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avenue de Rangueil, F-31077 Toulouse, France

Abstract

The purpose of the work is to extend the use of non conventional tests and

full field measurements to the identification of an anisotropic damage law. A

Digital Image Correlation technique based on a finite element discretization

is used to extract planar displacement fields. The reconditioned Equilibrium

Gap Method is then used to retrieve a damage law that accounts for shear

softening, a specific form suited to the present application. The identifica-

tion is shown to reduce to a linear system. The example of a biaxial shear

test performed on a cruciform specimen is considered. The approach is first

qualified by using displacement fields resulting from a non linear compu-

tation with a known damage law. A good agreement is observed between

the prescribed and identified laws for distinct parameter settings, even when

∗Corresponding author
Email addresses: jean-noel.perie@lmt.ens-cachan.fr (Jean Noël Périé),
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significant noise is added to the displacement fields. The reconstructed dis-

placement fields coincide perfectly with the measurements. The complete

scheme is finally tested considering images taken during an experiment per-

formed on a carbon / carbon composite. The identified damage pattern and

the corresponding damage values are similar to post-processed maps using

classically identified parameters. The reconstructed displacement field ac-

counts for 95 % of the fluctuations observed in the measurements.

Key words: Anisotropic damage, Biaxial test, Composite material, Digital

Image Correlation, Equilibrium Gap Method

1. Introduction

Composite materials usually exhibit complex, namely, anisotropic and

non linear behaviors. Ceramic Matrix Composites (CMCs) in particular be-

have in very distinct ways depending on the loading direction wrt. the fiber

directions and whether they are subjected to tension or compression. Many

models developed in the framework of Continuum Damage Mechanics have

been proposed to cope with structural computation needs (Voyiadjis et al.,

1998). The damage variables, representing the relative loss of modulus are in-

troduced at distinct scales. Burr et al. (1998), for instance, introduce damage

variables at the constituent (micro)scale. Matrix cracking is assumed to be

induced by the applied load, namely, damage is driven by the maximum prin-

cipal strain. Conversely, fiber breakage and interface debonding are related to

the fiber directions. Other models proposed for instance by Ladevèze (1995)
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or Chaboche and Maire (2002) also account for loading-induced anisotropy

but introduce damage variables at the ply (meso)scale. In all cases, the

macroscopic behavior of a laminate would result from a homogenization pro-

cess.

In the specific case of CMCs, a major issue is the lack of available mate-

rial and stacking sequences. The above mentioned models introduce a large

set of parameters related to the state and growth laws. A classical identifica-

tion procedure thus requires numerous elementary tests. In addition, some

parameters, e.g., related to couplings between different damage variables, re-

quire complex loading paths and are hardly identified. A validation based on

tensile tests is also very restrictive in the sense that it may hide the limits of

applicability of the model.

In the past, full field measurements were essentially seen as a complemen-

tary means of comparison between experiments and FE simulations (Rastogi,

2000). Modern computation means, multiaxial tests and full field measure-

ments offer the opportunity to test and compare different modelings, but also

to identify mechanical parameters (Geers et al., 1999; Avril et al., 2008). One

of the main challenges now concerns the design of the experiment. One key

issue is to select a geometry and an associated loading leading to relevant

levels of damage in a large part of the specimen. Computations are essential

at this stage. For natural or synthetic anisotropic and heterogeneous mate-

rials, this method offers a unique access to parameters of a constitutive law

at a given scale. The wealth of data resulting from kinematic fields of the
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tested specimen under non proportional and multi-axial loadings can then

be exploited as an entry to inverse methods.

