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Abstract The aim of the present work is to determine the amount of dissipated and stored energies
in structures containing frictional cracks and elasto-plastic zones. The proposed theory combines
micromechanical and thermodynamic tools to calculate both energies. Using simple examples, it is
shown that the Taylor-Quinney coefficient is not a constant, and can be much less than the values
usually considered (i.e., close to unity).
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1 Introduction

A wide variety of engineering and fundamental problems involves thermodynamic issues linked to
dissipation and energy storage. The well known phenomenon of dissipative or self heating, which
occurs especially during dynamic loading, induces a large spectrum of consequences, spanning
from thermal hardening in the case of strong shock compaction of porous bodies [1] to various
microstructural changes, such as dynamic recrystallization [2], phase transitions [3], or chemical
reactions in energetic [4] and non-energetic [5] materials. Thermal softening often occurs, and may
induce catastrophic events, such as adiabatic shear failure in metals [6].

The concept of thermodynamic affinity, or thermodynamic force, is also of great concern when
seen as a driving force for irreversible mechanisms, be they related to energy storage during hard-
ening processes or to energy release during softening ones. Many models use this concept in the
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61 avenue du Président Wilson, F-94235 Cachan Cedex, France.
Tel.: (33) 1 47 40 22 38
Fax: (33) 1 47 40 22 40
E-mail: hild@lmt.ens-cachan.fr



2 G. VIVIER et al.

formulation of evolution laws for irreversible processes, such as strain hardening, crack growth, or
phase transitions, for example. The concept is particularly salient for localized phenomena, such
as the propagation of adiabatic shear bands [7], seismic events [8] or meteorite impacts known
to induce rock melting by large scale friction on faults, and produce characteristic rock structures
(pseudotachylytes) after cooling [9].

At least three distinct kinds of quantities must be distinguished, namely immediately recover-
able elastic energy, stored energy, not fully recoverable by unloading, and dissipated energy. As
they are strongly inter-linked through the two principles of thermodynamics, determining dissi-
pation or energy storage represents the same problem, viewed from two different standpoints. In
practise, a correct evaluation of dissipation, for instance, needs also a correct evaluation of the other
two components. Formulated differently, this addresses the question of the full determination of
the thermodynamic potential.

The question of stored energy is the object of a recent renewal of interest. Since Taylor and Quin-
ney [10] and their first “cold work energy” measurements, various authors attempted to address
this question experimentally in metals [11–14] and polymers [15–17], by using a variety of tech-
niques, ranging from calorimetry, embedded thermocouples, infrared thermography to ultra fast
pyrometry. Two quantities are generally derived from thermal measurements, and should be care-
fully distinguished. The ratio of dissipated to plastic power, of differential nature, corresponds to
the Taylor Quinney coefficient. This ratio may exceed unity, and may even reach values as high as 2,
in the case of localization processes [17]. This means that for such paths, the stored energy is possi-
bly released and contributes to instantaneous dissipation. This is an important issue, since the driv-
ing force for localized band propagation takes the form of an energy release rate [18–22], in which
the stored energy contribution might represent a significant part. The second above-mentioned
quantity, of integral nature, is the ratio of dissipated to plastic energies. This ratio is never greater
than unity, and can be much lower. For example, Rittel [17] measured values as low as 0.4 in poly-
carbonate for this integral ratio. Both coefficients are clearly strain and strain-rate dependent, and
may vary quite strongly, as reported by most of the above mentioned authors.

Stored energy is often thought of as related to plasticity and hardening. However, quasi-brittle
materials are also capable of storing energy. Although this class of materials behaves in an elastic
and damageable manner by microcrack growth and opening at low confining pressure, a brittle
to ductile transition is observed at higher confinement, for which they display an elasto-plastic
like behavior with strain hardening. This represents a macroscopic manifestation of energy storage,
known to be associated with frictional stresses on closed microcracks. Hence, dislocation motion or
twinning in metals and polymers and frictional microcracks induce very similar consequences at
the macroscopic level, and a unified thermodynamic description is desirable. This is all the more
the case that quasi-brittle materials may also involve grain plasticity at high confining pressure (see
for example the recent illustrative work of Wei and Anand [25]).

