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Abstract. Considering a semi-infinite planar crack propagating along a plane where

the local toughness is a random field, the addressed problem is to compute the

effective (or homogeneous and macroscopic) toughness. After a brief introduction to

the two regimes — strong and weak pinning — that are expected depending on the

system size, a self-consistent homogenization scheme is introduced. It is shown that

this scheme allows one to predict not only the mean value but also the standard

deviation and even the complete probability distribution function of the toughness.

A discussion about the quality of this prediction as compared with direct numerical

simulations is proposed.
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2 S. Roux & F. Hild

1. Introduction

Homogenization of heterogeneous materials has been a very active do-

main in the last decades [1]. The underlying philosophy is to note that

many mechanical properties of heterogeneous solids do not require an

exhaustive description of the microstructure and can be compared to

those of “equivalent” homogeneous solids (e.g., representative volume

elements). This observation concerns in particular elasticity. Non-linear

constitutive laws such as plasticity are typically more sensitive to the

details of the microstructure and yet significant progress has been

achieved in the past years [2].

Amazingly, toughness homogenization has not received much at-

tention, although the problem may be formulated in similar terms. In

contrast to crack initiation, which is usually controlled by material de-

fects or surface flaws (and hence not amenable to homogenization) [3],

steady state crack propagation even in random fields of local toughness

leads to self-averaging and allows one to define an “equivalent” (i.e.,

homogeneous and macroscopic) toughness.

However, in contrast to standard homogenization problems, an

interesting partition in two regimes is observed, depending on the crack

front length [4]. The “weak pinning” regime expected only for small

system sizes turns out to be a simple problem leading to trivial results.

Conversely, in the strong pinning regime, a multiplicity of equilibrium

configurations appears, whose selection will be dictated by the temporal

evolution. This specific feature turns the problem into a challenging the-

oretical issue. It has been shown that the onset of crack propagation is
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Self-consistent scheme for toughness homogenization 3

actually a genuine second order phase transition — called “depinning”

— that is observed in a wide range of different physical problems [5–7].

One consequence of this property is that all homogenization techniques

are expected to fail. In a few words, the argument is that, even though

no characteristic scale exists at a critical point and correlations extend

to infinity, homogenization most often ignores correlations above a mi-

croscopic size and hence cannot do justice to the very nature of the

physical phenomenon at play.

After defining the problem, the nature of the “weak” and “strong”

pinning regimes will be recalled in Section 2. Then, in Section 3, the

self-consistent approximation methodology is introduced. The resulting

analysis is carried out up to the complete expression of the probability

distribution function (p.d.f.) of the macroscopic toughness, as presented

in Section 4. The validity of these results when compared with direct

numerical simulations will be discussed in Section 5.

2. Problem definition

Let us consider a mode I planar crack propagating along the y direction,

and whose axis is parallel to the x direction as shown in Figure 1. The

crack is assumed to remain within the plane z = 0 where the local

toughness is assumed to be random, Kc(x, y). The surrounding medium

(on both sides of the weak plane) is assumed to be a homogeneous

elastic solid [8, 9].
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4 S. Roux & F. Hild

The local toughness is a random variable Kc(x, y). It is character-

ized here simply by its p.d.f. and its correlation length here assumed

to be finite. Moreover, for the sake of generality, one distinguishes the

correlation length along the propagation direction, ξy, and along the

crack front ξx. In the sequel a perturbation expansion valid only to

first order is used, and hence, the local toughness is assumed to have

a narrow distribution. In all physical cases, the maximum toughness

is bounded, and hence the toughness is normalized with respect to

its maximum value Kc max. A dimensionless local toughness κc as

(Kc max − Kc)/Kc max = ǫκc is introduced, where ǫ is the small pa-

rameter of the perturbation expansion, so that κc is a positive random

variable of order one (beware of the fact that the higher the toughness,

the lower the κc). The p.d.f. of κc is denoted by p(κc).

It is noteworthy that this problem has been addressed in the liter-

ature in connection with dynamic crack propagation [10–12], however

not under the viewpoint of homogenization. In the sequel, we will

essentially focus on the quasi-static regime.

The crack propagation is most often characterized by a constitutive

law relating the stress intensity factor (or energy release rate) to the

crack velocity [3]. However, disregarding subcritical crack growth, there

exists a critical stress intensity factor below which the crack velocity is

strictly zero. In the sequel, we will not be interested in the propagation

regime that will depend on the constitutive law of specific materials,

but rather on the onset of crack propagation, that is only focus on the

critical stress intensity factor. Thus the condition for crack arrest is

simply that for all x, the local stress intensity factor is less than or
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Self-consistent scheme for toughness homogenization 5

equal to the local critical stress intensity factor

K(x) ≤ Kc(x, y) (1)

where K(x) denotes the stress intensity factor at the point (x, y = h(x))

along the front y = h(x).

