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In a recent paper, Altenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance conditions, such as the Büchi and Muller ones, firstly used for infinite words. The authors asked for comparing the tiling system acceptance with an acceptance of pictures row by row using an automaton model over ordinal words of length ω 2 . We give in this paper a solution to this problem, showing that all languages of infinite pictures which are accepted row by row by Büchi or Choueka automata reading words of length ω 2 are Büchi recognized by a finite tiling system, but the converse is not true. We give also the answer to two other questions which were raised by Altenbernd, Thomas and Wöhrle, showing that it is undecidable whether a Büchi recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable).

Introduction

In a recent paper [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF], Altenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance conditions, such as the Büchi and Muller ones, firstly used for acceptance of infinite words. This way they extended the classical theory of recognizable languages of finite pictures, [START_REF] Giammarresi | Two-Dimensional Languages[END_REF], to the case of infinite pictures. On the other hand automata reading ordinal words have been first considered by Büchi in order to study the decidability of the monadic second order theory on countable ordinals. In particular he defined automata reading words of length ω 2 , [START_REF] Büchi | On a Decision Method in Restricted Second Order Arithmetic, Logic Methodology and Philosophy of Science[END_REF][START_REF] Büchi | The Monadic Second Order Theory of All Countable Ordinals[END_REF]. Another model of automaton reading words of length ω 2 has been studied by [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF] Choueka in [START_REF] Choueka | Theories of Automata on ω-Tapes: a Simplified Approach[END_REF] and it has been shown by Bedon that these two models are equivalent [START_REF] Bedon | Finite Automata and Ordinals[END_REF][START_REF] Bedon | Langages Reconnaissables de Mots Indexés par des Ordinaux[END_REF]. They accept the so called regular ω 2 -languages which can also be defined by generalized regular expressions, see also the work of Wojciechowski [START_REF] Wojciechowski | Classes of Transfinite Sequences Accepted by Finite Automata[END_REF][START_REF] Wojciechowski | Finite Automata on Transfinite Sequences and Regular Expressions[END_REF]. In [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF] the authors asked for comparing the tiling system acceptance with an acceptance of pictures row by row using an automaton model over ordinal words of length ω 2 . We give in this paper a solution to this problem, showing that the class of languages of infinite pictures which are accepted by Büchi automata reading words of length ω 2 is strictly included in the class of languages of infinite pictures which are Büchirecognized by some finite tiling system. Another way to compare these two classes is to compare the topological complexity of languages in each of them, with regard to the Borel and projective hierarchies. We then determine the topological complexity of Büchi-recognized languages of infinite pictures. This way we show that Büchi tiling systems have a much greater accepting power than automata over ordinal words of length ω 2 . Using topological arguments, we give also the answer to two questions raised in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF], showing that it is undecidable whether a Büchi recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable). For that purpose we use a very similar technique as in a recent paper where we have proved several undecidability results for infinitary rational relations [START_REF] Finkel | Undecidability of Topological and Arithmetical Properties of Infinitary Rational Relations[END_REF]. The paper is organized as follows. In section 2 we recall basic definitions for pictures and tiling systems. Büchi automata reading words of length ω or ω 2 are introduced in section 3. We compare the two modes of acceptance in section 4. Undecidability results are proved in section 5.

Tiling Systems

Let Σ be a finite alphabet and # be a letter not in Σ and let Σ = Σ ∪ {#}. If m and n are two integers > 0 or if m = n = 0, a picture of size (m, n) over Σ is a function p from {0, 1, . . . , m + 1} × {0, 1, . . . , n + 1} into Σ such that p(0, i) = p(m + 1, i) = # for all integers i ∈ {0, 1, . . . , n + 1} and p(i, 0) = p(i, n + 1) = # for all integers i ∈ {0, 1, . . . , m + 1} and p(i, j) ∈ Σ if i / ∈ {0, m + 1} and j / ∈ {0, n + 1}. The empty picture is the only picture of size (0, 0) and is denoted by λ. Pictures of size (n, 0) or (0, n), for n > 0, are not defined. Σ ⋆,⋆ is the set of pictures over Σ. A picture language L is a subset of Σ ⋆,⋆ .

An ω-picture over Σ is a function p from ω × ω into Σ such that p(i, 0) = p(0, i) = # for all i ≥ 0 and p(i, j) ∈ Σ for i, j > 0. Σ ω,ω is the set of ω-pictures over Σ. An ω-picture language L is a subset of Σ ω,ω . For Σ a finite alphabet we call Σ ω 2 the set of functions from ω × ω into Σ. So the set Σ ω,ω of ω-pictures over Σ is a strict subset of Σω 2 .

As usual, one can imagine that, for integers j > k ≥ 1, the j th column of p is on the right of the k th column of p and that the j th row of p is "above" the k th row of p. This representation will be used in the sequel.

We introduce now tiling systems as in the paper [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF]. A tiling system is a tuple A=(Q, Σ, ∆), where Q is a finite set of states, Σ is a finite alphabet, ∆ ⊆ ( Σ × Q) 4 is a finite set of tiles. A Büchi tiling system is a pair (A,F ) where A=(Q, Σ, ∆) is a tiling system and F ⊆ Q is the set of accepting states. A Muller tiling system is a pair (A, F ) where A=(Q, Σ, ∆) is a tiling system and F ⊆ 2 Q is the set of accepting sets of states.

Tiles are denoted by (a 3 , q 3 ) (a 4 , q 4 ) (a 1 , q 1 ) (a 2 , q 2 ) with a i ∈ Σ and q i ∈ Q, and in general, over an alphabet Γ, by

b 3 b 4 b 1 b 2 with b i ∈ Γ.
We will indicate a combination of tiles by:

b 3 b 4 b 1 b 2 • b ′ 3 b ′ 4 b ′ 1 b ′ 2 = (b 3 , b ′ 3 ) (b 4 , b ′ 4 ) (b 1 , b ′ 1 ) (b 2 , b ′ 2 )
A run of a tiling system A=(Q, Σ, ∆) over a (finite) picture p of size (m, n) over Σ is a mapping ρ from {0, 1, . . . , m + 1} × {0, 1, . . . , n + 1} into Q such that for all (i, j) ∈ {0, 1, . . . , m} × {0, 1, . . . , n} with p(i, j) = a i,j and ρ(i, j) = q i,j we have

a i,j+1 a i+1,j+1 a i,j a i+1,j • q i,j+1 q i+1,j+1 q i,j q i+1,j ∈ ∆.
A run of a tiling system A=(Q, Σ, ∆) over an ω-picture p ∈ Σ ω,ω is a mapping ρ from ω × ω into Q such that for all (i, j) ∈ ω × ω with p(i, j) = a i,j and ρ(i, j) = q i,j we have a i,j+1 a i+1,j+1 a i,j a i+1,j • q i,j+1 q i+1,j+1 q i,j q i+1,j ∈ ∆.