An interesting engineering problem is represented by energetic materials ignition under dy-
namic loading. It has been known for long [4] that these materials (i.e., explosives and solid pro-
pellants) ignite by heterogeneous self heating, the so-called ”hot spot process”. Although the exact
mechanisms have not been identified yet, it is strongly suspected [26–28] that frictional microcracks
play a decisive role in the ignition process. Many energetic materials display a concrete-like mi-
crostructure and quasi-brittle behavior, hence falling in the scope of the present discussion. This
problem is similar to that of friction induced explosion in grain silos, except for the granular nature
of the media at stake. The prediction of ignition by hot spot heating needs predicting dissipation
and thus energy storage. Moreover, it is well known that energy storage induces Bauschinger-like
effects in quasi-brittle materials. Reverse frictional sliding, associated with energy release, could
also induce ignition during unloading.

Energy storage is known to be linked to material heterogeneity (see, for example, refs. [23,
29,30]), in the form of dislocation forests in metals or the so-called “microsheared domains” in
glassy polymers. This is most of all the case for polycrystals (see in particular refs. [14,23,31]), semi-
crystalline polymers, composites or microcracked materials (see for example ref. [29]) at a higher
spatial scale, where material property discontinuities play a major role. In any of these cases, energy
storage description is linked to microstructure details. It thus appears that the stored energy must
be evaluated using a micromechanical approach, this consequently also standing for free energy
and dissipation.
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Such a combined thermodynamic and micromechanical approach is particularly suited in the
field of damage mechanics, and has already provided very interesting micromechanically-based
models (see for instance [32,33]). However, most available micromechanical tools are related to
microcracked homogeneous elastic media, which represents a somewhat strong simplification for
the description of many engineering or natural materials. The present paper addresses the ques-
tion of a micromechanically-based thermodynamic model development for heterogeneous elastic
materials containing elasto-plastic defects and cracks. It proposes a theoretical methodology, gener-
alizing the work of Andrieux et al. [24] to strongly heterogeneous materials and structures. For the
present analysis, viscous processes will be excluded and set aside for future work. Further restric-
tive assumptions are also considered, namely infinitesimal isothermal strains and non interactions
between cracks and elasto-plastic parts.

The fundamentals of the approach are described in Section 2, which establishes micro to macro
relationships for stresses, strains, and proposes the concept of virtual elastically unloaded state for
determining the stored energy. The approach is then applied in Section 3 to very simple structures,
and compared with numerical results provided by the ABAQUS Standard finite element code. In
order to keep tractable results, some simplifications are made, but are shown numerically not to
entail the predictions accuracy. This methodology is to be applied to an elementary heterogeneous
cell, representative of a plastic-bonded explosive, in a forthcoming paper.

2 Theory

2.1 Overall stresses and strains

Let us consider a domain Ω, containing perfectly bonded elasto-plastic zones, closed and open
cracks, and otherwise made of several perfectly bonded elastic phases (Figure 1). Following An-

Fig. 1 Definition of the domain Ω and dissipative mechanisms.

drieux et al. [24], the stress-based effective moduli (or Hill-Mandel [34,35]) approach is adopted
herein. Hence, a supposedly uniform overall stress Σ is applied to the external boundary Φ of the
domain Ω, such that

Σ.ν = σ.ν on Φ (1)

where σ stands for the microscopic stress tensor, and ν is the outer unit normal to Φ. Then, neglect-
ing inertial and body forces, the following relationship applies

Σ =
1

V

∫

Ω

σ(x)dV (2)

in which x is the position vector of any point, and V is the volume of the domain Ω.
Overall strains are defined using the macro-homogeneity relationship

