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Abstract: 
This paper presents an optimization technique for the multi-pass face milling process. 
Genetic algorithm (GA) is used to obtain the optimum cutting parameters by minimizing 
the unit production cost for a given amount of material removal. Cutting speed, feed and 
depth of cut for the finish and rough passes are the cutting parameters. An equal depth of 
cut for roughing passes has been considered. A lookup table containing the feasible 
combinations of depth of cut in finish and rough passes is generated so as to reduce the 
number of variables by one. The resulting mixed integer nonlinear optimization problem 
is solved in a single step using GA. The entire technique is demonstrated in a case study. 
Post optimality analysis of the example problem is done to develop a strategy for 
optimizing without running GA again for different values of total depth of cut. 
 
Keywords: Multi-pass face milling; Optimization; Genetic algorithm; Mixed integer 
nonlinear problem; Post optimality analysis. 

1. Introduction 
 
Optimization of cutting parameters in machining processes has been an important area of 
research. Starting from Taylor [1], there has been an increasing interest in machining 
process optimization [2-19]. Selection of optimum cutting conditions can lead to a 
substantial reduction in the operating costs. Commonly used objective functions are the 
minimization of production cost, the maximization of production rate and the 
maximization of profit rate. Abuelnaga and El-Dardiry [4] discussed a number of 
traditional optimization methods and highlighted the relative advantages and 
disadvantages of the methods for solving the problems of machining economics. These 
objectives can be represented in terms of the machining parameters such as cutting speed, 
feed, depth of cut and the number of passes. During selection of the parameters, care 
must be taken to ensure that the essential constraints are satisfied. Cutting force, power, 
surface finish and tool life are some of the commonly considered constraints [5-8]. Initial 
research in machining process optimization focused on single pass operations [1-4]. 
However, due to restrictions on the amount of material that can be removed in a single 
pass, multi-pass operations are required [6-10]. Machining is done in two stages in multi-
pass operations. Majority of material removal takes place in a series of rough passes in 
the first stage. In the next stage a small amount of material is removed by a single finish 
pass. Typically, two distinct approaches have been used for optimization of multi-pass 
operations. One is the equal depth of strategy in which the depth of cut in all the rough 



 

passes is considered to be same [11, 12]. The other is the unequal depth of cut strategy. 
Typically such problems are optimized in two steps [13-15]. First, the optimum cutting 
speed and feed are obtained for all the possible depths of cut. Then, the total depth of cut 
is distributed optimally among the different rough and finish passes. Jawahir and Wang 
[16] have summarized the recent contributions to the field of machining process 
modeling and optimization. They have also presented a machining process optimization 
method in which many process performances such as surface roughness, cutting force, 
tool life and material removal rate have been combined into a single objective using 
weight factors.     
 
Many researchers have dealt with the problem of machining parameters for turning 
process. Relatively less research has been done in optimization of multi-point cutting 
operations such as milling. Recently there have been quite a few reports in literature on 
optimization of milling operations [12, 14-19]. Sonmez et al. [12] used dynamic 
programming to obtain the optimum number of passes and geometric programming for 
obtaining the optimum cutting conditions. Their work showed that the performance of 
multi-pass milling operations is better than that of single pass operations. Shunmugam et 
al. [14] minimized the production cost for rough passes and finish passes in two stages. In 
the first stage, separate minimum costs for an individual rough and finish pass were 
determined and tabulated for various fixed values of depth of cut selected from a series of 
depths. In the second stage, genetic algorithm (GA) was used for finding the optimum 
number of rough passes and allocation of total stock in each of the rough passes and the 
final pass to achieve a minimum total production cost. An and Chen [15] used a similar 
technique for first stage and integer programming for the second stage for solving the 
same problem. The two stage strategy for optimization leads to a large number of 
computations and increases the computational time when there are a large number of 
passes to consider. Wang et al. [17] have presented a new methodology involving the use 
of GA for the selection of cutting conditions for multi-pass face milling operations based 
on a comprehensive criterion of integrating the contributing effects of all major 
machining performance measures. They first used Taguchi method for design of 
experiments to predict machining performance measures and then utilized genetic 
algorithms to optimize the cutting conditions. In their method, optimization of parameters 
in the rough and finish passes have been done simultaneously instead of the two stage 
procedure. Since Genetic Algorithms suffer from the problem of premature convergence 
to local optimum, some researchers have focused on using Hybrid Genetic Algorithms in 
which a local search based optimization procedure is used in conjunction with GA for 
optimizing machining operations [18, 19]. Wang et al. [19] used genetic simulated 
annealing (GSA) for multi-pass end milling operation to minimize the production time. 
GSA combines the properties of genetic algorithms (GA) with those of Simulated 
Annealing (SA) which is a local search based procedure. It was shown by them that the 
hybrid method produced results superior to those obtained by using GA alone.  
 