We now recall acceptance of finite or infinite pictures by tiling systems:

Definition 2.1 Let A=(Q, Σ, ∆) be a tiling system, F ⊆ Q and F ⊆ 2 Q .
• The picture language recognized by A is the set of pictures p ∈ Σ ⋆,⋆ such that there is some run ρ of A on p.

• The ω-picture language A-recognized (respectively, E-recognized, Büchi-recognized) by (A,F ) is the set of ω-pictures p ∈ Σ ω,ω such that there is some run ρ of A on p and ρ(v) ∈ F for all (respectively, for at least one, for infinitely many) v ∈ ω 2 .

• The ω-picture language Muller-recognized by (A, F ) is the set of ω-pictures p ∈ Σ ω,ω such that there is some run ρ of A on p and Inf (ρ) ∈ F where Inf (ρ) is the set of states occurring infinitely often in ρ.

As stated in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF], an ω-picture language L ⊆ Σ ω,ω is recognized by a Büchi tiling system if and only if it is recognized by a Muller tiling system. We shall denote T S(Σ ω,ω ) the class of languages L ⊆ Σ ω,ω which are recognized by some Büchi (or Muller) tiling system.

Büchi Automata

We shall assume the reader to be familiar with the elementary theory of countable ordinals, which may be found in [START_REF] Sierpinski | Cardinal and Ordinal Numbers[END_REF]. In fact we shall only need in this section to consider ordinals smaller than ω 2 + 1. Let Σ be a finite alphabet, and α be a countable ordinal. An α-word x (word of length α) over the alphabet Σ is an α-sequence (sequence of length α) of letters in Σ. It will be denoted by (x(i)) 0≤i<α = x(0).x(1).x(2) . . . x(i) . . . , where for all i, 0 ≤ i < α, x(i) is a letter in Σ. For an ordinal α ≥ ω, the set of α-words over Σ will be denoted by Σ α . An α-language over Σ is a subset of Σ α .

We assume now that the reader has some familiarity with the notion of Büchi and Muller automata reading infinite words, [START_REF] Thomas | Automata on Infinite Objects[END_REF][START_REF] Staiger | ω-Languages, Chapter of the Handbook of Formal languages[END_REF][START_REF] Perrin | Infinite Words, Automata, Semigroups, Logic and Games[END_REF].

Definition 3.1 A Büchi automaton is a 5-tuple A= (Σ, Q, q 0 , ∆, F ) where Q is a finite set of states, q 0 ∈ Q is the initial state, ∆ ⊆ Q × Σ × Q is the transition relation, and F ⊆ Q is the set of final states. A run of A on the ω-word σ ∈ Σ ω is an ω-sequence x ∈ Q ω such that x(0) = q 0 and (x(i), σ(i), x(i + 1)) ∈ ∆ for i ≥ 0.
The run is called successful if Inf (x) ∩ F = ∅, where Inf (x) is the set of elements of Q which appear infinitely often in the ω-sequence x. An ω-word σ ∈ Σ ω is accepted by A if there exists a successful run of A on σ. L ω (A)={σ ∈ Σ ω | A accepts σ} is the ω-language recognized by A. A Muller automaton is defined in a similar way except that F is replaced by a set F ⊆ 2 Q of accepting sets of states and that a run x ∈ Q ω on an ω-word σ ∈ Σ ω is said to be successful iff Inf (x) ∈ F. Büchi and Muller automata accept the same class of ω-languages: the class of regular ω-languages which is the ω-Kleene closure of the class of regular finitary languages. It follows from Mac Naughton's Theorem that each regular ω-language is also accepted by a deterministic Muller automaton, [START_REF] Thomas | Automata on Infinite Objects[END_REF][START_REF] Staiger | ω-Languages, Chapter of the Handbook of Formal languages[END_REF][START_REF] Perrin | Infinite Words, Automata, Semigroups, Logic and Games[END_REF].

In order to define an automaton reading ordinal words of length ≥ ω, we must add to the automaton a transition relation for limit steps: after the reading of a word which length is a limit ordinal, the state of the automaton will depend on the set of states which cofinally appeared during the run of the automaton, [START_REF] Büchi | The Monadic Second Order Theory of All Countable Ordinals[END_REF][START_REF] Hemmer | Automates sur Mots de Longueur Supérieure à ω[END_REF][START_REF] Bedon | Finite Automata and Ordinals[END_REF]. We shall give the following definition in the general case of automata reading ordinal words but in fact we shall only need in the sequel the notion of automata reading words of length ω or ω 2 . Definition 3.2 An ordinal Büchi automaton is a sextuple A=(Σ, Q, q 0 , ∆, γ, F ) where: Σ is a finite alphabet, Q is a finite set of states, q 0 ∈ Q is the initial state, ∆ ⊂ Q × Σ × Q is the transition relation, and γ ⊂ P (Q) × Q is the transition relation for limit steps. Σ, Q, q 0 , ∆ and F keep the same meaning as before, the meaning of γ is given by the following definition: Definition 3.3 A run of the ordinal Büchi automaton A=(Σ, Q, q 0 , ∆, γ, F ), reading the word σ ∈ Σ α , is an (α + 1)-sequence of states x defined by: x(0) = q 0 and for i < α, (x(i), σ(i), x(i + 1)) ∈ ∆ and for a limit ordinal i: (Inf (x, i), x(i)) ∈ γ, where

Inf (x, i) = {q ∈ Q | ∀µ < i, ∃ν < i such that µ < ν and x(ν) = q}
is the set of states which cofinally appear during the reading of the i first letters of σ.