Σ : E =
1

V

∫

Φ

(σ(x).ν).u(x)dS (3)
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where u(x) is the microscopic displacement field. Using (1), Equation (3) yields

E =
1

V

∫

Φ

u(x) ⊠ νdS (4)

in which the symbol ⊠ denotes the symmetrized tensorial product. This relationship may also be
put in the more intuitive form

E =
1

V

∫

Ω

ǫ(x)dV +
1

V

∫

Γ

u(x) ⊠ ndS (5)

where ǫ(x) is the infinitesimal microscopic strain tensor, defined for all points where the displace-
ment u(x) is differentiable, and n is the local unit normal vector normal no internal surfaces denoted
collectively by Γ. Thus, the overall strain is made up of two contributions, namely, the average of
microscopic strains and displacement jumps on internal surfaces. For the sake of simplicity, the
spatial dependence of microscopic fields will be dropped throughout the remainder of this paper.

2.2 Stresses and strains decomposition

(a) Stress Path (b) Internal Strains

Fig. 2 Stress paths and corresponding displacement decompositions.

Let us consider the loading case illustrated by Figure 2(a). Point B is an arbitrary state, charac-
terized by microscopic stresses σ and overall stress Σ. Apply a purely elastic unloading until the
overall stress vanishes, thus reaching point C [36,37]. Since it is well known that elasto-plastic me-
dia may exhibit reverse yielding and quasi-brittle media reverse frictional sliding, this unloading
path is in general a virtual one.

The state at point C is characterized by a residual stress field σ
i. Since no external load is applied

at this point, this field satisfies the condition

σ
i.ν = 0 on Φ (6)

thus implying that σ
i is a self-balanced field

1

V

∫

Ω

σ
idV = 0 (7)

This internal stress field is associated with a displacement field ui and with a strain field ǫ
i wherever

ui is differentiable (see Fig. 2(b)). Owing to the infinitesimal strain and displacement assumption,
the classical additive decomposition stands

ǫ
i = ǫ

i
e + ǫ

i
p (8)
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the elastic part being related to internal stresses by

ǫ
i
e = C

−1 : σ
i (9)

where C is the local elastic stiffness tensor. The displacement field ui may be discontinuous on crack
lips.

Since the path BC is purely elastic, the superposition principle applies (see Figure 2(b))

σ = σ
i + σ

⋆ (10)

where σ
⋆ is the microscopic stress field induced by applying the overall stress, provided plasticity

and frictional slip on crack lips are frozen. This field satisfies the boundary condition

σ
⋆.ν = Σ.ν on Φ (11)

Since tractions σ
⋆.n are continuous across elastic and elasto-plastic boundaries, across closed cracks

and vanish across open cracks, the following relationship stands

Σ =
1

V

∫
σ

⋆dV (12)

The field σ
⋆ is associated with displacement and strain fields u⋆ and ǫ

⋆ respectively, such that

ǫ
⋆ = C

−1 : σ
⋆ (13)

Since all dissipative processes are frozen along the path CB, the field u⋆ is continuous across closed
cracks and elastic and elasto-plastic boundaries, but remains discontinuous across open cracks.

Applying the macro-homogeneity condition to these fields yields the overall elastic strain

E⋆ =
1

V

∫

Φ

u⋆
⊠ νdS =

1

V

∫

Ω

ǫ
⋆dV +

1

V

∫

Γ

u⋆
⊠ ndS (14)

Using the additivity assumption (8) and the total overall strain definition (4), Equation (14) becomes

Ei = E − E⋆ =
1

V

∫

Φ

ui
⊠ ndS (15)

such that elasto-plastic additive decomposition follows for overall strains, and

Ei =
1

V

∫

Ω

(
ǫ

i
e + ǫ

i
p

)
dV +

1

V

∫

Γ

ui
⊠ ndS (16)

Note that the inelastic overall strain contains elastic strain contributions together with local inelastic
ones. These elastic contributions are induced by plastic straining and by frictional sliding on closed
cracks.