In the present work, binary coded genetic algorithm (GA) with an elitist replacement 
strategy has been used for minimization of unit production cost in a multi-pass face 
milling operation. For a given amount of material removal (quantified by the total depth 
of cut), the optimum values for the cutting parameters have been obtained in a single step 



 

by using a lookup table method. The lookup table is generated by considering all the 
feasible combinations of depths of cut in the rough and finish passes for a given total 
depth of cut. All rough passes have been considered to be of equal depth of cut. Using 
GA, the cutting speed, feed and depth of cut in the finish and rough passes have been 
optimized simultaneously. The face milling operation and the cutting process model have 
been discussed in Section 2. In Section 3, the optimization technique based on GA has 
been explained. The technique has been demonstrated in a case study discussed in 
Section 4. Results obtained from the proposed technique have been compared with 
reported values of Shunmugam et al. [14] and An and Chen [15]. A numerical test has 
been performed to verify the convergence of the GA to the global optimum. Subsequently 
a constraint sensitivity analysis has been performed. This analysis is helpful in deciding 
on the relative importance of the constraints when the constraint limits are flexible. 
Through an analysis of the optimization results, an estimation strategy has been 
developed for quickly obtaining the optimum values without running GA, when the total 
depth of cut is changed. Although a multi-pass face milling process has been chosen as an 
example in this work, the lookup table based GA technique discussed here can be easily 
applied to other multi-pass machining processes.  
 

2. Problem Formulation  
 

2.1. Process Schematic 
 

In face milling, the cutter is mounted on a spindle having an axis of rotation 
perpendicular to the work piece surface. The milled surface results from the action of 
cutting edges located on the periphery and face of the cutter. 
In multi-pass milling the entire material is not removed in a single pass but in a series of 
passes which involves multiple rough passes and a final finishing pass.  
The schematic representation of the cutting process is shown in Fig. 1. 
 
The cutting parameters can be chosen to be different in each of the individual passes. 
However for simplification, all rough passes have been considered to be identical. Thus 
we have two sets of cutting parameters (speed, feed, and depth of cut), one for all the 
rough passes and one for the finish pass. Along with this, we have the number of rough 
passes as an additional variable. In this paper, for a given total depth of cut the unit 
production cost has been minimized to obtain the optimum values of the cutting 
parameters. 
 
In rough machining, the length of the cutter travel is given by 
 

tr p rL L a e= + +                 (1) 
   
Where L is the length of the work piece, ap is the approach and er,s is the extra-travel of 
the cutter at the ends, normally taken to be 2–5 mm. The approach distance for 
symmetrical milling is given as 
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          (2) 
In finish machining, 

ts sL L D e= + +         (3) 
  
as the cutter has to completely clear the work piece length [20]. 
 

2.2. Cutting Process Model 
 

2.2.1. Decision Variables 
 
Unit production cost depends on the cutting parameters used for machining. The cutting 
parameters which can be controlled are the cutting speed (Vs, Vr), feed (fr, fs) and depth 
of cut (ds, dr) for the finish and rough passes respectively and the number of rough passes 
(n). All these parameters are chosen as the decision variables. 
 

2.2.2. Objective Function 
 
The unit production cost (UC) can be represented as: 
 
UC CM CI CR CT= + + +        (4) 
Where  
CM, CI, CR and CT are actual machining cost, machine idle cost, tool replacement cost 
and tool cost respectively [6]. These can be represented as: 
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The tool life in finish and rough passes (Ts and Tr respectively) for face milling as 
discussed by Nefedov [20] can be expressed as: 
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Where, Cv and Kv are constants, D is the cutter diameter, B is the width of cut, Z is the 
number of teeth in the cutter; l, pv, qv, sv, xv, yv are constant exponents.   
For a given cutter and fixed width of cut, the tool life for finish and rough conditions can 
be simplified in terms of the cutting parameters as:  
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Thus, the objective can be stated as  
Minimize s r o pUC UC nUC k t= + +  
Where 
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as, bs, cs, ar, br and cr are constants with units such that when ‘V’ is in m/min, ‘f’ in 
mm/tooth and ‘d’ in mm gives UC in $/piece. 
  

2.2.3. Constraints 
 
Variable Bounds 
 
The parameters are allowed to vary in a limited range of values determined by the cutting 
tool manufacturer and the machine specifications.  
 

- Cutting Velocity 
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- Feed  
,min ,max

,min ,max

s s s

r r r

f f f
f f f

≤ ≤

≤ ≤
 

          (13) 
- Depth of cut 
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Inequality constraints 
 

- Force constraint  
For milling process cutting force is given by 
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Where, Cf, Kf are constants; sf, pf, qf, n4, n5 are constant exponents. Representing the 
force in terms of only the machining conditions: 
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Where maxF  is obtained from machine tool limitations. 