A run x of the automaton A over the word σ is called successful if x(α) ∈ F . A word σ ∈ Σ α is accepted by A if there exists a successful run of A over σ. We denote L α (A) the set of words of length α which are accepted by A. In particular the above definition provides a notion of automata reading words of length ω 2 . Later Choueka defined another class of automata reading words of length ω 2 (and even ω n for an integer n ≥ 2) now called Choueka automata [START_REF] Choueka | Theories of Automata on ω-Tapes: a Simplified Approach[END_REF]. Bedon proved that these two classes of automata accept the same class of ω 2 -languages, the class of regular ω 2 -languages which can be also defined by ω 2 -regular expressions [START_REF] Bedon | Finite Automata and Ordinals[END_REF][START_REF] Bedon | Langages Reconnaissables de Mots Indexés par des Ordinaux[END_REF].

Remark 3.4 When we consider only finite words, the language accepted by an ordinal Büchi automaton is a rational language. And an ω-language is accepted by an ordinal Büchi automaton if and only if it is accepted by a Muller automaton hence also by a Büchi automaton.

We shall use in the sequel another way of generating regular ω 2 -languages which is given by the following proposition. We shall reprove this result although it already appeared in [START_REF] Hemmer | Automates sur Mots de Longueur Supérieure à ω[END_REF] and has been also proved in [START_REF] Finkel | Locally Finite Languages[END_REF]. Proposition 3.5 An ω 2 -language L ⊆ Σ ω 2 is regular iff it is obtained from a regular ω-language R ⊆ Γ ω by substituting in every ω-word σ ∈ R a regular ω-language L a ⊆ Σ ω to each letter a ∈ Γ.

Proof.

Let A=(Σ, Q, q 0 , ∆, γ, F ) be an ordinal Büchi automaton, and let L ω 2 (A) be the ω 2 -language recognized by A. Consider the reading of a word σ ∈ Σ ω 2 by A: After the reading of the first ω letters, A is in state x(ω), after the reading of ω.2 letters, A is in state x(ω.2) and so on. For q i ∈ Q, q j ∈ Q and E ⊆ Q, we denote by L(q i , q j , E) the ω-language of words u ∈ Σ ω such that there exists a reading of u by A, beginning in state q i , ending in state q j after the reading of u, and going through the set of states E (including q i and q j ). We easily see that these ω-languages are recognized by Muller automata therefore also by Büchi automata.

Consider now the new alphabet:

Γ = Q × Q × P (Q) = {(q i , q j , E) | q i ∈ Q, q j ∈ Q, E ⊆ Q}
and let R ⊆ Γ ω containing an ω-word σ ∈ Γ ω if and only if σ satisfies the two following properties: [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF]. The first letter of σ is in the form (q 0 , q, E) and each letter (q i , q j , E) is followed by a letter (q j , q, G) with q ∈ Q, G ⊆ Q.

(2). The set X = {q ∈ Q | some letter (q i , q j , G) appears infinitely often in σ and q ∈ G} satisfies (X, q f ) ∈ γ for some q f ∈ F .

R is a regular ω-language and if we substitute in R the ω-language L(q i , q j , E) to each letter (q i , q j , E), we obtain the ω 2 -language recognized by A, i.e. L ω 2 (A).

We have then proved one implication of Proposition 3.5. In fact we shall only need in the sequel this implication. We just mention that the converse can be easily proved by using regular expressions defining regular ω-languages and regular ω 2 -languages.
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We have now to define precisely the acceptance of infinite pictures row by row by an automaton model over ordinal words of length ω 2 .

To an infinite picture p ∈ Σ ω,ω we associate an ω 2 -word p ∈ Σ ω 2 which is defined by p(ω.n + m) = p(m + 1, n + 1) for all integers n, m ≥ 0. This can be extended to languages of infinite pictures: for L ⊆ Σ ω,ω we denote L = {p | p ∈ L} so L is an ω 2 -language over Σ.

We can now set the following definition: Definition 3.6 A language of infinite pictures L ⊆ Σ ω,ω is accepted row by row by an ordinal Büchi automaton if and only if the ω 2 -language L is regular. We shall denote BA(Σ ω,ω ) the class of languages L ⊆ Σ ω,ω such that L is regular, i.e. is accepted by an ordinal Büchi automaton.

Remark 3.7

We have defined the ω 2 -word p without the letters # appearing in the infinite picture p. It is easy to see that this does not change the notion of acceptance of a language of infinite pictures row by row by an ordinal Büchi automaton.

Comparison of The Two Modes of Acceptance

We can now state our main result.

Theorem 4.1 Every language of infinite pictures which is accepted row by row by an ordinal Büchi automaton is Büchi-recognized by some finite tiling system, but the converse is not true.

We are going to split the proof of Theorem 4.1 into the two following lemmas.

Lemma 4.2 Every language of infinite pictures which is accepted row by row by an ordinal Büchi automaton is Büchi-recognized by some finite tiling system.

Proof. Let L ⊆ Σ ω,ω be a language of infinite pictures which is accepted row by row by an ordinal Büchi automaton, i.e. such that the ω 2 -language L is regular. By Proposition 3.5, the ω 2 -language L is obtained from a regular ω-language R ⊆ Γ ω , where Γ = {a 1 , a 2 , . . . , a n } is a finite alphabet, by substituting in every ω-word σ ∈ R a regular ω-language R i ⊆ Σ ω to each letter a i ∈ Γ.

Let A= (Γ, Q, q 0 , ∆, F ) be a Büchi automaton accepting the regular ω-language R and, for each integer i ∈ [1; n], let A i = (Σ, Q i , q i 0 , ∆ i , F i ) be a Büchi automaton accepting the regular ω-language R i . We assume, without loss of generality, that for all integers i, j

∈ [1; n], Q i ∩ Q j = ∅ and Q i ∩ Q = ∅.
We shall describe the behaviour of a tiling system T =(K, Σ, ∆ T ) which will accept infinite pictures p ∈ L with a Muller acceptance condition. A run ρ of T on an ω-picture p ∈ L will guess, for each integer j ≥ 1, an integer i j ∈ {1, 2, . . . , n} such that the j th row p j of p is in R ij . It will then check that for all j ≥ 1 the ω-word p j is in R ij and that the ω-word a i1 .a i2 . . . a ij . . . is in R.