Chalal et al. (2004) proposed to use the framework of the so-called Virtual

Fields Method (or VFM (Grédiac, 2004)) to analyze composites. A unidi-

rectional composite loaded in shear was described using a linear increase of

damage with strain. An alternative approach, based on a new Digital Image

Correlation scheme (Q4-DIC (Besnard et al., 2006)) and on the Equilibrium

Gap Method (EGM (Claire et al., 2002, 2004)), the so-called Digital Image

Mechanical Identification procedure (DIMI (Roux and Hild, 2008)), allows

one to retrieve an isotropic damage law directly from pictures acquired during

a single biaxial test performed on a flat cruciform specimen. In the following,

it is proposed to extend this work to an anisotropic damage case.

The first part of the paper details the identification procedure. A two-

step approach is proposed to go from digital images to an anisotropic damage

law. First, the basis of the Q4-DIC technique is briefly introduced and used

for retrieving in-plane displacement fields. Then it is shown how the DIMI

framework can be generalized when considering an anisotropic damage law.

The second part of the paper presents some results of such an approach

applied to a biaxial test. A flat cruciform specimen made of [±45◦] woven

plies is subjected to a shear test. Non linear simulations are first used to

check the ability of the method to identify a given damage law. The method

is then applied to the corresponding experimental test performed on a 2.5D

C/C composite.
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2. Digital Image Mechanical Identification

2.1. From images to displacement fields

Among full field measurement techniques (Rastogi, 2000), Digital Image

Correlation (DIC) is fast emerging because of its versatility and simplicity

of use. It consists in evaluating displacement fields corresponding to a series

of (white light) pictures taken at distinct stages of loading. If the natural

texture of the material is not sufficient for tracking accurately the displace-

ments, a random speckle is usually sprayed onto the surface. Two gray level

images f and g (f stands for the reference picture and g that corresponding

to the deformed stage) are related through the local passive advection of the

texture by a displacement field u

g(x) = f(x + u(x)) (1)

The problem consists in identifying the best displacement field by minimizing

the correlation residual
∫

ϕ2dx over the whole region of interest, where

ϕ(x) = |f(x + u(x)) − g(x)| (2)

The minimization of ϕ is intrinsically a non-linear and ill-posed problem. For

these reasons, a weak form is preferred by adopting a general discretization

scheme

u(x) =
∑

n∈N

unψn(x) = [ψ(x)]{u} (3)

where ψn are the vector shape functions, and un their associated degrees of

freedom. In a matrix-vector format, [ψ] is a row vector containing the values
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of the shape functions ψn, and {u} the column vector of the degrees of

freedom. After integration over the domain Ω, the global residual is defined

as

Φ =

∫∫

Ω

|f(x + [ψ(x)]{u}) − g(x)|2 dx (4)

At this level of generality, one may choose to decompose the displacement

field on a “mechanically meaningful” basis. When no simple behavior is

expected, one may use a “simple” Finite Element kinematic basis (Sun et al.,

2005). Here, classical bilinear shape functions associated with quadrilateral

4-node elements (or Q4) (Besnard et al., 2006) are chosen. It is referred to

as Q4 Digital Image Correlation (or Q4-DIC). The measured displacement

fields are next used as inputs for an independent damage law identification

procedure, based on the same kinematic description.

2.2. From displacement fields to an anisotropic damage law

2.2.1. Constitutive law and state variables

The material is assumed to be initially homogeneous. Indices (1, 2) re-

fer to the ply coordinate system (i.e., material frame) here coinciding with

the fiber directions. With these notations, E1 and E2 denote initial Young’s

moduli (in the fiber directions), G12 the initial shear modulus, and ν12 one

of the Poisson’s ratio. The angle between this frame and that of the camera

coordinate system (x, y) is denoted by θ (Figure 1). It is first assumed that

damage is mainly dictated by the fiber orientation. The damage model con-

sidered herein derives from an approach originally introduced by Ladevèze
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and Le Dantec (1992). In the following, only one damage variable d12 is

considered and describes a gradual degradation of the shear modulus. Many

[0,90] carbon epoxy woven composites, as a first order approximation, and at

a certain scale, behave in a such a way (Gao et al., 1999). A continuum ther-

modynamics framework is used (Germain et al., 1983). Gibbs’ free enthalpy

density Φ of woven plies reads

Φ =
1

2

[
σ2

11

E1

− 2
ν12

E1

σ11σ22 +
σ2

22

E2

+
σ2

12

G12 (1 − d12)