 
- Cutting power constraint  

max6120
FVP P

η
= ≤        (17) 

Neglecting contribution of feed force to power (due to low values of feed rate as 
compared to the cutting velocity) and using expression for force F from Eq. 15 
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(18) 
- Surface finish constraint 

 
Following Boothroyd [21], the surface finish for milling process can be expressed by:  



 

      
2

0.0321a
e

fR
r

=         (19) 

And the surface requirement constraint is: 
maxaR R≤  

 
This can be reformulated in terms of feed as: 
 

 
 
 
 
 
 

This constraint can therefore be merged with the variable bounds for feed as: 
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Equality Constraint: 
 
- Total depth of cut  
The depth of cut in finish pass (ds) and rough passes (dr) are related to the total depth of 
cut (dt) by: 

 
 where  is a positive integert s rd d nd n= +      (21) 

 
3. GA Implementation 
 
The multi-pass milling model used here is based on 7 process variables, speed, feed and 
depth of cut for finish pass and rough passes and the number of rough passes (Vs, fs, ds, 
Vr, fr, dr and n). Out of these only 6 are independent since ds, dr and n are related by Eq. 
21. The number of variables can be further reduced to 5 by using both the constraints Eq. 
14 and Eq. 21. This is done by generating a lookup table which consists of all possible 
finish and rough depth of cut (ds, dr respectively) pairs for a given total depth of cut (dt). 
Since ds and dr can take only discrete values from a given set as given by Eq. 14, the 
number of pairs of (ds,dr) which can be used to remove dt is limited and is obtained by 
using Eq. 21. The 5th variable then denotes the position of a (ds,dr) pair in this lookup 
table of feasible (ds,dr) pairs, with Vs, Vr, fs, fr as the first 4 variables. This converts the 
problem into a mixed integer nonlinear problem (MINLP) with four continuous variables 
and one discrete variable.  
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Binary coded genetic algorithm with an elitist strategy for replacement is used in this 
technique. It operates on the principle of the “survival of the fittest” [22, 23]. With 
MINLP problems, GA generally suffers from the prematurity problem and may require 
many runs to avoid the trap of local minima [24]. However, the problem being 
investigated is a special case of the general MINLP problem as the constraints are 
independent of the integer variable (position in the lookup table). With a suitable fine 
tuning of the parameters for the genetic operators it is possible to obtain the global 
optimum results using the proposed technique. A block diagram of the technique is 
presented in Fig. 2. The technique is described below. 
 

3.1. Binary Coding 
 
In binary coded GA, a binary string is used as solution string to represent real values of a 
variable. The length of the string depends on the precision required [22]. To obtain the 
actual values of the variables from their binary encoding the following relationship is 
used: 
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3.2. Solution Representation 
 
Vs, Vr, fs, fr are the first 4 variables and the 5th variable is the position of the feasible (ds, 
dr) pair in the lookup table. The first 4 variables are represented by 15 bit binary strings 
whereas the length of the binary string for 5th variable depends on the table size. All the 
variable strings are combined to form a single binary string representing the member.  
 

3.3. Initialization 
 
The GA is performed using a population size of N=750. Based on the schema theory for 
binary coded GA, the population size N is chosen by maximizing the rate of gain of the 
number of schemata represented by binary string of a particular length [22]. In the current 
study N is chosen to be 750 as it is found that the gain saturates around this value. For 
initialization 750 different binary strings are created randomly. To create a string, for 
each bit position a random number is generated in the range [0, 1.0]. The bit is assigned a 
value ‘0’ if the number turns out to be less than or equal to 0.5 and assigned ‘1’ 
otherwise.  



 

 
3.4. Evaluation 

 
3.4.1. Fitness Value 

 
To obtain the fitness value corresponding to a member string, first the solution string is 
broken down into its blocks corresponding to each variable. The variable values are then 
obtained using the binary coding formula Eq. 22. The decoded value for the first four 
blocks directly gives the values for Vs, fs, Vr and fr respectively. The depths of cut values 
are decoded by using the fifth variable (as the position in the lookup table) to pick up the 
corresponding (ds,dr) pair from the lookup table. The objective function is then evaluated 
using Eq. 11. The objective function value is used directly as the fitness value for the 
member. 
 

3.4.2. Constraints Handling 
 
To handle constraints, each solution is assigned a constraint violation (CV) value such 
that all feasible solutions have a zero CV value. For the infeasible solutions it has a non 
zero value. CV is obtained as: 
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In this technique, only the inequality constraints are used for CV evaluation (Eq. 16, Eq. 
18 and Eq. 20) as the equality constraint (Eq. 21) is automatically satisfied when the 
lookup table for feasible (ds,dr) pairs is generated. 
 
 
 
 

3.5. Selection 
 
Binary Tournament selection has been used for selection. The selection has been done 
based upon three possible cases. For the case when both the solutions are feasible, the 
one with lower function value (i.e. better fitness) is selected. When both the solutions are 



 

unfeasible, the one with lower constraint violation is selected. When one of the solutions 
is feasible and the other infeasible, the feasible solution is selected. For picking up two 
solutions for comparison, the population is divided into two parts midway and then a 
solution occupying same position from each part is picked. The population obtained after 
selection operation is termed as P’. 
 

3.6. Genetic Operators 
 
The crossover operation is performed on the population P’ obtained after selection. A two 
point crossover has been used with a high crossover probability =0.8cp . A two point 
crossover with the high crossover probability is used as it helps the diversity preservation 
better than the single point one [23].  After crossover, mutation of the population is 
performed. Bit wise mutation operator has been used with a mutation 
probability =0.05mp . In the present study it is found that mutation probability lower than 
0.05 leads to premature convergence to a local optimum point due to loss of diversity in 
the population. Details of the fine tuning tests performed for obtaining the values of 
genetic parameters are discussed in section 4.1.  
 

