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The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity.

Here we introduce another multilayer system with mass exchanges between the neighborhing layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic pressure and prove energy and hyperbolicity properties of the model. We also give a kinetic interpretation leading to effective numerical schemes with positivity and energy properties. Numerical tests show the versatility of the approach and its ability to compute recirculation cases with wind forcing.

Introduction

Due to computational issues associated with the free surface Navier-Stokes or Euler equations, the simulations of geophysical flows are often carried out with shallow water type models of reduced complexity. Indeed, for vertically averaged models such as the Saint-Venant system [START_REF] Barré De Saint-Venant | Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l'introduction des marées dans leur lit[END_REF], efficient and robust numerical techniques (relaxation schemes [START_REF] Bouchut | Gravity driven shallow water models for arbitrary topography[END_REF], kinetic schemes [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF],. . . ) are available and avoid to deal with moving meshes.

Non-linear shallow water equations model the dynamics of a shallow, rotating layer of homogeneous incompressible fluid and are typically used to describe vertically averaged flows in two or three dimensional domains, in terms of horizontal velocity and depth variation, see Fig. 1.

The classical Saint-Venant system [START_REF] Barré De Saint-Venant | Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l'introduction des marées dans leur lit[END_REF] with viscosity and friction [START_REF] Decoene | Asymptotic derivation of the section-averaged shallow water equations for river hydraulics[END_REF][START_REF] Ferrari | A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography[END_REF][START_REF] Gerbeau | Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation[END_REF][START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF] is well suited for the modeling of dam breaks or hydraulic jumps. The extended version of the Saint-Venant system proposed by Bristeau and Sainte-Marie [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems[END_REF] dropping the hydrostatic assumption is well adapted for the modeling of gravity waves propagation.

Considering flows with large friction coefficients, with significant water depth or with important wind effects, the horizontal velocity can hardly be approximated -as in the Saint-Venant system -by a vertically constant velocity [START_REF] Salençon | Simulation model of a mesotrophic reservoir (lac de pareloup, france): Melodia, an ecosystem reservoir management model[END_REF]. To drop this limitation a multilayer Saint-Venant model is often used where each layer is described by its own height, its own velocity and is advected by the flow (see [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF][START_REF]Finite-volume solvers for a multilayer saint-venant system[END_REF][START_REF] Audusse | Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model[END_REF] and the references therein). This advection property induces that there is no mass exchanges between neighborhing layers and makes a close relation to models for two non-miscible fluids (see [START_REF] Bouchut | An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment[END_REF][START_REF] Castro | Numerical simulation of two-layer shallow water flows through channels with irregular geometry[END_REF][START_REF] Castro | A q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system[END_REF]) for instance). In [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF] the multilayer strategy was formally derived from the Navier-Stokes system with hydrostatic hypothesis departing from an earlier work [START_REF] Audusse | Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model[END_REF] introducing a vertical partition of water height.

Here, we derive another and simpler multilayer model where we prescribe the vertical discretization of the layers taking in to account the (unknown) total height of water. Using a Galerkin approximation in lagrangian formulation, we obtain a system where the only additional unknowns are the layers velocities. This leads to a global continuity equation and allows mass exchanges between layers.

The objective of the paper is to present the derivation of this new multilayer model and to exhibit its main properties (hyperbolicity, energy equality, . . . ). Some simulations performed with a kinetic scheme [START_REF]A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes[END_REF] are presented at the end of the paper.

The paper is organized as follows. In Section 2, we first present, in a simplified case, the formulation of the new multilayer Saint-Venant system starting from the hydrostatic Euler equations. In Section 3, we recall the Navier-Stokes system with a free moving boundary and its closure, and the Shallow Water system. We also introduce the multilayer formulation in the context of the hydrostatic assumption. In Section 4 we examine the main properties of the multilayer system and present a kinetic interpretation of the proposed model. This kinetic formulation leads to a numerical scheme detailed in Section 5 where some numerical simulations are also shown.

A simplified case

Before deriving the complete version of the multilayer system, we illustrate the approach in a simple situation. Moreover this case emphasizes the main differences with the multilayer system proposed by Audusse [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF].

We depart from the free surface hydrostatic Euler system ∂u ∂x + ∂w ∂z = 0, (2.1)

∂u ∂t + ∂u 2 ∂x + ∂uw ∂z + ∂p ∂x = 0, (2.2 
)

∂p ∂z = -g, (2.3) 
for t > t 0 , x ∈ R, z b (x) ≤ z ≤ η(x, t), where η(x, t) represents the free surface elevation, u = (u, w) T the velocity. The water height is H = ηz b , see Fig. 2.