]
(5)

From the state potential Φ, the state laws are derived, and in particular the

driving force, Yd12
or energy release rate density associated with the damage

variable d12

Yd12
= ∂Φ

∂d12

=
1

2

σ2
12

G12 (1 − d12)
2

(6)

The driving force Yd12
may be expressed in terms of the (indirectly measured)

strains

Yd12
= 2G12ǫ

2
12

This force simply depends on elastic parameters and on kinematic quantities.

In the sequel, the growth law for d12 will be assumed to be controlled solely

by its associated thermodynamic force Yd12
. Let us note that when 3 damage

variables are introduced (to account for fiber breakage), other expressions for

the driving force of the damage variable d12 are proposed, e.g., by Hochard

et al. (2007). For the sake of simplicity, the following short-hand notations

are used in the sequel d12 = d and Yd12
= Y . An equivalent strain ǫeq =
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√
Y/2G12 = |ǫ12| is also defined. This quantity is written in the camera

frame (x, y) as

ǫeq =

∣∣∣∣
1

2
(ǫyy − ǫxx) sin(2θ) + ǫxy cos(2θ)

∣∣∣∣ (7)

Last, one has to identify the parameters of the damage law relating the

damage variable d and the maximum over the elapsed time of the equivalent

strain ǫeq.

2.2.2. Identification of a damage law

The Equilibrium Gap Method (EGM) is followed herein (Claire et al.,

2002, 2004). It consists in minimizing the force residuals associated with a

mismatch of local elastic properties from element to element. It is written in

a weak form by using a Finite Element discretization as the minimization of

‖fres‖
2

{fres} = [K({d})]{umeas} − {f} (8)

where {fres} is the residual vector associated with measured displacement

fields {umeas} and {f} applied nodal forces. Unlike classical FE problems,

the aim is to determine the damage fields {d} from known (i.e., measured)

displacement fields {umeas} (e.g., by Digital Image Correlation) and the nodal

force vector {f} assumed to vanish since only interior nodes are considered.

To be consistent with the measured displacements, Q4 elements are used

again. The damage variable d is assumed to be element-wise uniform. In the

case of anisotropic damage, the elementary stiffness matrix Kel is no longer
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linear in d (as was the case of an isotropic damage description (Roux and

Hild, 2008)) but rather affine

Kel
ij = M0

ij − M1
ijd (9)

where [M0] and [M1] are matrices dependent upon the initial elastic pa-

rameters (of the undamaged element). These elastic constants may also be

identified using full field measurements (Lecompte et al., 2007; Roux and

Hild, 2008). This point will not be developed herein. To simplify the expres-

sions, an element-wise decomposition of the stiffness matrix is introduced

Mn
ij =

∑
e Mn

ije (for n = 0 or 1), where the sum runs over all elements e.

The corresponding contribution of element e to the nodal force at the inter-

nal node j is Ln
je =

∑
i M

n
ijeui (n = 0 or 1). The problem is expressed by

introducing indices for nodes and elements. The idea is to avoid misunder-

standings that could be linked to the use of classical FE notations and to

explain how the method is implemented. The problem is then equivalent to

minimizing the quadratic norm Eg of the “equilibrium gap”

Eg =
∑

i

(
∑

e

(
L0

ie − L1
iede)

)
)2

(10)