3.7. Replacement Strategy: Elitist 
 
Once crossover and mutation is performed over the selected population, the intermediate 
population is merged with the original population and then the best N out of the 2N 
members are chosen to entirely replace the original population. This process ensures that 
the best members of the merged population are not lost and better solutions move into the 
next generation. Though all members in a population can expect to have a lifetime of one 
generation, members with a higher fitness can have a longer lifetime when elitist 
strategies are used [25]. This leads to a higher rate of convergence of the algorithm.  
 
In this work, the best N solutions are identified through the following process: 
First, the original population and new populations (obtained after selection, crossover, 
and mutation) are merged and separated into two distinct portions, a feasible one and an 
infeasible one. Next, the following cases are considered: 
 
Case 1: Number of feasible solutions > N 
The feasible part of the merged population is sorted in increasing order of the objective 
function value. As we are interested in minimizing the objective function, the top N 
members are then picked to replace the original population. 
 
Case 2: Number of feasible solutions < N 
 
All the feasible solutions are picked to form the initial population for next generation. But 
in order to maintain a constant size population some infeasible solutions must also be 
included. For this the infeasible portion of the merged population is sorted in increasing 
order of the constraint violation (CV) value. As many of these as required to complete the 
population are then picked for the next generation.  



 

 
Case 3: Number of feasible solutions = N  
 
All the feasible solutions are picked to replace the original population. 
 

3.8. Convergence Criterion 
 
All the steps from selection to replacement are repeated for a fixed number of 
generations. The appropriate number of generations is obtained by observing the number 
of generations for a few trial runs when the difference between the best member and the 
population average falls below a threshold value. This value is then used for all other 
future runs. In the current study the GA is run for 100 generations. 
 
 
4. Case Study 
 
In this section, the proposed method has been illustrated in a case study. The data for the 
example is provided in Table 1, which is same as that used by Shunmugam et al. [14] and 
An and Chen [15]. Section 4.5 compares the performance of the proposed optimization 
scheme with the two stage optimization method of Shunmugam et al. and An and Chen. 
Shunmugam et al. used GA to solve the problem in two stages. In their method, an 
“unequal depth of cut” strategy is adopted. In the first stage, solutions corresponding to 
separate minimum costs for the individual rough and finish passes are determined and 
tabulated for various fixed values of the depth of cut. In the second stage, the optimum 
number of passes and the optimum subdivision of the depths of cut for different passes 
are obtained using GA. An and Chen used a similar method for the first stage and an 
integer programming based method for the second stage.  
 

4.1. Selection of GA parameter values 
 

GA is performed with a population size of N=750. The value of N is based on the schema 
theory for binary coded GA [22]. For binary coded GA, the number of schemata (S) 
represented by a population of size ‘μ’ consisting of binary strings of length ‘l’ is given 
by: 
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The population size (N) is chosen so that all points in the search space are represented by 
the initial set of schemata. For this purpose the rate of gain in the number of represented 
schemata with an increase in population size is maximized. The rate of gain is given by: 
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For a binary string length of 65 we calculated G by varying μ in the range [1 5000]. It is 
found that the maximum value of G is obtained at μ=5000 (Gmax=3.4885e19). Since this 
value is very high, a practical value of N is chosen corresponding to the point where 
G=0.999Gmax. This is obtained at μ=750. Hence, a population size (N) of 750 is chosen. 
For cross-over probability (pc), a trial value of 0.8 is chosen. With these values of N and 
pc and a high value of mutation probability (pm=0.1), GA is run and evolution of the 
population average fitness and best fitness value is observed. For one value of total depth 
of cut (dt=6 mm), results are shown in Fig. 3. From this plot it can be seen that the 
average fitness value approaches the population best as the generation increases. GA is 
run several times for the same conditions and the generation number corresponding to the 
generation when the difference between population average and population best falls 
below 0.25% is observed. It is found to be in the 80-90 range. A conservative value of 
100 is hence chosen for the number of generations needed for convergence. It is expected 
that with lower values of mutation probability, convergence would be faster. 
To determine the value of pm, variation of success rate with change in pm was observed. 
The success rate here is defined as the percentage of runs for which the GA converged to 
the global optimum after 100 generations. At each value of pm, 20 GA runs were 
performed with different initial populations to determine the success rate. From Fig. 4 it 
can be seen that for pm=0.05 onwards, the success rate is 100%. Hence, pm=0.05 has been 
selected for solving the problem. 

 
4.2. Obtaining look-up table 
 

For a total depth of cut (dt), several combinations of rough and finish cut depths (dr and ds 
respectively) can be obtained which give the same total depth of cut, subject to the 
constraint Eq. 21. This is done by first making all combinations of (ds,dr) pairs from the 

range of possible values. Then, for each pair it is checked whether the quantity t s

r

d d
d
−  is 

an integer. The integer value represents the number of rough passes. This condition is 
equivalent to Eq. 21. A feasible solution is one for which this condition is true. The 
feasible (ds,dr) pairs for dt=6mm are shown in Table 2. This set of feasible (ds,dr) pairs 
forms the lookup table discussed in section 3. Each feasible solution is identified by the 
corresponding pair number in the lookup table. Instead of considering dr and ds as two 
distinct variables, this pair number is considered as the variable for GA. This reduces the 
number of variables by one. The number of feasible (ds,dr) pairs depends on the value of 
dt and for each dt a new lookup table is generated which satisfies the constraint Eq. 21 for 
the corresponding dt. 
 