The whole difficulty of the problem is that the front will not keep

a rectilinear geometry as the crack advances. Rather it will roughen

to conform to the facing toughness. Hence the geometry of the crack

front, which is described by a function y = h(x), has to be accounted

for. Because of this meandering, the local stress intensity factor will be

modulated. However, as above mentioned, the heterogeneity is assumed

to be small, and only a perturbation expansion in ǫ will be used. At a

large distance from the crack front, the roughening of the crack front

can be neglected. This is how the “equivalent” homogeneous toughness

may be introduced, namely, for the homogeneous solid, let us introduce

K0 as being the stress intensity produced by the remote loading. As

the crack front is straight in that case, the macroscopic and microscopic

stress intensity factors are identical. For the heterogeneous case, with

the same mean location of the crack front, the stress intensity factor is

modulated by the crack front geometry. Gao and Rice [13] showed that

up to first order in perturbation, the stress intensity factor is written

as

K(x) = K0

[
1 +

1

2π

∫
h(x′) − h(x)

(x′ − x)2
dx′ + h.o.t.

]
(2)

Thus the relative correction term, k ≡ (K0 − K(x))/(ǫK0), is ex-

pressed as the convolution of the crack front shape h(x) by a kernel

H(x) = −x−2. Following the definition of ǫ, at zeroth order in this
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6 S. Roux & F. Hild

small parameter, one simply has K0 = Kc max. Thus at first order in

ǫ, the arrest condition reads

k(x) > κc(x, h(x)) (3)

2.1. Solution

The convolution with the kernel H(x) may be inverted to provide the

Green’s function G(x), leading to the determination of the crack front

shape h(x) for a given k(x) profile

h(x) = h0 + G(x) ⋆ k(x) (4)

where the ⋆ denotes a convolution. However, G(x) displays a loga-

rithmic variation with x, and hence the cut-offs at small and large

length scales play a key role. The small size cut-off requires the explicit

introduction of the correlation length ξx so that one can smear out

the local divergence through an integration of stress intensity factor

over this correlation length. However, the divergence of the Green’s

function at large distances signals that the crack front length, L, or

more precisely the ratio L/ξx, is an explicit cut-off that will give rise

to size effects.

Let us consider the simple case where the arrest condition is an

exact equality at all points along the front,

k(x) = κc(x, h(x)) (5)

In that case, the crack front shape obeys the non linear equation

h(x) = h0 + G(x) ⋆ κc(x, h(x)) (6)
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Self-consistent scheme for toughness homogenization 7

For each h0 (corresponding to progressively driving the crack through

the random field), one would like to compute h(x), which is however a

difficult task in the most general case.

2.2. Weak pinning

If κc(x, y) varies slowly with y (an extreme case being the layered

case where κc only depends on x, ∂κc/∂y = 0), then it is easy to

solve for Eq. (6), since the non-linearity is “weak” and can be treated

perturbatively (for the layered case, the non-linear term vanishes, and

the problem becomes linear). This case will be referred to as “weak

pinning.”

In that case, because the stress intensity factor at each point

matches the local toughness, averaging Eq. (6) along x leads to the de-

termination of the macroscopic critical stress intensity factor, Kc hom,

as being equal to the arithmetic average of the local toughness

Kc hom = 〈Kc〉 (7)

Let us underline that a “weak” non-linearity does not affect the result.

It should also be noted that only a first order perturbative treatment

in the disorder is used, and hence, arithmetic, geometric or harmonic

averages are equivalent, and higher order terms should be used to

distinguish between them.

The above statement has a straightforward energetic interpreta-

tion. Again, because of the first order perturbation treatment that is

proposed herein, relative stress intensity factors, or relative energy re-

lease rates are identical (up to a trivial factor 2). Hence the above result,
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8 S. Roux & F. Hild

Eq. (7), is retrieved balancing the macroscopic estimate of the critical

energy release rate and the energy cost obtained from the integration

of the local surface energy.