The solution to such problem would provide a map of shear modulus con-

trasts for each loading step (Claire et al., 2004). The difficulty is to identify

a damage growth law, and to link the maps obtained at different loading

steps. In the following it is assumed that all the maps result from the same

damage law. By enforcing that damage grows according to the same expres-

sion everywhere in the region of interest, the damage law thus minimizes the
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equilibrium gap. The regularization of the problem consists in using, at the

very beginning of the procedure, a specific decomposition H of the damage

law (i.e., a kind of “poor man” Laplace transform)

d = H(ǫ̂eq, Ck) =
∑

k

Ckϕk(ǫ̂eq) (11)

where Ck > 0 ∀k, and with

ϕk(ǫ̂eq) = 1 − exp

(
−

ǫ̂eq

ǫk

)
and ǫ̂eq = max

0<τ<t
(ǫeq(τ)) (12)

The parameters ǫk are preset in order to select the space in which the damage

function is searched for. Only ǫk values in the range of the experimentally

observed equivalent strains are considered. The choice usually made is to

set a fixed ratio of 2 between two consecutive values. It corresponds to a

good compromise between the conditioning of the system and the number of

degrees of freedom used to describe the damage function.

The objective function Eg depends quadratically on the coefficients Ck

defining the damage law for the given set of characteristic strains ǫk

Eg(Ck) =
∑

i

(
∑

e

(
L0

ie − L1
ieH(ǫ̂e

eq, Ck))
)
)2

(13)

The above system is not well conditioned because the [Mn] matrices corre-

spond within the chosen discretization scheme to second order differential

operators acting on the displacement field in the continuum limit. Because

the displacement field is obtained experimentally, it is inevitably prone to

noise and hence the above formulation may suffer from a high sensitivity to

this noise, in particular at short wavelengths.

10



In order to enhance the robustness, it is proposed to introduce the opera-

tor S such that [S]{L} = {umeas}, where S solves an elastic problem, namely,

the medium is assumed to be undamaged. Experimentally determined dis-

placements are applied on the edges as Dirichlet boundary conditions and

the body forces {L} are prescribed. The “reconditioned” equilibrium gap

objective function Ẽg is proposed as given by the following expression

Ẽg(Ck) =
∑

i

(
∑

j

Sij

∑

e

(
L0

je − L1
je

∑

k

Ckϕk(ǫ̂e
eq)

))2

=
∑

i

(
ui −

∑

k

Ck

∑

j

Sij

∑

e

L1
ieϕk(ǫ̂e

eq)

)2

, (14)

which is read as the quadratic norm of a nodal vector homogeneous to a

displacement field. Note that the minimization is to be carried out under the

constraint Ck > 0 ∀k. In practice, the inverse operator S is not computed,

but rather the “vector” [S]{Lϕk}, which is obtained as the solution of an

elastic problem for the undamaged solid. In this problem, the material is as-

sumed to be homogeneous, displacements measured on the edges are applied

as boundary conditions and body forces are prescribed. A remarkable feature

of this procedure is that the identification of the entire (non-linear) damage

evolution law is reduced to the resolution of a few linear systems (in practice,

only one ore two iterations are needed), with typically few degrees of freedom

Ck. This results in particular from the use of a specific decomposition of the

damage law [Equation (11)] and from the choice of the norm (10).
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3. Validation with synthetic data

The chosen configuration is a biaxial test on a flat [±45◦] cruciform speci-

men. The sample is subjected to tension with respect to y and to compression

with respect to x (Figure 1). It implies an intense shear strain in the ply

coordinate system (Périé et al., 2002). In the following, the focus will be on

the identification of the damage part of a model and thus inelastic effects

(e.g., related to frictional sliding) are not described. In this first part, the

identification procedure is evaluated by using simulated data. The displace-

ment field then results from a non linear FE computation performed with a

known damage law. The latter is first used directly and, in a second stage,

corrupted with white noise.

The simulations have been performed with an in-house finite element

code (Leclerc, 2008). A plane stress state is assumed. The whole cruciform

specimen is meshed (Figure 1). The central part of the specimen is uniformly

meshed by using 17 × 17 Q4 elements to be consistent with the measured

kinematic field. The displacements computed with this mesh are used as

input data for the identification procedure. The arms and the material sur-

rounding the region of interest are meshed by using T3 elements. The angle

between the local material coordinate system and the camera coordinate sys-

tem is set to 45◦. The in-plane elastic parameters are such that E1 = 35 GPa,

E2 = 30 GPa, G12 = 7 GPa and ν12 = 0.1.