The elastic virtual path CB can also be decomposed as follows (see Figure 2(b)). From point B,
let us follow a virtual elastic unloading path in which the open cracks are frozen until the fully
unloaded point D is reached. Along BD, the medium behaves as the uncracked material. Then,
using again the superposition principle, the stress field σ⋆ decomposes into

σ
⋆ = σ

re f + σ
d (17)

and so do the corresponding displacement and strain fields u⋆ and ǫ
⋆

u⋆ = ure f + ud (18)

ǫ
⋆ = ǫ

re f + ǫ
d (19)

As previously, the fields σ
re f and σ

d are such that

Σ.ν = σ
re f .ν on Φ (20)

σ
d.ν = 0 on Φ (21)



6 G. VIVIER et al.

which implies that

Σ =
1

V

∫

Ω

σ
re f dV (22)

and that σ
d is a self-balanced stress field

1

V

∫

Ω

σ
ddV = 0 (23)

Using again the macro-homogeneity condition for the fields σ
re f , ure f and ǫ

re f and the property

that ure f is continuous throughout the body yields the following definition

Ere f =
1

V

∫

Ω

ǫ
re f dV (24)

Similar arguments as previously provide the additive decomposition

E⋆ = Ere f + Ed (25)

where

Ed =
1

V

∫

Φ

ud
⊠ νdS =

1

V

∫

Ω

ǫ
ddV +

1

V

∫

Γ

ud
⊠ ndS (26)

In this expression, the last term only applies on open cracks, because since the path CD is elastic,

the field ud is continuous across closed cracks.

2.3 Energies and dissipation

In a purely mechanical context (i.e. assuming isothermal processes), the free energy of the system
at point B is defined by

Ψ =
1

V

∫

Ω

1

2
σ : C

−1 : σdV (27)

Using the decomposition of stresses (10), this expression becomes

Ψ =
1

V

∫

Ω

1

2
σ

i : C
−1 : σ

idV +
1

V

∫

Ω

1

2
σ

⋆ : C
−1 : σ

⋆dV +
1

V

∫

Ω

σ
i : C

−1 : σ
⋆dV

The last term of the right-hand side of this expression

Ŵ =
1

V

∫

Ω

σ
i : C

−1 : σ
⋆dV =

1

V

∫

Ω

σ
i : ǫ

⋆dV (28)

vanishes, due to (7) and to the fact that σ
i.n.u⋆ either vanishes on open cracks or remains continuous

on closed ones.
One then obtains the following additive decomposition of the overall free energy

Ψ = Wi + W⋆ (29)

in a stored energy

Wi =
1

V

∫

Ω

1

2
σ

i : C
−1 : σ

idV (30)

and a recoverable one

W⋆ =
1

V

∫

Ω

1

2
σ

⋆ : C
−1 : σ

⋆dV (31)

This expression may also be put in the following form

W⋆ =
1

2
Σ : E⋆ (32)
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Combining the classical isothermal expression of the Clausius-Duhem inequality with Equation (32)
yields the well known expression of dissipation

D = Σ : Ėi − Ẇi (33)

Hence, the expression of dissipation is obtained in a micromechanical way by combining Equa-
tions (2), (5), and (30).

With these quantities, two Taylor-Quinney coefficients are defined. First, the differential coeffi-

cient βd

βd =
D

ΣĖi
=

D
D + Ẇi

(34)

and second, the integrated coefficient

βint =
Wd

Wd + Wi
(35)

where Wd is the dissipated energy. Both coefficients evaluate the relative amount of power or energy
that are stored or dissipated by irreversible processes.