The key question is to understand the limit of validity of this weak

pinning regime. In fact, the break-down of the above argument comes

from situations where ∂h(x)/∂h0 < 0. Such a situation appears in a

number of different situations such as the celebrated Kardar-Parisi-

Zhang equation [14], or the underlying Burgers equation. In that case,

many solutions for the crack front conformation exist for which the

arrest condition cannot be fulfilled as an equality at every point. This

causes the front to jump from one configuration to the next one through

a series of instabilities.

2.3. Strong pinning

The interesting observation is that the divergence the Green’s function

with the crack front length L imposes that for any given disorder (for

which ξy is finite), there exists a length above which weak pinning is

no longer ensured. Thus, asymptotically (i.e., for large front lengths),

the relevant regime is “strong pinning.”

The occurrence of micro-instabilities has far reaching conse-

quences. In particular, the argument leading to the macroscopic

toughness as being the average of the local ones no longer applies.

Whatever the speed at which the fracture front is driven, the front

will locally “depin” from an equilibrium conformation and jump to the

next one at a rate that cannot be controlled at the macroscopic scale.
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Although we did not specify the dynamic equation that describes these

transitions, it will dissipate energy either locally (by visco-elasticity or

plasticity) or remotely as sound waves are radiated and dampened by

any possible internal friction mechanism. The consequence is that the

macroscopic toughness is greater than the average local toughness, the

difference between these two quantities being the additional dissipation

occurring in micro-instabilities.

Unfortunately, it is difficult to solve exactly the random non-linear

equation (6). Hence, we propose to address this question from a simple

prescription that has revealed extremely useful for other homogeniza-

tion problems, namely, the self-consistent approximation [4]. It is an

approximation, and it will not exhaust the full complexity of the prob-

lem. However, it allows one to reproduce the transition from weak to

strong pinning regimes, and to provide a quantitative criterion. It will

also lead to predictions concerning not only the mean macroscopic

toughness of finite size systems, but also on the entire p.d.f. of the

macroscopic toughness.

3. Self-consistent scheme

Let us consider a slice of the random toughness field of width ξx and

infinite length. Away from this strip |x| < ξx/2, one substitutes to the

random toughness a homogeneous one, Kc hom as shown in Figure 2.

Yet at this stage, Kc hom is undetermined. The spirit of the self-

consistent approximation [15] is that if this substitution is “neutral,”
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10 S. Roux & F. Hild

then the macroscopic toughness is equal to Kc hom. Neutrality means

that, on average, the front remains flat 〈h(L/2)−h(0)〉 = 0. This latter

requirement is the natural application of the self-consistency concept

used for homogenization.

Since away from the strip, the medium is homogeneous, the crack

front geometry is directly read from the Green’s function. As mentioned

previously, the divergence of the Green’s function at large distance

prompts us to use a finite width medium, −L/2 < x < L/2 (in numeri-

cal simulations, periodic boundary conditions are the most appropriate

way to deal with finite size effects). The Green function can be obtained

from the inverse Fourier transform of 1/G̃(k). Hence, since G̃(k) ∝ |k|,

we have

h(0) − h(L/2) = A log(L/ξx)(κc(x = 0, h(0)) − κc hom) (8)

The proportionality constant is not specified since it depends on the

chosen prescription for introducing finite boundary conditions, but

the most meaningful dependencies are retained. Solutions of h(0) are

visualized as the intersection between a known random profile in y

κc(x = 0, y) and a linear relation κc hom − (y − h(L/2))/[A log(L/ξx)]

as shown in Figure 3. It is possible to recover from this construction

the previous discussion on weak and strong pinning by counting the

number of possible solutions. It is to be noted that the slope S of the

straight line scales as 1/ log(L/ξx). Hence, as the front length increases,

a transition from weak to strong pinning will occur as the above slope

reaches the maximum slope ∂κc(0, y)/∂y.
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The macroscopic toughness is again given by the average of the lo-

cal toughness, with however one major restriction, namely, the average

is to be taken over values that are visited as the crack moves onward.

As shown in Figure 4, the κc values that are averaged over are the

most salient ones, whereas the smallest do not correspond to visited

equilibrium configurations. As noted previously, this phenomenon indi-

cates that the macroscopic toughness will be greater than the average

value of the local toughness. This self-consistent procedure has been

introduced and discussed in Ref. [4], and hence the reader is referred

to this reference for a more complete discussion on the main results

concerning the macroscopic toughness.