We are going now to describe informally a run ρ of T over an infinite picture p ∈ Σ ω,ω . Each state of T , i.e. each element of K, will consist of five components.

The first component of a state of T is an integer i j ∈ {1, 2, . . . , n}. It will be used to guess that the ω-word p j = p(1, j).p(2, j).p(3, j) . . ., forming the j th row of the picture p, is in the regular ω-language R ij . This first component will be constant on every row of the run ρ and will be propagated horizontally.

The second component is an element of ∪ 1≤i≤n Q i . If on the j th row the first component of the state is equal to i j then the second component on this row will be in Q ij . It is used to simulate (by horizontal propagation) a run α j of the Büchi automaton A ij on the ω-word p j forming the j th row of p. So the projection of ρ j = ρ(1, j).ρ(2, j) . . . on the second component of states will be equal to α j .

In order to check that, for all integers j ≥ 1, the ω-word p j is in the regular ωlanguage R ij , T has to check that each run α j is successful, i.e. that Inf (α j )∩F ij = ∅, or equivalently that some state of F ij appears infinitely often in the second component (of the state) on the j th row.

This can be done in the following way. One can imagine an ant which moves on the picture p, but only horizontally from the left to the right or vertically. The movement of the ant will be indicated by the third component of the state which will be an element of {B, a, a d }. Letters a, a d will represent the trajectory of the ant and the blank symbol B will be used elsewhere. The letter a d will be only used when the ant goes down vertically on the picture. We shall need also the fourth component of the state of T which will be an element of {B, ⋆, ⋆ 1 }.

The walk of the ant begins at the intersection of the first row and the first column of p, i.e. at the place of the letter p(1, 1) of p. At the beginning of this walk, the ant moves horizontally to the right on the first row (this way is marked by an a on the third component of the state) until it meets an element q 1 ∈ F i1 on the second component of the state. There is also a mark ⋆ on the first row which is propagated to the right following the movement of the ant.

If the ant meets an element q 1 ∈ F i1 on the second component of the state, then the mark ⋆ is transferred on the second row just above it (on the same column) but with an indice 1, so it becomes ⋆ 1 . This mark ⋆ 1 will be next forwarded horizontally to the right but without the indice 1.

The ant then goes down vertically until it reaches the first row. In that special beginning of its walk, it is already on the first row! Next the ant moves again to the right on the first row, until it meets an element q 2 ∈ F i1 on the second component of the state. At that point it goes up on the second row (which is marked by ⋆ on the fourth component) and moves to the right on this row until it meets an element q 3 ∈ F i2 on the second component of the state. At that point the mark ⋆ is transferred on the third row just above it (on the same column) but with an indice 1, so it becomes ⋆ 1 . This mark ⋆ 1 will be next forwarded horizontally to the right but without the indice 1. The mark ⋆ is now on the third row and it indicates that the ant will have to check successively the three first rows at next ascending moves.

The ant then goes down vertically until it reaches the first row. These movements will be indicated by the letter a d on the third component of the state. Once on the first row its trajectory is again marked by the letter a. It moves to the right, looking for some state of F i1 on the first row, next goes up, moves to the right, looking for some state of F i2 on the second row, next goes up, moves to the right, again looking for some state of F i3 on the third row. This way it checks successively the first row, then the second row, and the third row (marked with ⋆), looking each time for an element of F ij on the j th row. When it meets an element q 6 ∈ F i3 on the second component on the third row, it transfers the mark ⋆ (with an indice, so it becomes ⋆ 1 ) just above it. This mark ⋆ will be next forwarded horizontally to the right, without the indice 1. The mark ⋆ is now on the fourth row and it indicates that the ant will have to check successively the four first rows at next ascending moves.

The ant then goes down vertically until it reaches the first row and so on . . . We can see that if the mark ⋆ 1 appears infinitely often, it appears one time on each row, and this means that the ant has successively checked the first row, then the two first rows, then the three first rows, . . . , then the n first rows, . . . , looking each time for an element of F ij on the j th row. This implies that, for a given j th row, the ant has checked that some element of Q ij appears infinitely often on the second component of the state, hence the ω-word p j = p(1, j).p(2, j).p(3, j) . . . is in the regular ω-language R ij . Conversely if for all integers j ≥ 1 the ω-word p j is in R ij , then there are some successful runs α j of the Büchi automata A ij on the ω-words p j such that the above defined movements of the ant make the mark ⋆ 1 to appear infinitely often. Notice that the blank symbol B appears on the fourth component of the state whenever neither ⋆ nor ⋆ 1 is used as explained above.

T has now to check that the integers i j , j ≥ 1, are such that the ω-word a i1 .a i2 . . . a ij . . . is in R. The fifth component of states of K is used for that purpose. On the first column this fifth component is an element of Q and is used to simulate, by vertical propagation, a run α of A on the ω-word a i1 .a i2 . . . a ij . . . . This means that the projection of ρ(1, 1).ρ(1, 2).ρ(1, 3) . . . on this fifth component will be equal to α. On the other columns the fifth component will be simply the blank symbol B.

We have seen that the set of states of the tiling system T will be:

K = {1, 2, . . . , n} × ∪ 1≤i≤n Q i × {B, a, a d } × {B, ⋆, ⋆ 1 } × ({B} ∪ Q)
and one can define a set of tiles ∆ T such that corresponding runs of the tiling system T =(K, Σ, ∆ T ) are described informally as above.

A run ρ will be successful if and only if the mark ⋆ 1 appears infinitely often on the fourth component of ρ(v) and some state q ∈ F appears infinitely often on the fifth component of ρ(v), for v ∈ ω 2 . This acceptance condition may be written as a Muller condition. As stated in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF] any language of ω-pictures which is Muller recognizable by a tiling system is also Büchi recognizable by a tiling system.

Lemma 4.3 There exists a Büchi-recognizable language of infinite pictures which is not accepted row by row by any ordinal Büchi automaton.

