obtain that Scal? is a nonnegative constant
(since A(ef) = Scalg =#>-cf) which cannot be zero (« is non isometric).

The trace of U;(f) = Ric gives Af = Scalgf so the functions f and cf belong to the
same eigenspace of positive eigenvalue Snc‘_ﬂl . Unfortunately, f~1(0) the nodal set of f has
possibly a singular (or degenerate) part since the argument of Theorem does not work
anymore. We need to use a crucial result on nodal sets owed to Bér, namely Corollary 2
in [I]. It states that the nodal set of f is the disjoint union f~(0) = Nyeg U Niing
with Nyeg = {x € f~Y50)/d.f # O} and Ngipg = {ﬂ: c f~H0)/dof = 0} that have the
following properties:

(i) Nreg is composed with smooth embedded hypersurfaces (by the implicit function
theorem),

(ii) Nging is a countably (n —2)-rectifiable set and thus has Hausdorff dimension n —2
at most.

We notice that N,.., cannot be empty. Indeed (by contradiction) if it was empty then there
should be a unique nodal domain M N\ N4 (since Ngipng has Hausdorff dimension n — 2 at
most, M \ Nging is connected). But f has a vanishing integral on M and has a constant
sign on the dense open set M \ Ng,g4, thereby f = 0 which is not possible. Now consider
2 any connected component of the open set M \ N,.4. By construction the boundary 02
is smooth and f is a solution of the usual Dirichlet problem on €2 since by construction we
have
{ Af=32F onQ
f=0 on 9 ’

with positive eigenvalue Scal
n—

> (0. But f has a constant sign on © (f can possibly vanish

but only on a set of Hausdorff dimension less or equal to n — 2) and so Scalg > 0 has to
be the first Dirichlet eigenvalue of the domain (2, g) which is always s1mp1e Now, the
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function cf also satisfies

cf=0 on 9 '
and consequently, there exists a non zero (since both f and ¢f cannot vanish on the whole
Q) constant X such that ¢f = Af. We have then proved that ¢ has to be a non zero constant
on (a dense open subset of) 2. This argument is true on any connected component of the
open set M \ N, whose union is a dense open set in M, which means that c has to be a
non zero constant on the whole M by a continuation argument. |

{ Alef) =32cf on Q

As a consequence we can completely answer the question of characterizing the manifolds
that have non trivial solutions of

Zog+2cfg=0
Uz (f) = Ric§

in dimension 2 and 3.

3.9. Corollary. Let (M™,g) be a compact and connected Riemannian manifold of dimen-
sion n =2 or 3, which has a solution (f,«), f #0, of

Zog+2fg=0
U, (f) = Ricj ’
for a certain ¢ € C°(M),c # 0. Then c is a non zero constant and (M",g) is isometric

to the standard sphere S™. From the KID point of view, the slice (M", g,cqg) is a spatial de
Sitter metric.

Proof. From Theorem we know that ¢ is a non zero constant and Scal? a positive con-
stant.

For the case of Riemannian surfaces i.e. n = 2, Gauss-Bonnet formula claims that A2
is homeomorphic to S? and Theorem 3.83 in [I1] says that M? is in fact isometric to a
standard 2—dimensional sphere (since the scalar curvature and the sectional curvature are
equivalent for surfaces). The volume normalization says that it is exactly S2.

When the dimension is n = 3, then the theorem of Bessiéres-Lafontaine-Rozoy applies
and so M?3 is isometric to S3. |

For dimension greater or equal to 4, the problem is quite harder to solve. Here again,
we study this system assuming the closed character of the Killing conformal form .

3.10. Theorem. Let (M™, g) be a compact and connected manifold (n > 2) with C? metric.
Suppose there exists a solution (f,«a), f #0, of

Va+cfg=0
=) { e Lo

c € C®(M),c#0. Then c is a non—zero constant and (M", g) is isometric to the standard
sphere S™. From the KID point of view, the slice (M™,g,cg) is a spatial de Sitter metric.