4.3. Computation Results 
  
GA was performed on the above problem with different total depths of cut (dt). The 
algorithms were coded in Visual C++ and run on a Pentium 4 PC. After 100 generations 
of GA run, the member with lowest objective function value in the population was 
chosen as the optimum value. The corresponding optimum machining parameters for 
different total depths of cut are tabulated in Table 3. The tool life for rough and finish 



 

passes can be obtained from the optimum machining conditions by using the tool life 
equation (Eq. 10). The zero values for constraint violation (CV) suggest that all the 
solutions are feasible and do not violate any of the constraints. 
 

4.4. Verification of global optimum 
 
For the problem of depth of cut distribution into multiple passes, if we disregard the 
optimization criterion of minimizing the unit cost, then we can have several ways of 
distributing the total depth of cut into ‘n’ number of rough passes and a single finish pass. 
All such choices of (ds,dr) pairs are tabulated in the look-up table before starting with the 
GA optimization. Now, if we select any one of these set of rough and finish depth of cut, 
we can separately optimize the cutting velocity and feed for the rough and finish passes. 
The unit cost for finish pass (UCs) and unit cost for rough pass (UCr) can be separately 
minimized. As the depths of cut are already known, only two variables are involved 
(cutting speed and feed). Thus for each pair of feasible (dr,ds) pair, a pair of cutting 
velocity and feed can be obtained for minimum UCs and UCr. In this way, we can have 
several optimum solutions for unit cost UC (Eq. 11) corresponding to each feasible set of 
(dr,ds). However, not all of these unit costs will have the same value. The solution 
corresponding to lowest unit cost among these is then called as the global optimum and 
all other solutions are the respective local optimum.  
To verify whether the results obtained from GA are the global optimums, the local 
minimum UC corresponding to each combination of feasible (dr,ds) pair for dt= 6mm is 
calculated. Optimization of UCs and UCr has been done analytically by obtaining the 
derivates of the functions UCs and UCr in terms of the cutting velocity and feed and using 
the classical conditions for minimization of two variable functions. UC is then calculated 
by using Eq. 11. The local optimum values so obtained are shown in Table 4. It can be 
seen that the solution obtained from the GA runs for dt= 6mm shown in Table 3 
(UC=1.4108 $/piece) matches closely with the global optimum (UC=1.4102 $/piece) as 
shown in Table 4.  
 

4.5. Comparison with other schemes 
 
A comparison of the proposed scheme with the results of An and Chen [15] and 
Shunmugam et al. [14] is made in Table 5.  The table shows that the minimum unit 
production cost obtained in the current study are lower than those reported by An and 
Chen and Shnumugam et al. For dt=8 mm the GA results are better than those of An and 
Chen by 5.2% and better by 14% than those of Shunmugam et al. It is to be noted that, 
while calculating the cutting speeds at each pass, both Shunmugam et al. and An and 
Chen have used an a priori value of the tool life (Tr=Ts=240 min.) to reduce the number 
of variables in the first stage. Because of this assumption about tool life, non-optimum 
cutting velocities are obtained by them for the cases where the cutting velocity obtained 
by their method does not violate the power constraint. In our proposed single stage 
method, the tool life values are obtained a posteriori, after the optimum conditions are 
obtained. From Fig. 5 it is evident that for the optimum conditions, the tool life for rough 
passes (Tr) is not constant and shows wide variations with changes in total depth of cut 
(dt). The reason for this is discussed in section 4.7 with reference to the relationship 



 

among the cutting parameters for the optimum conditions. The tool life for finish pass 
shows very small variations with changing dt, however the average value for optimum 
conditions is found to be 220 min. as opposed to the Ts=240 min. value used by 
Shunmugam et al. It is interesting to note that for the optimum conditions, the tool life in 
rough passes is much higher than the tool life in the finish pass. This can be explained by 
the higher values of the cutting velocity for finish pass for optimum conditions (Table 3). 
Due to high feed in the rough passes, the cutting velocities of rough passes are limited by 
the power constraint (Eq. 18) to lower values.  
 

4.6. Post optimality constraint sensitivity analysis 
 
A study was made to observe how the optimal values change when the force and power 
constraints are changed. Optimal unit production costs were obtained by multiplying a 
factor to the maximum allowable force (Fmax) and maximum allowable power (Pmax). The 
results were used to compare the sensitivity of the solution with respect to these 
constraints. As expected, the optimal costs are lower when the constraints are relaxed, i.e. 
when the maximum allowable force or power limits are higher. From Fig. 6 it can be 
observed that the optimal cost is more sensitive to the power constraint. From the slope it 
can be seen that the rate of change of the optimal cost with changes in Pmax is higher than 
that for the rate of change of optimal cost with the changes in Fmax. This information is 
especially useful in the cases where estimated or approximate values for the maximum 
force and power limits are used and a range of values for Fmax and Pmax are possible. 
Based on Fig. 6, given a choice of relaxing the limits, the power constraint must be 
relaxed first in order to obtain lower optimal costs. Such constraint sensitivity analysis 
can be easily done when a GA based method is used for optimizing the speed and feed 
along with the depth of cut. It is difficult to do the same using classical methods such as 
the integer programming method used by An and Chen [15] or the two stage method used 
by Shunmugam et al. [14]. 
 