The chosen damage law is decomposed onto the basis described in the

previous section. The parameters are ǫk = 5 × 10−3 × [1, 2, 4, 8] and
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Ck = [0.5, 0.3, 0.15, 0.05]. The resulting growth law d12 versus ǫk is shown

in Figure 2. A non-local approach is used to limit numerical localization

effects induced by strain softening. In practice, a mean force Y is computed

in a given characteristic volume. In some particular cases (e.g., woven com-

posites (Hochard et al., 2007)), the size of this volume may be related to a

material characteristic length. In the present case and for the sake of sim-

plicity, Y is simply computed over each element. The loading consists in a

uniform displacement prescribed at the end of the arms. For both loading

directions, normal displacements at the ends of the arms are increased sym-

metrically step by step, while tangential displacements are forced to 0. The

relative displacement between the ends of the two perpendicular directions

have the same magnitude but an opposite sign.

Fifteen displacement fields and associated damage fields are computed

for equal increments of the relative displacement of the grips. As expected,

a moderately heterogeneous damage map is obtained at each loading step.

The damage map obtained at the last stage of loading is plotted underneath

the deformed mesh (Figure 1). Due to stress (and strain) concentrations,

the in-ply multiaxial stresses and the smaller surface of the T3 elements, the

mean equivalent strain is higher in the elements that surround the fillet radii

than in the rest of the specimen. However, one notes that the associated

concentration of damage does not drastically limit the higher damage level

that is obtained in the virtual “Region Of Interest (ROI).” With the chosen

damage law, a maximum relative displacement of 0.6 % between the ends of
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opposite arms leads to a damage level greater than 0.7 in that region.

To assess the quality of the identification, it is first proposed to compare

the reconstructed displacement field (using the identified damage field) to the

reference data, i.e., the “measured” displacement field. A residual R is de-

fined as the ratio of the standard deviation (denoted by χ(.)) of the difference

between the measured and reconstructed displacement fields, normalized by

the standard deviation of the measured displacement field

R =
χ(ureconstructed − umeas)

χ(umeas)
(15)

The smaller the residual R, the better the result. In the following, this quan-

tity is reported for the last load level. Different trial functions are tested.

First, the trial function of the imposed law is used, i.e., ǫk = 5×10−3×[1 2 4 8].

The identified parameters are Ck = [0.49, 0.28, 0.19, 0.03]. Although the

numerical values of the Ck coefficients are different from the imposed ones,

(Ck = [0.5, 0.3, 0.15, 0.05]), it is seen in Figure 2 that the identified and

prescribed damage laws with the chosen equivalent strain are undistinguish-

able over the range of strains covered by the simulated experiment. This

excellent agreement is confirmed by the residual at the last loading step,

R ≈ 3.1 × 10−4.

Different parameters of the trial functions have then been tested to check

the sensitivity of the method to the damage decomposition (Figure 2). For

example, identifications achieved with ǫk = 3 × 10−3 × [1 2 4 8] and ǫk =

7 × 10−3 × [1 2 4 8] give respectively Ck = [0.01, 0.56, 0.19, 0.24] and
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Ck = [0.88, 0, 0, 0.12]. In both cases, the agreement is very good. For larger

values of ǫk the results are less accurate (respectively R = 3.1 × 10−4 at the

last loading level and R = 15.8×10−4 at the 7th loading level). Parameters ǫk

that do not follow a geometric sequence have also been tested. As an example,

the result for ǫk = 3×10−3×[1 2 3 4], amounts to Ck = [0.16, 0.25, 0.0, 0.59],

and is also shown in Figure 2. Again the result is excellent (R = 5.2 × 10−4

at the last loading level). For all the presented identification cases, a relative

difference of less than 0.16 % is measured between computed and identified

displacement fields. Moreover, the identified shear damage maps are almost

identical to the computed ones.