4. Probability distribution function of the macroscopic

toughness

The probability that a specific value κc correspond to a visited stable

configuration is written as r(κc) = Bp(κc) Q(κc), where Q(κc) is the

probability that no previously encountered value of the toughness may

have screened the present site, and B a multiplicative constant (1/B =
∫

p(x) Q(x) dx). Note that r(κ) is exactly the p.d.f. of the macroscopic

toughness. Indeed, the missed equilibrium configurations are unstable

and cannot be observed.

Let P (x) be the cumulative distribution of local toughness
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12 S. Roux & F. Hild

, P (x) =
∫ x
0 p(x) dx. For a given slope S = (A log(L/ξx))−1, one

may write

Q(κ) =
∞∏

i=1

(1 − P (κ − iSξy)) (9)

In the limit where Sξy is a small parameter as compared to the width

of the distribution p, the above discrete product is approached as its

continuum limit

Q(κ) = exp

[
1

Sξy

∫ κ

0
log(1 − P (x)) dx

]
(10)

Let us consider the example of a local toughness distribution that

is uniform over the interval [0; 1]. In that case, P (κ) = κ, and hence

Q(κ) = exp

[
−

(1 − κ) log(1 − κ) + κ

Sξy

]
(11)

The interesting limit is that of a large system size where S → 0. By

performing a Taylor expansion about the origin where Q will assume

non negligible values, (1 − κ) log(1 − κ) + κ ∼ (1/2)κ2 and hence

Q(κ) ∼ exp

[
−

κ2

2Sξy

]
(12)

so that Q is seen as a filter for the distribution p(x) preserving large

toughnesses (small κ), and cutting out κ larger than κ∗ ∼
√

Sξy.

Rescaling κ by κ∗ provides a scale-independent distribution

Q(κ) = Ψ1(κ/κ∗) (13)

where

Ψ1(x) = exp(−x2/2) (14)

and κ∗ gathers all the size dependence given by the S factor, and hence

κ∗ ∼ ξ1/2
y log−1/2(L/ξx) . (15)
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Figure 5 illustrates this property, showing a series of p.d.f.s for different

system sizes (or equivalently S), and their plot as functions of κ/κ∗.

Similarly, Figure 6 is a direct check of the scaling of κ∗ as a function

of S1/2 and a linear behavior is observed.

It is of interest to note that the resulting distribution Ψ is the same

for all distributions p such that p(0) is finite. Hence, the result has a

rather wide degree of generality that may not have been anticipated.

However, not all distributions p belong to this category. If P (x) ∼x=0

xβ , then it is again observed that for large L, the Q distribution takes

a unique form

Q(κ) = Ψβ(κ/κ∗) (16)

where

Ψβ(x) = exp

[
−

x1+β

(1 + β)

]
(17)

and

κ∗ ∼ ξ1/(1+β)
y log−1/(1+β)(L/ξx) (18)

For all values of β a different asymptotic distribution emerges. Thus

a single scalar characterizes this asymptotic behavior, namely the

shape of the distribution of local toughness close to its maximum. The

exponent β is defined without many restrictions as

β = lim
x→0+

log(P (x))

log(x)
(19)

and finally the effective p.d.f. of the macroscopic toughness, r(κ),

assumes the form Rβ(κ/κ∗) where

Rβ(x) = xβ exp

[
−

x1+β

(1 + β)

]
(20)
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14 S. Roux & F. Hild

It is interesting to note that in a different context, namely damage

mechanics, a systematic classification of the expected size effects was

already argued by Hansen et al. [16] to be controlled by such quantities

as the one defined in Eq. (19) on the basis of scale invariance.

From this expression it is possible to argue that the mean macro-

scopic toughness displays the systematic size effect as any other

moment, namely,

〈κc hom〉 ∼ ξ1/(1+β)
y log−1/(1+β)(L/ξx) (21)

(Note that this result holds for the “reduced” expression κ, so that

Kc hom tends to a constant (i.e., the maximum local toughness) plus

the above expression that appears as a very weak size effect).

5. Discussion

As mentioned in the introduction, the very nature of the onset of

crack propagation has been claimed to be a genuine 2nd order phase

transition, and hence, ignoring correlations above a microscopic scale

is an oversimplification. Hence the self-consistent approach is deemed

to fail a priori. However, it is interesting to investigate the limits of

the approach and its transposition to a regime where the occurrence

of micro-instabilities is a major difficulty as compared with traditional

homogenization problems.

This section lists some of the properties that have been observed

in numerical studies of the problem in the strong pinning regime as

reported in Ref. [17]:
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• First, the mean macroscopic toughness 〈Kc〉 tends to a constant

K∞ for large system sizes, as reproduced from the self-consistent

approximation.