3 Simple case studies

The general relationships derived in Section 2 are in principle designed for application to homog-
enization problems. This is what will be done in a forthcoming paper on a plastic-bonded explo-
sive [38], in view of studying the above-mentioned problem of ignition under low velocity impacts.
For the present purpose, however, the theory will be applied for demonstration purposes on much
simpler structures, loaded by homogeneous external stresses. The objective here is two-fold. The
first one consists in showing how a thermodynamics-based overall model can be built. The second
one is to seek simplified formulations of local fields, necessary for the theory to remain tractable, but
sufficient to capture the salient thermodynamical features of the overall response of the dissipative
heterogeneous media at stake.

3.1 The case of plasticity

Fig. 3 Elasto-plastic composite structure.

The following unidimensional example is the simplest way to illustrate the previous develop-
ments. The medium (see Figure 3) is composed of two beams of length ℓ and of cross section ℓ2

in perfect contact. The lower one is purely elastic, with a modulus K1, whereas the upper one is
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elastic-perfectly plastic with a modulus K2 and a yield stress σy2. The load Σ is applied to the whole
structure, whose total strain is E. The system is represented by the rheological analog given in Fig-
ure 3, in which the total displacement is u, and g is the plastic slip in the upper beam.

In a first step, let the inelastic strain g be prescribed in the upper beam in the absence of any
external stress, which corresponds to the virtual path OB of Figure 2(a). In this state, the overall

strain is Ei, and the internal stresses are σi
1 and σi

2 in the lower and upper beams respectively, given
by

σi
1 = K1Ei = −σi

2

in which the inelastic strain Ei is given by

Ei =
ui

ℓ
=

K2

K1 + K2

g

ℓ
(36)

In a second step, the external load Σ is applied. Since the stress σ2 in the lower beam must be equal
to σy2, and the external load is such that

σ⋆
2 = σy2 − σi

2

The external load Σ is linked to the overall elastic strain E⋆ by

Σ = KeqE⋆

where Keq is the overall elastic modulus given by Keq = (K1 + K2)/2. Then, σ⋆
2 = K2E⋆, and the

resulting constitutive law is

Σ =
Keq

K2

(
σy2 + K1Ei

)

In order to derive the free energy, let us consider the stress state in the upper (elastic) beam

σ1 = σi
1 + σ⋆

1

σi
1 = K1Ei

σ⋆
1 = K1E⋆

and in the lower beam

σ2 = σi
2 + σ⋆

2

σi
2 = −K1Ei

σ⋆
2 = K2E⋆

The elastic energy, expressed by W⋆ = 1
2

(
V1

{σ⋆
1 }2

K1
+ V2

{σ⋆
2 }2

K2

)
, with V1 = V2 = ℓ3, and V = V1 + V2,

reads

W⋆ =
1

2
V

Σ
2

Keq
=

1

2
VKeq

(
E − Ei

)2

whereas the stored energy, expressed by Wi = 1
2

(
V1

{σi
1}2

K1
+ V2

{σi
2}2

K2

)
, becomes

Wi =
1

2
V

K1

K2
Keq

(
Ei

)2
(37)

Hence, the free energy is given by

Ψ = W⋆ + Wi =
1

2
VKeq

(
E − Ei

)2
+

1

2
V

K1

K2
Keq

(
Ei

)2
(38)
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The classical framework of the thermodynamics of irreversible processes (see for example [39–41])
can then be used to derive the expressions of the macroscopic stress and dissipation from the fol-
lowing relationships

Σ =
∂Ψ

∂E

D = XĖi

where X = − ∂Ψ

∂E is the thermodynamic force conjugate to the internal variable Ei. For monotonic

loading, it is straightforward to show that Σ = Keq
K1Ei+σ2y

K2
. Reporting in Equation (38) and derivat-

ing with respect to Ei yields

X = V
Keq

K2
σy2

The dissipation is then given by

D = V
Keq

K2
σy2Ėi (39)

and the Taylor Quinney coefficients become

βd =
1

1 + K1
σy2

Ei
, βint =

1

1 + K1
2σy2

Ei
(40)