Proof. The class of languages of infinite pictures which are Büchi-recognizable by tiling systems is not closed under complement, [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF]. There exists a language T ⊆ Σ ω,ω of infinite pictures, (where Σ is a finite alphabet), which is Büchi-recognizable by a tiling system but such that its complement is not Büchi-recognizable by any tiling system. Then T cannot be a regular ω 2 -language. Indeed otherwise its complement would be also a regular ω 2 -language because the class of regular ω 2 -languages is closed under complement, [START_REF] Bedon | Finite Automata and Ordinals[END_REF][START_REF] Bedon | Langages Reconnaissables de Mots Indexés par des Ordinaux[END_REF]. The preceding proof would imply that the complement of T would be also Büchi-recognizable by a tiling system, towards a contradiction. 2 Theorem 4.1 expresses that the class BA(Σ ω,ω ) is strictly included in the class T S(Σ ω,ω ). We shall see in the next section that one cannot decide whether a language L ∈ T S(Σ ω,ω ) is in BA(Σ ω,ω ).

We are going now to compare the topological complexity of languages in the classes T S(Σ ω,ω ) and BA(Σ ω,ω ). From now on we shall assume that the reader is familiar with basic notions of topology and with the Borel and projective hierarchies on a space Σ ω , (where Σ is a finite alphabet having at least two letters), equipped with the Cantor topology, see for example [START_REF] Lescow | Logical Specifications of Infinite Computations[END_REF][START_REF] Staiger | ω-Languages, Chapter of the Handbook of Formal languages[END_REF][START_REF] Perrin | Infinite Words, Automata, Semigroups, Logic and Games[END_REF][START_REF] Kechris | Classical Descriptive Set Theory[END_REF]. We recall that a subset of Σ ω is a Borel set of rank α, for a countable ordinal α, iff it is in Σ 0 α ∪ Π 0 α but not in γ<α (Σ 0 γ ∪ Π 0 γ ). Recall also the notion of completeness with regard to reduction by continuous functions. For a countable ordinal α ≥ 1, a set F ⊆ Σ ω is said to be a Σ 0 α (respectively, Π 0 α , Σ 1 1 )-complete set iff for any set E ⊆ Γ ω (with Γ a finite alphabet):

E ∈ Σ 0 α (respectively, E ∈ Π 0 α , E ∈ Σ 1 1 ) iff there exists a continuous function f : Γ ω → Σ ω such that E = f -1 (F ).
For Γ a finite alphabet having at least two letters, the set Γ ω×ω of functions from ω × ω into Γ is usually equipped with the product topology of the discrete topology on Γ. This topology may be defined by the following distance d. Let x and y in Γ ω×ω such that x = y, then d(x, y) = 1 2 n where n = min{p ≥ 0 | ∃(i, j) x(i, j) = y(i, j) and i + j = p}.

Then the topological space Γ ω×ω is homeomorphic to the topological space Γ ω , equipped with the Cantor topology. Borel subsets of Γ ω×ω are defined from open subsets as in the case of the topological space Γ ω . Analytic subsets of Γ ω×ω are obtained as projections on Γ ω×ω of Borel subsets of the product space Γ ω×ω × Γ ω . The set Σ ω,ω of ω-pictures over Σ, viewed as a topological subspace of Σω×ω , is easily seen to be homeomorphic to the topological space Σ ω×ω , via the mapping ϕ : Σ ω,ω → Σ ω×ω defined by ϕ(p)(i, j) = p(i + 1, j + 1) for all p ∈ Σ ω,ω and i, j ∈ ω.

The topological complexity of languages of infinite pictures, accepted row by row by ordinal Büchi automata, is given by the following result which is stated in [START_REF] Duparc | Computer Science and the Fine Structure of Borel Sets[END_REF].

Proposition 4.4 ([9]

) Let L ⊆ Σ ω,ω be a language of infinite pictures which is accepted row by row by an ordinal Büchi automaton. Then L is a Borel set of rank smaller than or equal to 5. This result can be easily proved, using Proposition 3.5 and the fact that every regular ω-language R ⊆ Γ ω is a boolean combination of arithmetical Π 2 -sets, hence a ∆ 3 -set, so is definable in first order arithmetic by some first order Σ 3 -sentence and also by some first order Π 3 -sentence. One can then show that every regular ω 2language is defined in first order arithmetic by some first order Σ 5 -sentence hence is a Borel set of rank smaller than or equal to 5.

On the other side it has been proved in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF] that there exist some Σ 1 1 -complete, hence non Borel, Büchi recognizable language of ω-pictures. The two following lemmas will provide an alternative proof of this result and will be also useful to determine the Borel ranks of languages in T S(Σ ω,ω ).

For an ω-language L ⊆ Σ ω we denote L B the language of infinite pictures p ∈ Σ ω,ω such that the first row of p is in L and the other rows are labelled with the letter B which is assumed to belong to Σ. Lemma 4.5 If L ⊆ Σ ω is accepted by some Turing machine with a Büchi acceptance condition, then L B is Büchi recognizable by a finite tiling system.

Proof. Let L ⊆ Σ ω be an ω-language accepted by some Turing machine T with a Büchi acceptance condition. We assume that the Turing machine has a single semi-infinite tape, with one reading head which may also write on the tape. Q is the set of states of T , q 0 is the initial state and F ⊆ Q is the set of accepting states. The input alphabet of T is Σ and its working alphabet is Γ ⊇ Σ. It has been proved by Cohen and Gold that one can consider only such restricted model of Turing machine [START_REF] Cohen | ω-Computations on Turing Machines[END_REF]. An instantaneous configuration of T is given by an infinite word u.q.v where u ∈ Γ ⋆ , q ∈ Q, v ∈ Γ ω , and the first letter of v is the one scanned by the head of T . The initial configuration of T reading the infinite word σ ∈ Σ ω is q 0 .σ. A computation of T reading σ ∈ Σ ω is an infinite sequence of configurations α 0 , α 1 , α 2 , . . . , α i , . . . , where α 0 = q 0 .σ is the initial configuration and for all integers i ≥ 0, α i = u i .q i .v i is the (i + 1) th configuration. The computation is successful if and only if there exists a final state q f ∈ F and infinitely many integers i such that q i = q f . We can now use a similar reasoning as in the classical proof of the undecidability of the emptiness problem for recognizable languages of finite pictures, [13, p. 34]. We can define a set of tiles ∆ in such a way that for σ ∈ Σ ω , a run ρ of the tiling system T =(Σ, Γ ∪ Q, ∆, F ) over the infinite picture σ B satifies: for each integer i ≥ 0 ρ(0, i).ρ(1, i).ρ(2, i) . . . = α i = u i .q i .v i i.e. ρ(0, i).ρ(1, i).ρ(2, i) . . . is the (i + 1) th configuration of T reading the ω-word σ ∈ Σ ω . Thus the Büchi tiling system (T ,F ) recognizes the language L B .
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The following lemma is easy to prove. Details are left to the reader. Lemma 4.6 Let α be a countable ordinal