We add the two classical kinematic boundary conditions. At the free surface, we prescribe

∂η ∂t + u s ∂η ∂x -w s = 0, (2.4) 
where the subscript s denotes the value of the considered quantity at the free surface. At the bottom, the impermeability condition gives

u b ∂z b ∂x -w b = 0, (2.5) 
where the subscript b denotes the value of the considered quantity at the bottom.

We consider that the flow domain is divided in the vertical direction into N layers of thickness h α with N + 1 interfaces z α+1/2 (x, t), α = 0, ..., N (see Fig. 2) so that

H = N α=1 h α , (2.6) 
and z α+ 1 2 (x, t) = z b (x) + α j=1 h j (x, t).

(2.7)
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Figure 2. Notations for the multilayer approach.

We consider the average velocities u α , α = 1, . . . , N defined by

u α (x, t) = 1 h α zα+1/2 z α-1/2 u(x, z, t)dz, (2.8) 
we also denote

< u 2 > α (x, t) = 1 h α zα+1/2 z α-1/2 u 2 (x, z, t)dz, (2.9) 
and u α+1/2 = u(x, z α+1/2 , t), (2.10) the value of the velocity at the interface z α+1/2 . Proposition 2.1. With these notations, an integration of (2.1)-(2.3) over the layers [z α-1/2 , z α+1/2 ], α = 1, ..., N leads to the following system of balance laws

∂h α ∂t + ∂h α u α ∂x = G α+1/2 -G α-1/2 , (2.11 
)

∂h α u α ∂t + ∂ ∂x h α < u 2 > α + gh α ∂H ∂x = -gh α ∂z b ∂x + u α+1/2 G α+1/2 -u α-1/2 G α-1/2 .
(2.12)

The expression of the exchange terms G α+1/2 is given in the following.

Proof. The proof relies on simple calculus based on the Leibniz rule. Using the incompressibility condition (2.1) integrated over the interval [z α-1/2 , z α+1/2 ], we deduce the mass equation (2.11) where we exhibit the kinematic of the interface on the right hand side

G α+1/2 = ∂z α+1/2 ∂t + u α+1/2 ∂z α+1/2 ∂x -w(x, z α+1/2 , t), α = 0, . . . , N. (2.13) 
The relation (2.13) gives the mass flux leaving/entering the layer α through the interface z α+1/2 .

Then we consider the velocity equation (2.2). We first observe that from the hydrostatic assumption (2.3) one can compute the pressure as a function of the water height :

p(x, z, t) = g(η(x, t) -z).
Now we integrate the equation (2.2) over the interval [z α-1/2 , z α+1/2 ] and we obtain the relation

∂h α u α ∂t + ∂ ∂x (h α < u 2 > α ) + gh α ∂η ∂x = u α+1/2 G α+1/2 -u α-1/2 G α-1/2 , (2.14) 
and with the definition of H, this is equivalent to (2.12). Then the kinematic boundary conditions (2.4) and (2.5) can be written

G 1/2 = 0, G N +1/2 = 0.
(2.15) These equations just express that there is no loss/supply of mass through the bottom and the free surface.

Notice also that one can compute G α+1/2 , just adding up the equations (2.11) for j ≤ α and using the first equality of (2.15)

G α+1/2 = ∂ ∂t α j=1 h j + ∂ ∂x α j=1 h j u j , α = 1, . . . , N. (2.16)
The standard multilayer Saint-Venant system [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF] is obtained by prescribing

G α+1/2 ≡ 0. (2.17)
This choice is clearly natural for inmiscible fluids but is not justified if the multilayer system is seen as a numerical approximation of the hydrostaic Euler equations. Indeed there is no reason to prevent the water exchanges between connected layers. Moreover it is exhibited in [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF] that this choice may lead to the development of instabilities at the interfaces.