In order to validate this very simple analysis, a numerical exercice is performed using the finite
element code ABAQUS Standard with K1 = 1 GPa, K2 = 5 GPa, σy2 = 30 MPa, and ℓ = 1 m.
Figure 4 gives a comparison between theory and calculations, in terms of stress-strain response,
whereas Figure 5 shows the same comparison in energetic terms. It appears that the match in ex-
cellent, which is not surprising considering the very simple structure (and behavior) at stake, but
lends confidence in the analysis. The differential Taylor-Quinney coefficient is recast as

(a) Total strain (b) Inelastic strain

Fig. 4 Stress-strain response of the elasto-plastic composite structure.

βd =
1

1 + K1
K2

Ei

ǫy2

(41)
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(a) Stored energy (b) Dissipated energy

(c) Taylor-Quinney coefficient

Fig. 5 Energetic response of the elasto-plastic composite structure.

involving elastic property contrast and inelastic global strain normalized to the strain at yield of the
elasto-plastic beam. This expression also reads

βd =
1

1 + H
Keq

Ei

ǫy2

(42)

where H = ∂Σ

∂Ei is the hardening modulus. This formulation shows that the higher the hardening

modulus, the more rapidly the Taylor-Quinney coefficient decreases with inelastic strain. However,
Equations (40), (41) or (42) show that the Taylor-Quinney coefficient, for this elasto-plastic structure,
decreases from an initial value of 1, towards zero, and is thus not constant. The decrease of this
coefficient should not be understood as a decrease of dissipation. It is only the dissipated part of
the inelastic work that decreases, not the dissipated energy, that increases linearly with inelastic
strain, as shown by Equation (39) and Figure 5(b). It can also be noticed that the main part of the
stored energy lies in the elastic beam, since the elastic deformation of the elastic-plastic beam is
constant due to yielding.

3.2 The case of friction

The case of friction is also analyzed through a very simple medium, illustrated in Figure 6. The
system is made of two elastic beams of equal length ℓx, of sections S1 and S2, and of elastic stiff-
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nesses K1 and K2. The lower one, referred to as beam 1, is fixed at x = 0, whereas the upper one is
not. A confining pressure −p is applied on the lateral section of the upper beam, and the friction
coefficient is ρ. The analysis is carried out analytically through a one-dimensional representation of
fields along the x coordinate only, as before, other dependencies being neglected. Sliding is allowed

Fig. 6 Frictional composite structure.

on the contact surface, and the contact stress τ = ρp is assumed to be uniform on the sliding part of
the contact surface. During a real loading, stress mismatches develop along the interface until the
friction limit is reached, and frictional sliding begins. This occurs from the beginning of the load.
At a given stress state, the contact surface is divided into a sliding part (denoted by fd in Figure 6)
and a non-sliding one. Hence, the sliding surface is analogous to a frictional crack that propagates
towards the right end of the structure, and whose tip is located at x = D. The internal stress fields
are illustrated in Figure 7. Beginning with the virtually unloaded state B (i.e., sliding frozen from
point C), the local equilibrium of beam 2 reads

σi
2(x + dx) − σi

2(x) = τℓzdx

This expression is integrated into

σi
2(x) =

τℓz

S2
(x − D)

which accounts for the condition σi
2(D) = 0, since in the virtual state B, no external stress is applied.