The noise robustness of the proposed method is now addressed. One

adds a white noise with a given standard deviation on the fifteen computed

displacement fields. In practice, this standard deviation is set to a fraction of

the standard deviation of the first computed displacement field. Two noise

levels are considered, namely, 20 and 40 %. This corresponds to realistic levels

observed on measured displacement fields (because of the low amplitude of

the displacements at the first loading level). To achieve the identification,

one first uses only every other displacement field (i.e., 8 steps), and then all

levels. For each study, identifications are performed by using 100 random

selections of noise.

First, the influence of the number of displacement fields used is illustrated

for a given level of noise. With 20 % noise, the identified damage laws based

on 100 displacement fields are shown in Figure 3 for 8 levels and Figure 4 for
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15 levels. When using all 15 displacement fields, the observed discrepancies

decrease slightly in the range of computed damage (up to 0.65). Second,

the influence of the noise level is compared when all available data are used.

Identified damage laws corresponding to 20 and 40 % are given in Figures 4

and 5. As expected, the discrepancies are larger for higher values of noise.

These differences are also revealed by plotting the corresponding relative

mean error (Figure 6) and relative standard deviation maps (Figure 7) for

both noise levels. However, even for 40 % noise, a reasonable agreement

is observed between the mean damage per element and the identified result

with uncorrupted data. For the highest values of damage, the relative mean

error is less than 5 % and the relative standard deviation less than 3 %.

In terms of displacements, the residual R does not exceed 3 × 10−2, even

for 40 % noise. An example of comparison between the last reconstructed

and measured displacement fields for such a noise level is shown in Figure 8

(R = 2.4 × 10−2). This analysis indicates that the procedure displays good

stability / robustness properties.

In order to quantify the improvements linked to the identified model, one

proposes to compare the results to a simple reference computation. One

may for instance simulate the displacement fields ureconstructed(d = 0) for the

undamaged solid (homogeneous orthotropic elastic body). On the edges of

the ROI, the measured displacements are prescribed as (Dirichlet) boundary

conditions. The internal displacements are computed and compared with

their measured counterparts (Figure 9). In this case, the displacement dif-
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ferences no longer show random patterns (indicating clearly that the mod-

eling should be improved) and the corresponding residual is much higher

(R = 11.4 × 10−2). Another measure Q is then proposed

Q =
‖ureconstructed − umeas‖2

‖ureconstructed(d = 0) − umeas‖2

(16)

Here again, the smaller the quantity Q, the better the result. The error

indicator Q is much less than unity (Q = 20.8×10−2), indicating a significant

improvement.

4. Analysis with experimental data

In this last part, the experiment performed on a so-called 2.5D C/C

composite is presented. This woven material has a non-linear behavior when

subjected to shear or tension with respect to the fiber direction. The test

has been carried out on the multiaxial machine ASTRÉE. A flat cruciform

specimen, considered as a [±45◦] laminate, is subjected to a shear test. Tabs

glued on the (100-mm large) arms allow for a transmission of the load to

the gauge section (Figure 10). Due to the specimen thickness (i.e., 10 mm),

a plane stress state is assumed. This test was designed by means of FE

computations to induce a high value of shear damage in the central part of

the specimen. Loading and unloading cycles are exploited. The detail of

the loading path and of the experimental setup are given in Ref. (Périé et

al., 2002). In the present case, 11 pairs of pictures are used. The latter are

subsequently used to identify the parameters of the proposed damage law.
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Digital images of the surface (1016 × 1008-pixel resolution, 8-bit depth)

are shot at various steps of loading (Figure 10(b and c)). The pictures are

analyzed by using the Q4-DIC algorithm. The element size is set to 32 pixels

(≈ 3 mm). When using the first image as the reference, the displacement

fields results not only from damage but also from inelastic related effects. As

it is usually made when a classical identification procedure (based on tensile

tests) is followed, one uses the 11 loading / unloading cycles. The hysteretic

effects are neglected and the unloading is considered with a frozen state of

damage. The first picture is taken at the maximum shear loading and the

second one at the following unloaded state (in terms of resultant in each arm

(Figure 10(c)). The entries of the EGM correspond to the difference between

the displacement fields measured between the reference image and these two

pictures. The elastic parameters are identified using a classical procedure

based on tensile tests (Périé et al., 2002).