Here we drop this assumption and we only keep the two physical kinematic boundary conditions (2.15). The equation (2.11) is then no nore meaningful since the quantity ∂hα ∂t , appears on both side of the equality. Nevertheless the sum of the equations (2.11) for all the layers is still relevant and the boundary condition (2.15) leads to a global continuity equation for the total water height

H ∂H ∂t + ∂ ∂x N α=1 h α u α = 0, (2.18) 
and each layer depth h α is then deduced from the total water height by the relation

h α = l α H, (2.19) 
with l α , α = 1, ..., N a given number satisfying

l α ≥ 0, N α=1 l α = 1. (2.20) 
Thus the momentum equation (2.12) becomes

∂h α u α ∂t + ∂ ∂x h α < u 2 > α + 1 l α gh 2 α 2 = -gh α ∂z b ∂x + u α+1/2 G α+1/2 -u α-1/2 G α-1/2 . (2.21)
Using (2.18), (2.19), the expression of G α+1/2 given by (2.16) can also be written

G α+1/2 = α j=1 ∂h j u j ∂x -l j N i=1 ∂h i u i ∂x . (2.22) 
Finally we have to define the quantities h α < u 2 > α and u α+1/2 appearing in (2.12). As usual in the derivation of such systems, we have considered h α < u 2 > α ≈ h α u 2 α , this will be discussed in details in paragraph 3.5. The velocities u α+1/2 , α = 1, . . . , N -1 are obtained using an upwinding

u α+1/2 = u α if G α+1/2 ≥ 0 u α+1 if G α+1/2 < 0. (2.23)
To illustrate the formulation of the new model, we compare it with the system proposed in [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF] in the simple case of a two-layer formulation. Neglecting the viscosity and friction, the formulation obtained by Audusse [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF] corresponds to (2.11),(2.12) with (2.17), i.e.

∂h 1 ∂t + ∂h 1 u 1 ∂x = 0, ∂h 2 ∂t + ∂h 2 u 2 ∂x = 0, (2.24 
)

∂h 1 u 1 ∂t + ∂h 1 u 2 1 ∂x + gh 1 ∂(h 1 + h 2 ) ∂x = -gh 1 ∂z b ∂x , (2.25 
)

∂h 2 u 2 ∂t + ∂h 2 u 2 2 ∂x + gh 2 ∂(h 1 + h 2 ) ∂x = -gh 2 ∂z b ∂x , (2.26) 
with h 1 + h 2 = H. The preceding formulation corresponds to a superposition of two single layer Saint-Venant systems (see also [START_REF] Bouchut | An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment[END_REF][START_REF] Castro | Numerical simulation of two-layer shallow water flows through channels with irregular geometry[END_REF][START_REF] Castro | A q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system[END_REF] where a very similar model is considered in a bi-fluid framework).

With our approach (2.18),(2.21), the two-layer formulation reads

∂H ∂t + ∂h 1 u 1 ∂x + ∂h 2 u 2 ∂x = 0, (2.27 
)

∂h 1 u 1 ∂t + ∂h 1 u 2 1 ∂x + g 2 ∂Hh 1 ∂x = -gh 1 ∂z b ∂x + u 3/2 l ∂H ∂t + l ∂Hu 1 ∂x , (2.28 
)

∂h 2 u 2 ∂t + ∂h 2 u 2 2 ∂x + g 2 ∂Hh 2 ∂x = -gh 2 ∂z b ∂x -u 3/2 l ∂H ∂t + l ∂Hu 1 ∂x , (2.29) 
where

h 1 = lH, h 2 = (1 -l)H, (2.30) 
with l ∈ (0, 1) prescribed. The velocity at the interface, denoted u 3/2 , is calculated using upwinding, following the sign of the mass exchange between the layers. It is important to notice that, in the new formulation (2.27)-(2.30), we obtain directly a left hand side term written in conservative form with the topography and the mass exchange as source terms whereas the pressure term of (2.24)-(2.26) has to be modified [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF] to get a conservative form. Moreover we prove in Section 4 that the system (2.27)-(2.30) is hyperbolic, which is not the case for system (2.24)- (2.26).

The difference between (2.27)-(2.30) and (2.24)-(2.26) mainly comes from the physical definition of the layers. Audusse introduces a physical discretization where each layer has its own continuity equation. These N continuity equations mean the layers are isolated each other, this situation corresponds to the case of N non miscible fluids. In the formulation (2.27)-(2.30), the discretization correponds to a finite elements approximation -of P 0 type -of the velocity u. In this case, the definition of the layers does not correspond to a physical partition of the flow but is related to the quality of the desired approximation over u. Thus we have only one continuity equation meaning the fluid can circulate form one layer to another.

Derivation of the viscous multilayer shallow water system

In this section we will apply to the Navier-Stokes equations the multilayer approach presented in the preceding section.