Then, the local equilibrium of the medium becomes

S1σi
1 + S2σi

2 = 0

such that

σi
1(x) = −τℓz

S1
(x − D)

Let us note that σi
2(0) = −τℓzD/S2, such that the residual stress in beam 2 is nonzero on the beam

free surface. This justifies the denomination of virtual unloaded state, which can only be obtained by
imposing a stress on the beam internal free surface, and not from the exterior. This constitutes an

internal variable driven process. The inelastic strain Ei is given by

Ei =
ui(D)

ℓx
=

∫ D
0 ǫi

1(x)dx

ℓx
=

τlzD2

2K1S1ℓx
(43)

In Equation (43), the inelastic strain is obtained from the value of the displacement u at the exter-
nal boundary. The same result is obtained by using Equation (16) i.e., using internal strains and
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displacement jumps. The second part of the load, i.e., the virtual elastic path, induces the elastic
stresses

σ⋆
1 = K1E⋆ =

K1

Keq
Σ

σ⋆
2 = K2E⋆ =

K2

Keq
Σ

where the global stiffness Keq is, as before, given by Keq = K1S1+K2S2
S1+S2

. The stress at the free-surface

in beam 2 (i.e., σ⋆
2 (0) + σi

2(0)) must vanish, which imposes the additional condition

Σ =
τℓzKeq

S2K2
D

It is now possible to calculate the stored energy Wi = S1

∫ D
0

{σi
1}2

K1
dx + S2

∫ D
0

{σi
2}2

K2
dx

Fig. 7 Internal stress fields: (a) in the virtually unloaded state C, (b) resulting from the external load on the virgin
medium, and (c) in the loaded state B

Wi =
2

3
VKeq

(
Ei

)2

d
(44)

where V = (S1 + S2)ℓz is the total volume of the structure, and d is defined by [24,29,30]

d =
K2S2D

K1S1ℓx
(45)

The elastic energy reads

W⋆ =
1

2
V

Σ
2

Keq
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Hence, the free energy becomes

Ψ =
1

2
VKeq(E − Ei)2 +

2

3
VKeq

(
Ei

)2

d
(46)

In this case, the free energy ψ has the same form as in the plastic case (38), but is corrected by the
damage-like variable d, which accounts for a new irreversible process, namely the propagation of
the frictional crack. Then, the dissipation is given by

D = XĖi + Yḋ

where the thermodynamic forces associated with Ei and d are defined by

X = − ∂Ψ

∂Ei
(47)

Y = −∂Ψ

∂d

The dissipated energy becomes

Wd =
2

3
VKeq

(
Ei

)2

d
and therefore, the Taylor-Quinney coefficients are given by

βd =
1

2
, βint =

1

2
(48)

As before, analytical predictions are compared with numerical results with K1 = 1 GPa, K2 =
10 GPa, ℓx = 0.5 m, ly = 0.01 m, and ℓz = 0.1 m. Mesh size independence was checked. The
simulations are performed in three steps. The confining pressure is first applied. Then, the tensile
load is applied up to a pre-selected value. Then, the surfaces in contact are tied together during
unloading, so that no reverse friction occurs. Although the theory and the numerical model do not
employ the same virtual paths, they lead to remarkably close results, as illustrated by Figures 8
and 9. The small discrepancies displayed in Figures 9(a) and 9(c) are commented upon in the next
section. It is remarkable that the Taylor-Quinney coefficient is constant and independent of the

(a) Total strain (b) Inelastic strain

Fig. 8 Stress-strain response of the frictional composite structure.

geometrical details of the system, and of its stiffnesses as well. The fact that it remains equal to a
half means that a large amount of energy is stored during loading, and that taking a Taylor-Quinney
coefficient close to unity would severely overestimate the temperature field. Conversely, the stored
energy is likely to be at least partially released during unloading. In this respect unloading could
be a quite significant process regarding internal heating.
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(a) Stored energy (b) Dissipated energy

(c) Taylor-Quinney coefficient

Fig. 9 Energetic response of the frictional composite structure.