≥ 2. If L ⊆ Σ ω is Σ 0 α -complete (re- spectively, Π 0 α -complete, Σ 1 1 -complete), then L B is Σ 0 α -complete (respectively, Π 0 α - complete, Σ 1 1 -complete).
In particular, for each alphabet Σ having at least two letters, we get some Σ 1 1complete language of ω-pictures in the form L B because it is well known that there exist some Σ 1 1 -complete ω-languages L ⊆ Σ ω accepted by some Büchi (or Muller) Turing machine. Notice that the Σ 1 1 -complete Büchi recognizable language T 2 ⊆ {0, 1, $} ω,ω of all ω-pictures encoding an ω-tree with an infinite path given in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF] is also in that form.

To determine the ranks of Borel languages of ω-pictures we shall need to consider the first non-recursive ordinal which is called the Church Kleene ordinal and is usually denoted by ω CK 1 [START_REF] Moschovakis | Descriptive Set Theory[END_REF]. Proposition 4.7 Let Σ be a finite alphabet having at least two letters.

(a) If L ⊆ Σ ω,ω is Büchi recognizable by a finite tiling system and is a Borel set of rank α, then α is smaller than ω CK 1 .

(b) For every non null countable ordinal α < ω CK 1 , there exists some language of infinite pictures L ⊆ Σ ω,ω which is Büchi recognizable by a finite tiling system and is a Borel set of rank α.

Proof. (a). It was proved in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF] that every language L of infinite pictures which is Büchi recognizable by a finite tiling system is definable by an existential second order formula of arithmetic. It is well known that this implies that L is a Σ 1 1 -set (lightface) and that if moreover L is a Borel set then its Borel rank is smaller than ω CK 1 , see [START_REF] Moschovakis | Descriptive Set Theory[END_REF]. (b). For α = 1 it is well known that a Σ 0 1 -complete set is simply an open but non closed set and that a Π 0 1 -complete set is simply a closed but non open set. For example

O = {p ∈ Σ ω,ω | ∃i ≥ 1, ∃j ≥ 1 p(i, j) = B} is a Σ 0 1 -complete subset of Σ ω,ω , and C = {p ∈ Σ ω,ω | ∀i ≥ 1, ∀j ≥ 1 p(i, j) = B} is a Π 0 1 -complete subset of Σ ω,ω
. These two languages are in T S(Σ ω,ω ). On the other hand it is well known that, for every non null countable ordinal α < ω CK 1 , there exists some Σ 0 α -complete S α and some Π 0 α -complete P α , subsets of Σ ω , which are effective, i.e. which are in the class of Σ 1 1 (lightface) subsets of Σ ω accepted by some Turing machine with a Büchi acceptance condition, [START_REF] Moschovakis | Descriptive Set Theory[END_REF][START_REF] Staiger | ω-Languages, Chapter of the Handbook of Formal languages[END_REF].

Then by Lemma 4.6 the language (S α ) B ⊆ Σ ω,ω (respectively, (P α ) B ⊆ Σ ω,ω ) is Σ 0 α -complete (respectively, Π 0 α -complete) and by Lemma 4.5 these languages are in T S(Σ ω,ω ).

2

In conclusion of this section, these results show that Büchi tiling systems have a much greater accepting power than automata reading ω 2 -words for acceptance of languages of infinite pictures.

Decision Problems

In a recent paper we have proved several undecidability results for infinitary rational relations [START_REF] Finkel | Undecidability of Topological and Arithmetical Properties of Infinitary Rational Relations[END_REF]. These results were deduced from an extreme separation result, proved using the undecidability of the universality problem for finitary rational relations and the existence of a Σ 1 1 -complete infinitary rational relation stated in another paper [START_REF] Finkel | On the Topological Complexity of Infinitary Rational Relations[END_REF]. We shall use in this section a very similar technique, using this time the undecidability of the emptiness problem for languages of finite pictures and the existence of a Σ 1 1 -complete language of ω-pictures. In a similar way we shall see that this implies several undecidability results. Proposition 5.1 Let Γ = {0, 1, #}, then there exists a family F of Büchi-recognizable languages of ω-pictures over Γ, such that, for L ∈ F, either L = ∅ or L is a Σ 1 1complete subset of Γ ω,ω , but one cannot decide which case holds.

Proof. We have seen that there exists a Büchi-recognizable language T ⊆ {0, 1} ω,ω which is Σ 1 1 -complete. On the other side the emptiness problem for recognizable languages of finite pictures is known to be undecidable: if Σ is an alphabet having at least one letter then it is undecidable whether a given recognizable language L ⊆ Σ ⋆,⋆ is empty, see [START_REF] Giammarresi | Two-Dimensional Languages[END_REF].

Let us define, for a finite picture p ∈ Σ ⋆,⋆ over a finite alphabet Σ and an infinite picture p ′ ∈ Σ ω,ω 1 over the alphabet Σ 1 = {0, 1}, the infinite picture p • p ′ over the alphabet Γ = Σ ∪ Σ 1 ∪ {#}. We assume that Σ = Σ ∪ {#}, Σ1 = Σ 1 ∪ {#}, and Γ = Γ ∪ {# 1 }, where # 1 is a new letter different from the letter #.