The Navier-Stokes equations

Let us start with the incompressible Navier-Stokes system [START_REF] Lions | Incompressible models[END_REF] restricted to two dimensions with gravity in which the z axis represents the vertical direction. For simplicity, the viscosity will be kept constant and isotropic throughout the paper (we refer the reader to [START_REF] Decoene | Asymptotic derivation of the section-averaged shallow water equations for river hydraulics[END_REF] for a more general framework). Therefore we have the following general formulation: and we consider this system for

∂u ∂x + ∂w ∂z = 0, ( 3 
t > t 0 , x ∈ R, z b (x, t) ≤ z ≤ η(x, t).
We use the same notations as in the previous section. We now consider the bathymetry z b can vary with respect to abscissa x and also with respect to time t. The chosen form of the viscosity tensor is symetric

Σ xx = 2ν ∂u ∂x , Σ xz = ν ∂u ∂z + ∂w ∂x , Σ zz = 2ν ∂w ∂z , Σ zx = ν ∂u ∂z + ∂w ∂x ,
with ν the viscosity coefficient.

Boundary conditions

The system (3.31)-(3.33) is complete with boundary conditions. The outward and upward unit normals to the free surface n s and to the bottom n b are given by

n s = 1 1 + ∂η ∂x 2 -∂η ∂x 1 , n b = 1 1 + ∂z b ∂x 2 -∂z b ∂x 1 .
Let Σ T be the total stress tensor with

Σ T = -pI d + Σ xx Σ xz Σ zx Σ zz .
At the free surface we have the kinematic boundary condition (2.4). Considering the air viscosity is negligible, the continuity of stresses at the free boundary imposes

Σ T n s = -p a n s , (3.34) 
where p a = p a (x, t) is a given function corresponding to the atmospheric pressure. Relation (3.34) is equivalent to n s .Σ T n s = -p a , and t s .Σ T n s = 0, t s being orthogonal to n s .

Since we now consider the bottom can vary with respect to time t, the kinematic boundary condition reads

∂z b ∂t + u b ∂z b ∂x -w b = 0, (3.35) 
where (x, t) → z b (x, t) is a given function. Notice that the equation (3.35) reduces to a classical no-penetration condition (2.5) when z b does not depend on time t. For the stresses at the bottom we consider a wall law under the form

Σ T n b -(n b .Σ T n b )n b = κ(v b , H)v b , (3.36) 
with v b = u b -(0, ∂z b ∂t ) T the relative velocity between the water and the bottom. If κ(v b , H) is constant then we recover a Navier friction condition as in [START_REF] Gerbeau | Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation[END_REF]. Introducing k l laminar and k t turbulent friction coefficients, we use the expression

κ(v b , H) = k l + k t H|v b |,
corresponding to the boundary condition used in [START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF]. Another form of κ(v b , H) is used in [START_REF] Bouchut | Gravity driven shallow water models for arbitrary topography[END_REF] and for other wall laws, the reader can also refer to [START_REF] Mohammadi | Rough boundaries and wall laws[END_REF]. Due to thermomechanical considerations, in the sequel we suppose κ(v b , H) ≥ 0 and κ(v b , H) is often simply denoted by κ. 

The rescaled system

The physical system is rescaled using the quantities

• h and λ, two characteristic dimensions along the z and x axis respectively,

• a s the typical wave amplitude, a b the typical bathymetry variation,

• C = √ gh the typical horizontal wave speed.

Classically for the derivation of the Saint-Venant system, we introduce the small parameter

ε = h λ .
When considering long waves propagation, another important parameter needs be considered, namely

δ = a s h ,
and we consider for the bathymetry a b h = O(δ). Notice that ε is related to a priori informations only associated to geometrical features whereas a s and accordingly δ deal with the state variables of the problem.

Depending on the application, δ can be considered or not as a small parameter. For finite amplitude wave theory and assuming z b (x, t) = z 0 b , one considers ε ≪ 1, δ = O(1) whereas the Boussinesq waves theory requires

δ ≪ 1, ε ≪ 1 and U r = O(1)
where U r is the Ursell number defined by U r = δ ε 2 , see [START_REF] Ursell | The long wave paradox in the theory of gavity waves[END_REF]. All along this work, we consider ε ≪ 1 whereas, even if the parameter δ is introduced in the rescaling, the assumption δ ≪ 1 is not considered except when explictly mentioned.