3.3 Combining plasticity and friction

A slightly more involved case is studied now. The same structure as in Figure 6 is considered, except
that the upper beam is now elasto-plastic with a yield stress σy2. The beginning of the loading

process is identical to the frictional case of Section 3.2, but now yielding occurs when σmax
2 = σ′

y2 ,

where σ′
y2 accounts for the effect of confining stress −p

σy2 =
1√
2

√
(σ′

y2 + p)2 + p2 + σ′2
y2 (49)

At the onset of yielding in the upper beam, the length D of the frictional zone is D = D1, and it is
shown that

σ′
y2 =

τℓz

S2
D1

whereas the inelastic strain is given by

Ei = Ei
1 =

τℓzD2
1

2K1S1ℓx
=

S2

K1S1

D1

2ℓx
σ′

y2 (50)

If the internal virtual stress σ0 increases, friction stops and is replaced by yielding in the upper
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(a) Friction only (b) Onset of yielding (c) Yielding only

Fig. 10 Internal stresses in the upper beam of the frictional-plastic composite structure.

beam. This situation is illustrated by the internal stress fields of Figure 10. Then, the inelastic strain

Ei
1 is supplemented by Ei

2

Ei = Ei
1 + Ei

2

given by

Ei
2 =

S2

K1S1
(−σ0 − σ′

y2)

The stored energy then becomes

Wi =
2V

3

Keq

d1

(
Ei

1
2
+ Ei

2
D1

ℓx

(
3

4
Ei

2 +
3

2
Ei

1

))

where d1 is given by

d1 =
K2S2D1

K1S1ℓx

and the dissipated energy reads

Wd =
2

3
VKeq

(
Ei

1

)2

d1
+

VKeq

K2

(
1 +

D1

2ℓx

)
σ′

y2Ei
2

These analytical results are then compared with simulations using σy2 = 1.5 GPa, i.e., σ′
y2 = 1.327

GPa in Figures 11 and 12. Again, the match between analytical and numerical results is good.
Particularly illustrative is Figure 12(c), showing the transition between friction, associated with a
value of one half of the Taylor-Quinney coefficient, and plasticity, involving much higher values.
The discrepancies already observed in the preceding section are still present in Figures 11(a) and
12. Figure 13(a) shows the longitudinal stress fields in the composite structure in the loaded state
(upper view) and in the virtual unloaded state (lower view). As expected, these fields display a
regular longitudinal gradient in the largest part of the structure. However, this state is perturbed
by a two-dimensional effect near the left edge of the upper beam. This is accompanied by complex
transverse stress fields, as shown in Figure 13(b), similar to a crack tip-like stress field. Hence, as
long as the size of this perturbed zone is comparable to the size of the frictional length, a two-
dimensional effect is perceived at the macroscopic scale. This effect vanishes as the frictional length
grows, and the analytical result is recovered.
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(a) Total strain (b) Inelastic strain

Fig. 11 Stress-strain response of the frictional-plastic composite structure.

(a) Stored energy (b) Dissipated energy

(c) Taylor-Quinney coefficient

Fig. 12 Energetic response of the frictional-plastic composite structure.

4 Conclusion

The framework given herein combines scale transitions and continuum thermodynamics, in the
limit of the isothermal assumption. It is used to derive the stored part of the free energy, which is
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(a) Longitudinal stress

(b) Transverse stress

Fig. 13 Illustration of two-dimensional effects.

most of the time postulated. The illustrations given above are useful to understand the thermody-
namic mechanisms of energy storage. A more realistic scheme is developed in a forthcoming paper,
in relation to explosive ignition, for which the self-heating phenomenon is crucial.

The goal of this paper is to establish the framework for calculating stored and dissipated energies
in heterogeneous structures or representative volume elements. However, the present homogeniza-
tion theory is not complete. Although a general formulation is given for the inelastic strains, the
definition of additional overall internal variables was eluded, and is the subject of ongoing work.

As a final remark, the major assumptions are the time-independent character of the constituents
behavior and the limitation to isothermal processes, which limit the field of application of the
present work. Extending it to viscous non-isothermal processes should be the next steps, and will
strongly enhance the interest of the theory.
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