If p is a finite picture of size (m, n), the ω-picture p • p ′ over Γ is defined by: p • p ′ (0, i) = p • p ′ (i, 0) = # 1 for all integers i ≥ 0, p • p ′ (i, j) = p(i -1, j -1) for all integers i ∈ {1, . . . , m + 2} and j ∈ {1, . . . , n + 2}, p • p ′ (i, j) = # for all integers i ∈ {1, . . . , m + 2} and j ≥ n + 2, p • p ′ (i, j) = # for all integers i ≥ m + 2 and j ∈ {1, . . . , n + 2}, p • p ′ (i, j) = p ′ (i -(m + 2), j -(n + 2)) for all integers i ≥ m + 2 and j ≥ n + 2.

The intuitive idea is to construct an infinite picture p•p ′ having a prefix p "followed" by the infinite picture p ′ , to "complete" elsewhere by some letters # and then to border with letters # 1 to get an ω-picture in Γ ω,ω .

For a language L ⊆ Σ ⋆,⋆ we set L • T = {p • p ′ | p ∈ L and p ′ ∈ T }. It is easy to see that if L is a recognizable language of finite pictures then L • T is a Büchi-recognizable language of ω-pictures because T is also Büchi-recognizable. There are now two cases:

(1) If L is empty then L • T is empty too.

(2) If L is non-empty there is some finite picture p ∈ L ⊆ Σ ⋆,⋆ . Let then ψ p be the mapping from Σ ω,ω 1 into ( Σ ∪ Σ 1 ) ω,ω defined by ψ p (p ′ ) = p • p ′ . It is easy to see that the mapping ψ p is continuous and that ψ -1 p (L • T ) = T . But T is Σ 1 1 -complete and L • T , as well as every Büchi-recognizable language of infinite pictures, is a Σ 1 1 -set because it is definable by an existential second order monadic formula, [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF]. This implies that L • T is a Σ 1 1 -complete set.

We can now choose the family F to be the family of languages L • T obtained with Σ = {0} and L running over recognizable languages of pictures over Σ. 2

In order to disprove the existence of decision procedures which test Büchi-recognizable ω-picture languages for E-, respectively A-recognizability, we shall need the following lemmas.

Lemma 5.2 Let Σ be an alphabet having at least two letters and L ⊆ Σ ω,ω be a E-recognized language of ω-pictures. Then L is a Σ 0 2 -subset of Σ ω,ω . Proof. Let Σ be an alphabet having at least two letters and L ⊆ Σ ω,ω be a language of ω-pictures which is E-recognized by (A,F ), where A=(Q, Σ, ∆) is a tiling system and

F ⊆ Q. Let R = {(p, ρ) ∈ Σ ω,ω × Q ω 2 | ρ is a run of A on p}. It is easy to see that R is a closed subset of Σ ω,ω × Q ω 2 where Σ ω,ω × Q ω 2 is equipped with the classical product topology. Let R E = {(p, ρ) ∈ Σ ω,ω × Q ω 2 | ∃v ∈ ω 2 ρ(v) ∈ F }. It is easy to see that R E is an open subset of Σ ω,ω × Q ω 2 .
Then the set R ∩ R E is a boolean combination of open sets. In particular it is a Σ 0 2 -subset of Σ ω,ω × Q ω 2 , i.e. a countable union of closed subsets of Σ ω,ω × Q ω 2 . But the topological space Σ ω,ω × Q ω 2 is compact because it is the product of two compact spaces. Thus every closed subset of Σ

ω,ω × Q ω 2 is also compact. Therefore R ∩ R E is a countable union of compact subsets of Σ ω,ω × Q ω 2 .
But the language L is E-recognized by (A,F ) so it is the projection of the set R ∩ R E onto Σ ω,ω . The projection from Σ ω,ω × Q ω 2 onto Σ ω,ω is continuous and the continuous image of a compact set is a compact set. Thus the language L is a countable union of compact sets hence it is a countable union of closed sets, i.e. a Σ 0 2 -subset of Σ ω,ω . 2 Lemma 5.3 Let Σ be an alphabet having at least two letters and L ⊆ Σ ω,ω be a A-recognized language of ω-pictures. Then L is a closed subset of Σ ω,ω .

Proof. Let Σ be an alphabet having at least two letters and L ⊆ Σ ω,ω be a language of ω-pictures which is A-recognized by (A,F ), where A=(Q, Σ, ∆) is a tiling system and F ⊆ Q.

We call cl(L) the topological closure of L and we are going to prove that L = cl(L). For that purpose consider an ω-picture p in cl(L). For all integers i ≥ 1 there is some ω-picture p i ∈ L such that p | {0,1,...,i}×{0,1,...,i} = p i | {0,1,...,i}×{0,1,...,i} For each integer i ≥ 1, p i ∈ L thus there is some run ρ i of A on p i such that for all v ∈ ω 2 ρ i (v) ∈ F . Consider now the partial runs ρ ′ i,j = ρ i | {0,1,...,j}×{0,1,...,j} , for j ≤ i, of A on the restriction of p i (hence also of p) to {0, 1, . . . , j} × {0, 1, . . . , j}.

We can now reason as in the proof of Theorem 4 (a) in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF]. These partial runs ρ ′ i,j are arranged in a finitely branching tree, via the extension relation. By construction this tree is infinite so by König's Lemma there is an infinite path. This infinite path determines a run of A on p which is A-accepting thus p ∈ L.

We have then proved that cl(L) ⊆ L so L = cl(L) and L is a closed subset of Σ ω,ω . 2

We can now infer the following result. Proposition 5.4 There are no decision procedures which test Büchi-recognizable ω-picture languages for E-, respectively A-recognizability.

Proof. Consider the family F of ω-picture Büchi-recognizable languages over Γ, such that, for L ∈ F, either L = ∅ or L is a Σ 1 1 -complete subset of Γ ω,ω .

In the first case, L is obviously A-recognizable and E-recognizable. In the second case L is Σ 1 1 -complete so in particular it is not a Borel subset of Γ ω,ω . By Lemmas 5.2 and 5.3 it cannot be E-recognizable (respectively, A-recognizable). But one cannot decide which case holds.
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As remarked in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF] Staiger-Wagner and co-Büchi recognizability reduces to E-recognizability so the above proof can be applied to Staiger-Wagner and co-Büchi recognizability instead of E-recognizability.