Proof. Thanks to Theorem B.8 we know that ¢ is a non zero constant and that Scal? is a
positive constant. Thus we can use Theorem S0 as to get

fAVUS(f) = df AUS(f) — f2dY Ric?
= df ARic) —f?dY Ric?
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whereas a straight computation leads to fdVU, S(f)=1f dV Ric§ = fdV Ric? since the scalar
curvature is a constant. We identify both terms to obtain the crucial formula

f(f +1)dY Ric? = df ARicd .
Writing down Equation (Z.6]) with ¢ = ¢f and taking our new information into account
—cf(f+1)Ric) = df(a)Ric)—df @ Ricd(a)
= df(a)Ric) —c(n—1)df @ df + SCTalgdf R a,

the trace of which gives df(a)Scal? = en(n — 1)|Vf|*>. Then we decompose M in the
disjoint union M = Q[][C, where we define the open set Q@ = {x € M/d,f # 0} and
C = Q¢ is the set of the critical points of f. The closed set C possibly has a non empty

[¢] o
interior, and then we write M = Q[[OC[[C. By construction the open set Q[ C is dense
o
in M. For any € Q[[C we have the 2 possibilities:

(i) z € C. We are going to see that f = 0 on the open set C. Indeed, by definition
df = 0 on C which means that f is locally constant and we have Af = (0 = Scal’ ¢

n—1

with Scal? > 0 and thereby f = 0 (we have also Hess? f = 0). Thus, the equation
U, (f) = Ricj along C gives Ric{ = 0 (in particular (Ric{), = 0).

(ii) x € Q and in that case we denote by 2, the connected component of Q that
contains z. Thanks to Equation (22), there exists an open ball B(x,r) C Q,
(r > 0) where we can write a = a(f)df for a certain function a € C*°(R). This
implies a(f)ScalY = cn(n — 1) and so a(f) is a non zero constant on B(z,r).
Since this argument is valid on a neighborhood of each point of {2, we get that
a(f) is a non zero constant on ;. We now use the first equation of (X3) (all the
computations are carried out on the open set €2,)

cn n—1
Vaz—Cfng( éc G )df> ﬁHessgf,

that we plug in the second equation of (X3)

19
Ric) = Hess? f — fRic? +Sca 79
Scaly Scal?
g — ic9 —
JRic?+ <n— 1 nn- 1)>g
= —fRic],
that is to say (1 + f)Ric = 0 on Q. Particularly,
0=—f(1+ f)Ric] = % IV f[? Ricd —c(n — 1)df @ df + (f)sca DI qf@df
en(n —
- éC ) ’vf’ RICO )
£0

that allows us to conclude Ric) =0 on Q, (= (Ric}), = 0).
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We have proved that Ricf € C! (since g € C3) is identically zero on the dense open set

[¢]
Q]IC, which induces Ric = 0, namely g is Einstein. But, it is well known thanks to
Obata [14], that (M™,g) is isometric to the standard sphere S™. [ |

Theorem BI0 must be related to the result in dimension 3 of Bessiéres—Lafontaine—
Rozoy [4] evocated in the introduction. Their proof which is specific to the dimension 3,
consists on proving that any metric g of constant scalar curvature having a solution f of
Uy ( f) = Ric}, is conformally flat. They can conclude, by using a result of Lafontaine on
conformally flat manifolds ([I2] Section E2), that g is the standard metric of the sphere
S3. Tt is not obvious that their result could be extended to higher dimensions, and this is
the reason why Theorem B.I0] can be considered as a generalization of their theorem for
any dimension n > 3.

It is also of great interest that the existence of non trivial solutions of (33) characterizes
the standard spherical slices of de Sitter space—time. We then address the following
Question: Let (M", g) be a compact and connected manifold, n > 4. Does the existence
of non trivial solutions (i.e. f Z 0) of

{ Zog+2cfg=0
U;(f) = Ric} ’

characterize the geometry of the standard sphere S™7

4. ANOTHER EQUATION

A slightly different point of view is to consider U as a linear order 2 differential operator
on functions. Naturally, one could think of modifying this operator thanks to a potential
i.e. considering an equation of the kind Uj( f) = fr where 7 is a symmetric 2-tensor on
M (7 is the potential). Of course, the motivation of such an equation vanishes (the choice
of 7 is not clearly suggested by a geometric formulation) except the origin of the operator
U ; itself via the scalar curvature application. However, the situation that is the closest to
the equation a la Bessiéres—Lafontaine—Rozoy is to take 7 = Ric{, leading to the modified
equation Uy(f) = fRic]. In the continuation of the previous results of this article we
consider the problem of finding some couple (f,«) such that