• The standard deviation of the macroscopic toughness σ(Kc) van-

ishes as a universal power-law of the front length. Qualitatively, a

size effect law is observed for this standard deviation in the self-

consistent scheme, but in quantitative terms it appears to be a

much weaker effect (typically a power-law of the logarithm of L).

• In order to define the local toughness distribution, an infinite num-

ber of parameters is needed. At a macroscopic level, we observe

that the number of parameters needed to characterize the effec-

tive toughness distribution has been significantly reduced. The

self-consistent approach predicts that only three parameters are

needed, namely one for the thermodynamic limit Kc∞, one for

the width of the distribution σ(Kc), and one for the exponent β.

However, in direct simulations, it is observed that only the two

former parameters are needed. All values of exponent β defined

at the microscopic level seem to lead to the same unique form for

the normalized macroscopic toughness, (Kc∞ −Kc)/σ(Kc). Thus,

although the trend is correctly reproduced, the local nature of the

self-consistent scheme miss part of the universality of the complete

model.

Thus it appears that, to a certain degree, the self-consistent ap-

proach reveals a robustness of the asymptotic (i.e., large L) behavior.

The latter is however not as strong as in direct numerical simulations
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16 S. Roux & F. Hild

where universality is observed. The reason for this partial success is

presumably to be understood through the fact that the random tough-

ness is preserved only along a line in the self-consistent prescription

thereby overemphasizing the individual role played by the local tough-

ness statistics. In direct simulations, depinning appears to be a more

collective phenomenon, hence less sensitive to the details of p.

Let us finally observe that experimentally, the situation used to be

quite confusing, as the predicted scaling of the crack front roughness

exponent from numerical simulations did not seem to be obeyed [18].

However, quite recently, a more careful analysis of the data rather tends

to support the strong pinning modeling above a small scale that is

affected by the system preparation [19]. An extension of this theory to

three dimensional cracks that allow for an experimental interpretation

of 3D crack roughness from such a planar pinning problem has been re-

cently proposed [20]. Last, still on the experimental side, let us mention

that the analysis of crack arrest statistics of indentation cracks has been

proposed based on the above presented depinning critical features [21].

6. Conclusions

Crack propagation in a random brittle material may be seen as a depin-

ning phenomenon that displays two distinct regimes. A weak pinning,

where the homogenization turns out to give a trivial result, namely

the macroscopic equivalent toughness is nothing but the average of

the local toughness. This regime is however restricted to small crack
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sizes or strongly anisotropic textures along the propagation direction.

The second regime, strong pinning, relevant for most practical cases,

consists in a series of micro-instabilities for which a homogenization

approach is a priori more difficult to formulate.

It has been proposed to address this second regime within the so-

called self-consistent approach. The latter turns out to reveal a wealth

of information, not only for the mean macroscopic toughness but also

its fluctuations, and even the entire probability density function for the

macroscopic toughness. The prediction is that the re-scaled distribution

of toughness tends towards one of an infinite series of stable distribu-

tions indexed by a single parameter. This result is however not as strong

as the single universal distribution that is observed in direct numeri-

cal simulations, but is already quite a remarkable success, considering

the fact that strong pinning is a second order phase transition where

scale invariance is essential, and obviously violated in the self-consistent

prescription.
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Figure 1. Schematic plot of the crack front advancing through a random toughness

field illustrated as a gray scale map.
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Figure 2. Illustration of the self-consistent prescription. The full problem (left) is

replaced by a homogenized version outside the strip. Imposing that the front remains

flat determines the effective macroscopic toughness.
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Figure 3. Construction of possible solutions of the crack front position along the y

axis. In the case of weak pinning, as shown on the left, a unique solution is obtained.

In contrast, for strong pinning (shown on the right), several solutions appear, and

hence the actual chosen solution as the crack is driven to the right is the leftmost

solution.
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Figure 4. Illustration of the time change of the crack front position at the origin as

the front is driven. It is to be underlined that this motion consists of a succession of

smooth change and abrupt discontinuities that are a signature of the strong pinning

regime.
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Figure 5. Raw (left) and Scaled (right) distribution of the macroscopic (and

homogeneous) toughness for different values of the S parameter.
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Figure 6. Change of the mean (macroscopic) toughness as a function of S1/2 (for a

unit correlation length ξy = 1) in the case of a uniform local toughness distribution.

Using Sξy = Aξy log(L/ξx), the above graph is an illustration of the very slow size

effect that affects the macroscopic (and homogeneous) toughness.
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