Proposition 5.1 gives an extreme separation result which implies other undecidability results. For example for any Borel class Σ 0 α or Π 0 α , α being a countable ordinal ≥ 1, it is undecidable whether a given Büchi-recognizable language of ω-pictures is in Σ 0 α (respectively Π 0 α ). It is even undecidable whether a given Büchi-recognizable language of ω-pictures is a Borel set or a Σ 1 1 -complete set. Remark that the same result holds if we replace Borel classes by arithmetical classes Σ i or Π i , i ≥ 1, and the class of Borel sets by the class of arithmetical sets ∪ n≥1 Σ n = ∪ n≥1 Π n .

(c) For every non null ordinal α < ω CK 1 , there exists some Σ 0 α -complete and some Π 0 α -complete ω-languages in the class C.

This result follows easily from the proof of Lemmas 4.5 and 4.6 of [Fin04] and from the above cited result of Kechris, Marker and Sami proved in [START_REF] Kechris | Π 1 1 Borel sets[END_REF].

Notice that a very similar result was obtained in [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] for the class of ω-languages accepted by (real time) one counter Büchi automata, and in [START_REF] Finkel | in honour of Bill Wadge on the occasion of his 60th cycle[END_REF] for the class of infinitary rational relations accepted by 2-tape Büchi automata.
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These results show a great contrast with the case of recognizable languages of infinite words where such problems are decidable [START_REF] Landweber | Decision Problems for ω-Automata[END_REF].

Recall now the following definition, see [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF]: a tiling system is called deterministic if on any picture it allows at most one tile covering the origin, the state assigned to position (i + 1, j + 1) is uniquely determined by the states at positions (i, j), (i + 1, j), (i, j + 1) and the states at the border positions (0, j + 1) and (i + 1, 0) are determined by the state (0, j), respectively (i, 0). As remarked in [START_REF] Altenbernd | Tiling Systems over Infinite Pictures and their Acceptance Conditions[END_REF], the hierarchy proofs of the classical Landweber hierarchy defined using deterministic ω-automata "carry over without essential changes to pictures". In particular it is easy to see that a language of ω-pictures which is Büchi-recognized by a deterministic tiling system is a Π 0 2 -set. Remark that if we use the classical Muller acceptance condition instead of the Büchi condition, we can easily show, as in the case of infinite words, that a language of ω-pictures which is Muller-recognized by a deterministic tiling system is a boolean combination of Π 0 2 -sets.

We now state the following results.

Proposition 5.5 Let Γ = {0, 1, #} as in Proposition 5.1. It is undecidable for a given Büchi-recognizable language L ⊆ Γ ω,ω whether:

(1) L is Büchi-recognized by a deterministic tiling system.

(2) L is Muller-recognized by a deterministic tiling system.

(3

Proof. Consider the family F of Büchi-recognizable ω-picture languages given by Proposition 5.1. Then two cases may happen for L ∈ F: either L is empty or L is Σ 1 1 -complete. In the first case L is obviously recognized by a deterministic Büchi or Muller tiling system; its complement Γ ω,ω -L = Γ ω,ω is Büchi-recognizable and L is ω 2 -regular. In the second case L is Σ 1 1 -complete. Thus L is not a Borel set hence it is neither Büchi nor Muller-recognized by any deterministic tiling system and L is not ω 2regular. Moreover in this second case its complement Γ ω,ω -L is a Π 1 1 -complete subset of Γ ω,ω . It is well known that a Π 1 1 -complete set is not a Σ 1 1 -set thus it cannot be Büchi-recognizable. But Proposition 5.1 states that one cannot decide which case holds. 2

ANNEXE : ERRATUM TO THE PAPER : ON RECOGNIZABLE LANGUAGES OF INFINITE PICTURES

Recall first that the following result was stated as Proposition 4.7 in [START_REF] Finkel | On recognizable languages of infinite pictures[END_REF].

Proposition 4.7 Let Σ be a finite alphabet having at least two letters.

(a) If L ⊆ Σ ω,ω is Büchi recognizable by a finite tiling system and is a Borel set of rank α, then α is smaller than ω CK 1 .

(b) For every non null countable ordinal α < ω CK 1 , there exists some language of infinite pictures L ⊆ Σ ω,ω which is Büchi recognizable by a finite tiling system and is a Borel set of rank α.

Item (a) of this result was deduced from the fact that if L is a (lightface) Σ 1 1 -set and that if moreover L is a Borel set then its Borel rank is smaller than ω CK 1 . This fact, which is true if we replace the (lightface) class Σ 1 1 by the (lightface) class ∆ 1 1 , is actually not true and the given reference [START_REF] Moschovakis | Descriptive set theory[END_REF] does not contain this result.

Kechris, Marker and Sami proved in [START_REF] Kechris | Π 1 1 Borel sets[END_REF] that the supremum of the set of Borel ranks of (lightface) Π 1 1 , so also of (lightface) Σ 1 1 , sets is the ordinal γ 1 2 . This ordinal is precisely defined in [START_REF] Kechris | Π 1 1 Borel sets[END_REF]. Kechris, Marker and Sami proved that the ordinal γ 1 2 is strictly greater than the ordinal δ 1 2 which is the first non ∆ 1 2 ordinal. Thus in particular it holds that ω CK 1 < γ 1 2 . Notice that the exact value of the ordinal γ 1 2 may depend on axioms of set theory. For more details, the reader is referred to [START_REF] Kechris | Π 1 1 Borel sets[END_REF] and to a textbook of set theory like [START_REF] Jech | Set theory[END_REF].

Notice that it seems still unknown whether every non null ordinal γ < γ 1 2 is the Borel rank of a (lightface) Π 1 1 (or Σ 1 1 ) set. On the other hand, for every non null ordinal α < ω CK 1 , there exist some Σ 0 α -complete and some Π 0 α -complete sets in the class ∆ 1 1 ⊂ Σ 1 1 . This is a well known fact of Effective Descriptive Set Theory which is proved in detail in [START_REF] Finkel | Classical and effective descriptive complexities of omega-powers[END_REF].

We can now state the following result which corrects the above false Proposition 4.7. 

Theorem