4.7. Analysis of relationship in decision space for optimum 
conditions 

 
To investigate the relationship among the optimum cutting conditions, optimal cost 
values and total depth of cut (dt), the optimum cutting conditions and the optimal cost 
were obtained for different dt. The optimal costs are shown in Fig. 7. A similar stepped 
form nature can be seen when the number of rough passes (n) for the optimum conditions 
is plotted versus dt (Fig. 8). This stepped nature can be explained if the effect of increase 
in ‘n’ on optimal costs is more than the effect of increase in the depth of rough cut (dr). 
This suggests that for optimum conditions, the number of rough passes must be as low as 
possible subject to the available (ds,dr) combinations for a given dt. 
When the depth of cut in rough passes (dr) is plotted against the total depth of cut we 
again find a stepped form plot (Fig. 9). For the same number of rough passes, the optimal 
cost increases with the increase in dr.  
When the feed rate for the rough pass (fr) is plotted against the total depth of cut we find 
a stepped plot but with the opposite trend (Fig. 10). For the same ‘n’, optimal cost 



 

increases with decreasing feed rate. This figure explains the nature of the Tr versus dt plot 
(Fig. 5) since the tool life increases with decrease in the feed rate. Although the depth of 
cut (dr) increases, the effect of increased feed rate is more dominant because of the higher 
exponent of feed rate in extended Taylor’s tool life equation (Eq. 10). 
 

4.8. Strategy for estimating the optimum conditions 
 
From Table 3 it is evident that for the optimum conditions, feed rate for finish pass and 
cutting velocity for finish and rough passes remain almost unchanged with changes in the 
total depth of cut (dt). The feed rate for finish pass is restricted to a fixed value because of 
the surface roughness constraint (Eq. 20). Similarly, the cutting velocities in finish and 
rough passes are restricted to fixed values by the power constraint (Eq. 18). This 
information along with the relationships among the decision variables for optimum 
conditions discovered in Section 4.7 can be used to develop an optimization strategy 
specific to this problem. This strategy allows us to quickly estimate the optimum 
conditions when the total depth of cut is changed without running the GA again for the 
new dt.  
To start with, we can easily determine the number of rough passes (n) in the optimum 
condition by finding out the smallest possible integer value for ‘n’, given the limits for ds 
and dr.  
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From the possible (ds,dr) combinations for the given dt, the one which has ‘n’ number of 
rough passes is chosen. From Section 4.7, for the optimal conditions the depth of cut in 
rough pass should be the lowest one if multiple (ds,dr) combinations are possible for the 
same ‘n’. Thus, we have the parameters ‘n’, ‘ds’ and ‘dr’.  
Next, we use the average values from Table 3 for the feed rate of finish pass (fs=0.279 
mm/tooth), the cutting velocity of finish pass (Vs=123.2 m/min) and rough passes 
(Vr=60.35 m/min).  
Finally, it is known that the cost of a single pass operation decreases with the increase of 
the feed rate [6]. Hence for the rough pass feed rate (fr) the maximum possible value is 
chosen subject to constraints given by Eq. 16 and Eq. 20, i.e. 
 

{ }*
r r,max r,max e rf =min f , (R r )/0.0321, f       (27) 

 
Where fr* is obtained from the upper limit of the constraint equation (Eq. 16). 
   
The above procedure is used for estimating the optimum cost for dt=11.5 mm. The 
optimum values obtained by this strategy and by the GA run are tabulated in Table 6. It 
can be seen that the cost obtained by this strategy (UC=2.2194 $/piece) is in close 
agreement with the cost obtained by GA (UC= 2.1995 $/piece). The value obtained by 
the estimation strategy is poorer from the value obtained from GA by not more than 1%. 
 



 

This optimization strategy can be used to quickly obtain an estimate of the optimum 
cutting conditions when the total depth of cut is changed. However, it is to be noted that 
this strategy is applicable only to the specific problem under consideration and does not 
work if the parameters of the problem such as number of teeth of cutter or length of work 
piece are changed. If such a strategy is required for the new problem, then the 
relationships among the optimum conditions must be re-evaluated after running the GA 
based method for different dt values.  
 