(=) { Log+2cfg=0
Us(f) = fRicg ~
where ¢ € C°°(M). The problem is that too many manifolds do have no trivial solutions
of (X)):
1) Examples with ¢ = 0:
(a) A manifold (M", g) that has a Killing form «. Then the couple (f = 0,«) is
a solution of (/). The scalar curvature of g is not necessarily a constant and
note that this class of manifolds is quite (in fact too) large.
(b) A Ricci flat manifold (M™,g) that has a Killing form «. Then any couple
(f = const. # 0,«) is a solution of (3}). The scalar curvature of g is zero by
construction and this class of manifolds is also quite large, since it contains
the flat tori.
(c) The standard sphere S™. Then any couple (f, ) where f € KerU; and a a
Killing form, is a solution of (X}).
2) Examples with ¢ # 0:
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(a) A manifold (M",g) that has a Killing form «. Then the couple (f = 0,«)
is a solution of (X)) for any function ¢ € C°°(M) (the non zero constant
functions ¢ are obviously admissible). Once again the scalar curvature is not
necessarily a constant and this class of manifolds is very large.

(b) The standard sphere S". Then any couple (f,cdf) where f € Ker U; et and
¢ a nonzero constant, is a solution of (X}).

These examples explain why we choose to restrict our problem to the case where c is
a nonzero constant and the Killing conformal form « is closed. Under these conditions,
Theorem (1] claims that the standard sphere S™ is the only manifold carrying non trivial
solutions of our new system that we call (X4). For sake of simplicity, we normalize the non
zero constant ¢ = 1 till the end of this section.

4.1. Theorem. Let (M",g) be a compact and connected manifold with C3 metric (n > 2),
which has a non trivial solution (f,«) of

(%) { Va+ fg=0
4 Uz (f) = fRic)
Then (M™, g) is isometric to the standard sphere S™.

Proof. The aim is to prove that g is Einstein. We still have Af = Sr’f%llg f by tracing
Uy (f) = fRicj. On the one hand, Equation [2.8) of Lemma 23] entails

JaSUL(f) = df AUG(f) = f2a¥ Rie? +(fd(Af) — (Af)Af) A g

Fdf ARicd — £2d¥ Ric? + ( #d (Scalg f> - 2Ci‘li fd f) Ag

n—1
2
= fdf ARic) —f2dY Ric? +f—d Scald Ag ,

n—1
and on the other hand, we straightly compute

2
fAVUF(f) = fdf ARic)+f?dY Ric? —f—d Scald Ag .
n

We identify both expressions and get

2n —1
n(n—1)
Thanks to Equation ([Z7)) it comes f2dScal? Aa = 0, but since the open set f~'(R*) is

dense (the argument of Bourguignon in [7] works in our situation, see also Theorem [2.0]),
we have d Scal? Aa = 0 on the whole M, because this 2-form is C° (g € C?). The trace of

Equation (2.3) gives

2f2dY Ricd = f? < ) dScald Ag .

dScal?(a) = 2f Scaly —2(n — 1)Af =0 .
Consider Equation (2Z.6)
2n —1
—2f3Ric] = 2f2dY Ric? (o, X,Y) = — 2 (%) dScal! ®a(X,Y) ,
n(n —
that we shortly write
2n —1
2 3Rind — f2
f°Ricy = f <7n(n— 0

If one takes x € f~!(R*), then there are 2 possibilities:

> d Scal! @« .
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1) The linear form a, = 0 and thereby (Ric}), = 0.
2) Otherwise the linear form o, # 0. But we know (dScal’ Aa), = 0 and also
d, Scal!(a,) = 0, so that d, Scal? = 0 and consequently (Ric), = 0.

We obtain Ric§ = 0 on M (by a continuation argument), namely g is Einstein. But it is
well known thanks to Obata [I4], that (M™, g) is isometric to the standard sphere S”. B

Theorem E.T] appears as a good generalization of the Obata equation since the standard
sphere is the unique manifold that has a non trivial solutions to (X4). This result is very
general since we do not need to make any assumption on the scalar curvature and since it
is valid in any dimension.
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