As for the Saint-Venant system [START_REF] Gerbeau | Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation[END_REF][START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF], we introduce some characteristic quantities : T = λ/C for the time, W = a s /T = εδC for the vertical velocity, U = W/ε = δC, for the horizontal velocity, P = C 2 for the pressure. This leads to the following dimensionless quantities

x = x λ , z = z h , η = η a s , t = t T , p = p P , ũ = u U , and w = w W .
Notice that the definition of the charateristic velocities implies δ = U C so δ also corresponds to the Froude number. When δ = O(1) we have U ≈ C and we recover the classical rescaling used for the Saint-Venant system. For the bathymetry z b we write

z b (x, t) = Z b (x) + b(t) and we introduce zb = Z b /h and b = b/a b . This leads to ∂z b ∂t = εδC ∂ b ∂ t = W ∂ b ∂ t , and 
∂z b ∂x = ε ∂ zb ∂ x .
The different rescaling applied to the time and space derivatives of z b means that a classical shallow water assumption is made concerning the space variations of the bottom profile whereas we assume the time variations of z b lie in the framework of the Boussinesq assumption and are consistent with the rescaling applied to the velocity w.

We also introduce ν = ν λC and we set κ = κ C . Notice that the definitions for the dimensionless quantities are consistent with the one used for the Boussinesq system [START_REF] Peregrine | Long waves on a beach[END_REF][START_REF] Walkley | A numerical Method for Extended Boussinesq Shallow-Water Wave Equations[END_REF]. Notice also that the rescaling used by Nwogu [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF] differs from the preceding one since Nwogu uses w = ε 2 W w. As in [START_REF] Gerbeau | Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation[END_REF][START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF], we suppose we are in the following asymptotic regime ν = εν 0 , and κ = εκ 0 , with κ 0 = κ l,0 + εκ t,0 (ṽ b , H), κ l,0 being constant.

This non-dimensionalization of the Navier-Stokes system (3.31)-(3.33) leads to

∂ ũ ∂ x + ∂ w ∂ z = 0, (3.37) εδ ∂ ũ ∂ t + εδ 2 ∂ ũ2 ∂ x + εδ 2 ∂ ũ w ∂ z + ε ∂ p ∂ x = ε 2 δ ∂ ∂ x 2ν 0 ∂ ũ ∂ x + ∂ ∂ z δν 0 ∂ ũ ∂ z + ε 2 δν 0 ∂ w ∂ x , (3.38) 
ε 2 δ ∂ w ∂ t + δ ∂ ũ w ∂ x + δ ∂ w2 ∂ z + ∂ p ∂ z = -1 + ∂ ∂ x εδν 0 ∂ ũ ∂ z + ν 0 ε 3 δ ∂ w ∂ x + εδ ∂ ∂ z 2ν 0 ∂ w ∂ z , (3.39) 
where we use the divergence free condition to write velocity equations (3.38) and (3.39) in a conservative form. The associated boundary conditions (2.4), (3.34), (3.35) and (3.36) become

∂ η ∂ t + δũ s ∂ η ∂ x -ws = 0, (3.40) 2εδν 0 ∂ w ∂ z s -ps -εδ 2 ν 0 ∂ η ∂ x ∂ ũ ∂ z s + ε 2 ∂ w ∂ x s = -δ pa , (3.41) δν 0 ∂ ũ ∂ z s + ε 2 ∂ w ∂ x s -εδ ∂ η ∂ x 2εδν 0 ∂ ũ ∂ x s -ps = εδ 2 ∂ η ∂ x pa , (3.42) ∂ b ∂ t + ũb ∂ zb ∂ x -wb = 0, (3.43) δν 0 ε 2 ∂ w ∂ x b + ∂ ũ ∂ z b -ε ∂ zb ∂ x 2εδν 0 ∂ ũ ∂ x b -p b +ε ∂ zb ∂ x 2εδν 0 ∂ w ∂ z b -p b -εν 0 ∂ zb ∂ x δ ∂ ũ ∂ z b + ε 2 δ ∂ w ∂ x b = εδκ 0 1 + ε 2 ∂ zb ∂ x 2 ũb + ε 2 ∂ zb ∂ x wb - ∂ b ∂ t . (3.44)
For the sake of clarity, in the sequel we drop the symbol˜and we denote ∂b ∂t = ∂z b ∂t .

The Shallow Water system

The derivation of multilayer approximation is somehow technical. In order to better explain the analysis we recall the monolayer case following the asymptotic expansion in [START_REF] Gerbeau | Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation[END_REF].

In the following the two sets of equations (3.37)-(3.39) and (3.40)-(3.44) are approximated to retain only the high order terms.