5. Conclusion 
 
In this paper an optimization methodology is proposed for the optimization of the multi-
pass face milling process. Binary coded genetic algorithm (GA) is used to minimize the 
unit production cost along with the satisfaction of several nonlinear constraints. Equal 
depth of cut is used for the roughing passes and the relationship between total depth of 
cut (dt), depth of cut for finish pass (ds) and for rough pass (dr) is represented by a single 
variable denoting the position of the (ds,dr) pair in the lookup table consisting of all 
feasible (ds,dr) pairs. This transforms the problem into a mixed integer nonlinear 
optimization problem. An elitist binary coded GA is used to solve the problem and the 
entire technique is demonstrated in a case study. The minimum unit production costs 
obtained by the current technique are better than those reported in literature for the same 
problem [14, 15]. The numerical test shows that GA does not get stuck to the local 
optimums and is successful in converging to the global optimum. On performing post 
optimality analysis for constraint sensitivity it is found that the optimum point is more 
sensitive to the power constraint as compared to the force constraint. Based on the 
analysis of the optimum results, relationships among the decision variables are identified. 
These relationships are used to develop a strategy to quickly estimate the optimum 
cutting conditions without running the GA, when the total depth of cut (dt) is changed. 
The prediction of the estimation strategy is found to match closely to the results obtained 
from GA.  
 
6. Scope for future development 
 
In the present work, all rough passes have been considered to have the same depth of cut. 
However, it still needs to be investigated whether a strategy of unequal depth of cut for 
rough passes can provide better results using this technique. It would be an interesting 
problem to identify the conditions under which an unequal depth of cut would be better 
than the equal depth of cut strategy and vice versa.  
 
The main focus of the present paper is on showing the effectiveness of the proposed 
optimization methodology. Therefore, simple relations have been used for the estimation 
of cutting forces and surface roughness. However, even with more realistic relations the 
same optimization technique can be used. Additional constraints may also be easily 
introduced to make the optimization problem more realistic. The lookup table based 
technique employed in this paper can be extended for optimization of other multi-pass 
machining processes.  



 

 
Nomenclature 
 
B  Width of work piece (mm) 
C0  Constant in tool life equation for face milling 
C1, C2  Constants in cutting force and power equations respectively 
D  Cutter diameter (mm) 
dr  Depth of cut for the rough passes (mm)  
ds  Depth of cut for finish pass (mm) 
dt  Total depth of cut (mm) 
er, es  Extra travel of cutter at the ends (mm) 
F  Cutting force (kgf) 
Fmax  Maximum allowable cutting force (kgf) 
fr  Feed for the rough passes (mm/tooth) 
fs  Feed for the finish pass (mm/tooth) 
h1  Constant related to tool travel time (min/mm) 
h2  Constant related to tool approach/depart time (min) 
ko  Labor cost per unit time including overhead cost ($/min) 
kt  Cost of cutting tool per edge ($/cutting edge) 
L  Length of work piece (mm) 
Ltr  Cutting travel length for rough pass (mm) 
Lts  Cutting travel length for finish pass (mm) 
N  Population size for GA runs 
n  Number of rough passes 
n1, n2, n3 Exponent of cutting velocity, depth of cut and feed in tool life equation 
n4, n5 Exponent of depth of cut and feed in the empirical relation for cutting 

force 
P  Cutting power (kW) 
Pmax  Maximum power (kW) 
pc, pm Crossover and mutation probability in GA runs 
Rr,max, Rs,max Maximum allowable surface roughness (Ra value) for rough and finish 

passes (mm) 
re Cutter nose radius (mm) 
Tr,Ts  Tool life for rough and finish passes (min) 
te  Tool exchange time (min/cutting edge) 
ti  Idle tool motion time (min) 
tl  Machine idling time (min) 
tmr, tms  Actual machining time for rough and finish passes (min) 
tp  Preparation time (min/piece) 
UC  Total machining cost per unit ($/piece) 
UCr, UCs Machining cost per unit for rough and finish passes ($/piece)   
Vr  Cutting velocity for rough passes (m/min) 
Vs  Cutting velocity for finish pass (m/min) 
Z  Number of teeth in the cutter 
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Figure Captions 
 
Fig. 1: (a) Cutting process in face milling showing the cutter path in (b) rough pass and 
(c) finish pass 
 
Fig. 2: Block diagram of the proposed genetic algorithm 



 

 
Fig 3: Evolution of population best and population average value of unit cost (UC) with 
generation 
 
Fig 4: Variation of success rate of convergence of GA with mutation probability 
 
Fig. 5: Variation of tool life in rough and finish passes for optimum cutting conditions 
with changes in the total depth of cut (dt) 
 
Fig. 6: Effect of changing the force and power constraints on the optimum values of unit 
production cost (at dt=6mm) 
 
Fig. 7: Variation of optimum unit production cost with total depth of cut (dt) 
 
Fig. 8: Variation of number of rough passes for optimum conditions with changes in the 
total depth of cut (dt) 
 
Fig. 9: Variation of depth of cut of rough passes for optimum conditions with changes in 
the total depth of cut (dt) 
 
Fig. 10: Variation of the feed for rough passes for optimum conditions with changes in 
the total depth of cut (dt) 
 
Table Captions 
 
Table 1: Data used for the example problem 
 
Table 2: Look-up table consisting of the feasible combinations of finish and rough depth 
of cut (ds,dr) pairs for a total depth of cut (dt) of 6 mm 
 
Table 3: Cutting parameter values, total machining cost and tool life corresponding to 
optimum operation point for different total depths of cut 
 
Table 4: Local optimum unit costs corresponding to all the feasible combinations of 
finish and rough depths of cut (feasible (ds,dr) pairs ) for a total depth of cut of 6 mm 
 