The damage field within the ROI was also computed by using a damage

post-processor (Périé et al., 2002). The non linear parameters were iden-

tified using the same tensile tests. The woven ply is then modeled as a

[0,90] laminate made of unidirectional plies. The shear damage of each ply

is reported (Figure 12(a)). One notes a very good agreement between these

post-processed damage maps and those determined by following the present

procedure (Figure 12(b)). Figure 13 shows a comparison between the mea-

sured and reconstructed displacement fields for the last loading step. The

corresponding residual is here estimated to be R = 5 × 10−2, higher than
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for the artificial cases that were deprived of noise, but still quite low. As

proposed earlier, one can also compute the displacement fields corresponding

to an undamaged state (Dirichlet boundary conditions applied on a homo-

geneous and orthotropic elastic body) and compare it to the measurements

(Figure 14). The residual then amounts to more than R = 7.8 × 10−2. The

improvement linked to the damage modeling is confirmed by the value of Q

(Q = 70.6 × 10−2). It is to be underlined that the present approach allows

one to identify a damage law with higher levels of damage (Figure 11) then

those observed during classical tensile tests (Périé et al., 2002) (typically less

than 0.5).

5. Summary and perspectives

A new way of identifying anisotropic damage laws using images taken

during a mechanical test was presented. The proposed approach is based on

recent developments of two (inverse) methods, namely, finite element Digital

Image Correlation and identification based on the equilibrium gap method.

The first one allows one to retrieve full-field (FE formatted) displacement

fields from images during the loading history. The second one consists in

solving an FE problem for which the data are measured displacements and the

unknowns the parameters of the chosen trial damage law. The performance

of the method was first evaluated using displacement fields resulting from FE

non linear computations. A biaxial test on a cruciform specimen made of an

orthotropic material was simulated. The results of the procedure, in terms
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of identified law and of displacement fields, are excellent, and only weakly

sensitive to the basis of chosen trial functions and to noise. The presented

results are deemed very encouraging.

The procedure was then applied to analyze a real biaxial test performed

on a woven composite. In that case, it is possible to identify in a reliable

way the damage pattern quite similar to the one obtained by post-processing

the measurements with a classically identified damage model. The damage

values are also comparable. The reconstructed displacement field is also very

close to the measured one.

This work corresponds to the first step toward the identification of more

general constitutive laws when considering anisotropic materials. Future de-

velopments will include coupled anisotropic damage and inelasticity, which

are important for a full account of the behavior of many composite materials.
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Figure 1: Schematic of the virtual test (a), reference mesh used and damage map obtained

at the last load level plotted over the deformed (× 10) mesh (b).
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Figure 5: Prescribed and identified damage laws using 100× 15 noisy displacement fields

with a 40 % noise level.
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placements and the mean of the identified damage maps using 100 noisy displacement

fields.
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Figure 8: Comparison between measured and reconstructed displacements, and corre-

sponding differences for the last loading level.
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ments resulting from a homogeneous elastic problem with measured Dirichlet boundary

conditions.
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dure (Périé et al., 2002) and the technique proposed herein.
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Figure 13: Comparison between measured and reconstructed displacements (expressed in

pixels), and corresponding differences for the last loading level.
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Figure 14: Comparison for the last loading level between measured and computed displace-

ments resulting from a homogeneous elastic problem with measured Dirichlet boundary

conditions (expressed in pixels).
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