Table 5: Comparison of the results obtained from the proposed GA based technique with 
the results of Shunmugam et al. [14] and An and Chen [15] 
 
Table 5: Comparison of the optimization results obtained from GA and the estimation 
strategy developed in Sec. 4.8 for the total depth of cut (dt) of 11.5mm 
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Figure 2 

  
 
 
 

Begin 

Create initial population, Po 

Evaluate Po 

For i =1 to 100 

Perform selection, crossover, and 
mutation on population Pi to obtain Pi’’ 

Obtain Pi+1 by choosing the best N 
members from Pi and Pi’’  

Evaluate Pi’’ 

Generate lookup table for feasible (ds,dr) pairs 

Pick the best solution from the converged 
population as the optimum solution 

End 
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Figure 9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
Figure 10 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Tables: 
 
Table 1 
 
L= 400 mm, Lts=403 mm, Ltr=260.55 mm, B=100 mm, D=160 mm, Z=16, re=1.0 mm 
er=es=3 mm, h1=7x10-4 min/mm, h2=0.3 min 
ko=0.5 $/min, kt=2.5 $/cutting edge, te=1.5 min/cutting edge tp=0.75 min/piece  
Vs,min=Vr,min=50 m/min, Vs,max=Vr,max=300 m/min, fs,min=fr,min=0.1 mm/tooth, 
fs,max=fr,max=0.6 mm/tooth, ds,min=0.5 mm, ds,max=2 mm, dr,min=1 mm, dr,max=4 mm, 
ds,step=dr,step=0.1 mm 
Fmax=815.77 kgf, Pmax=10 kW, Rs,max=0.0025 mm, Rr,max=0.025 mm, η=0.8,   
Cv=445, l=0.32, xv=0.15, yv=0.35, pv=0, qv=0.2, sv=0.2, Kv=1.0, Cf=54.5, sf=1.0, pf=1.0, 
qf=1.0, Kf=1.0  
C0=253337816.7,C1=545, C2=0.111315,  n1=3.125, n2=0.46875, n3=1.09375, n4=0.9, 
n5=0.74 
as=6.330309, ar=4.09271 bs=1.680135x10-6, br=2.598712x10-6, cs=0.29105, cr=0.2411925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 2 
 

Pair 
number 

ds dr 
mm mm 

   
1 1 0.5 
2 1 1 
3 1 2.5 
4 1.5 0.5 
5 1.5 1.5 
6 2 0.5 
7 2 1 
8 2 2 
9 2 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 3 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dt Vs Vr fs fr ds dr n CV UC Ts Tr 
mm m/min mm/tooth mm   $/piece min 

            
6 122.23 60.12 0.2791 0.3187 2 4 1 0 1.4108 222 1274 
7 122.38 60.00 0.2791 0.5658 2 2.5 2 0 1.6914 221 853 
8 124.46 60.03 0.2790 0.4355 1.8 3.1 2 0 1.7615 220 1025 
9 123.80 63.27 0.2790 0.3499 2 3.5 2 0 1.8276 213 1044 
10 123.40 60.13 0.2791 0.3187 2 4 2 0 1.8830 216 1274 
11 122.10 60.03 0.2790 0.4533 2 3 3 0 2.1606 223 997 
12 124.00 60.05 0.2789 0.3890 1.8 3.4 3 0 2.2328 223 1110 
13 122.92 60.19 0.2791 0.3499 1.9 3.7 3 0 2.2940 223 1189 
14 123.70 60.13 0.2789 0.3187 2 4 3 0 2.3553 214 1274 
15 123.89 60.02 0.2791 0.4037 1.8 3.3 4 0 2.6396 224 1082 
16 122.07 60.03 0.2790 0.3757 2 3.5 4 0 2.6956 223 1138 



 

Table 4 
 

ds dr n UCs UCr UC 
mm mm  $/piece $/piece $/piece 

      
1 0.5 10 0.53660 0.40794 4.9910 
1 1 5 0.53660 0.34594 2.6413 
1 2.5 2 0.53660 0.38123 1.6741 

1.5 0.5 9 0.55920 0.40794 4.6057 
1.5 1.5 3 0.55920 0.34733 1.9762 
2 0.5 8 0.57098 0.40794 4.2095 
2 1 4 0.57098 0.34594 2.3297 
2 2 2 0.57098 0.36078 1.6675 
2 4 1 0.57098 0.46420 1.4102 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 5 
 
 
Total depth of cut 
(dt in mm) 

Optimum unit production cost, UC ($/piece) 
Current Study An and Chen [15] Shunmugam et 

al.[14] 
6 1.4108 1.4858 --- 
8 1.7615 1.8523 2.0086 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 6 
 

 
 
 
 
 
 
 

Method dt Vs Vr fs fr ds dr n UC,min 
 mm m/min mm/tooth mm  $/piece 
          

GA 11.5 123.24 60.73 0.2791 0.4125 1.9 3.2 3 2.1995 
Estimation 

Strategy (Sec 4.8) 11.5 123.2 60.35 0.279 0.424 1.9 3.2 3 2.2194 