Due to the applied rescaling some terms of the viscosity tensor e.g.

ε 3 δ ∂ ∂x ν 0 ∂w ∂x
are very small and could be neglected. But, as mentioned in [1, Remarks 1 and 2], the approximation of the viscous terms has to preserve the dissipation energy that is an essential property of the Navier-Stokes and averaged Navier-Stokes equations. Since we privilege this stability requirement and in order to keep a symmetric form of the viscosity tensor, we consider in the sequel a modified version of ( 

∂z b ∂t + u b ∂z b ∂x -w b = 0, (3.51) δν 0 ∂u ∂z b -ε ∂z b ∂x 2εδν 0 ∂u ∂x b -p b + ε ∂z b ∂x 2εδν 0 ∂w ∂z b -p b -εδν 0 ∂z b ∂x ∂u ∂z b = εδκ 0 1 + ε 2 ∂z b ∂x 2 3/2 u b . (3.52)
Now we will exhibit the hydrostatic and non hydrostatic parts of the pressure. An integration of (3.47) from z to δη gives 

ε 2 δ δη z ∂w ∂t + δ ∂(uw) ∂x dz + ε 2 δ 2 (w 2 s -w 2 ) + p s -p = -(δη -z) + εδ δη z ∂ ∂x ν 0 ∂u ∂z dz -2εδν 0 ∂w ∂z + 2εδν 0 ∂w ∂z s . ( 3 
ε 2 δ ∂ ∂t δη z w dz + δ ∂ ∂x δη z (uw) dz -ε 2 δ 2 w 2 + δp a -p = -(δη -z) + εδ δη z ∂ ∂x ν 0 ∂u ∂z dz -2εδν 0 ∂w ∂z + O(ε 3 δ).
Classically we have

∂u s ∂x = ∂u ∂x s + δ ∂η ∂x ∂u ∂z s = ∂u ∂x s + O(ε 2 δ), (3.56) 
and using relations (3.45), (3.56) and the Leibniz rule we have

εδ δη z ∂ ∂x ν 0 ∂u ∂z dz -2εδν 0 ∂w ∂z = εδν 0 ∂u ∂x + εδν 0 ∂u ∂x s + O(ε 3 δ).
This leads to the expression for the pressure p

p = p h + p nh + O(ε 3 δ), (3.57) 
where the viscous and hydrostatic part p h is given by

p h = δp a + (δη -z) -εδν 0 ∂u ∂x -εδν 0 ∂u ∂x s ,
and the non-hydrostatic part p nh is

p nh = ε 2 δ ∂ ∂t δη z w dz + δ ∂ ∂x δη z (uw) dz -ε 2 δ 2 w 2 .
The derivation and analysis of a classical Saint-Venant type system taking into account the non-hydrostatic part of the pressure has already been carried out by the authors [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems[END_REF]. The derivation of the multilayer system in this general framework is in progress. It will be presented in a forthcoming paper.

In the sequel, we restrict to the situation p nh = 0. Due to this hydrostatic assumption, we have

p = p h + O(ε 2 δ), (3.58) 
and we retain for p h the expression 

p h = δp a + (δη -z) -2εδν 0 ∂u ∂x . ( 3 
ν 0 ∂ 2 u ∂z 2 = O(ε), (3.62) 
and Equations (3.60) and (3.62) mean that

u(x, z, t) = u(x, 0, t) + O(ε), (3.63) 
i.e. we recognize the so-called "motion by slices" of the usual Saint-Venant system. If we introduce the averaged quantity

ū = 1 δη -z b δη z b u dz,
it is well known [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems[END_REF][START_REF] Ferrari | A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography[END_REF][START_REF] Gerbeau | Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation[END_REF][START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF] that the shallow water system (3.45),(3.46) with an hydrostatic pressure (3.58),(3.59) is approximated in O(ε 2 δ) by the following Saint-Venant system written with the variables with dimension

∂H ∂t + ∂H ū ∂x = 0, (3.64) ∂H ū ∂t + ∂H ū2 ∂x + g 2 ∂H 2 ∂x = -H ∂p a ∂x -gH ∂z b ∂x + ∂ ∂x 4νH ∂ ū ∂x - κ(v, H) 1 + κ(v,H) 3ν H ū (3.65) with H = η -z b .

The viscous multilayer Shallow Water system

We again consider the Shallow Water system (3.45),(3.46) with an hydrostatic pressure (3.58),(3.59). Here another approximation is introduced concerning the velocity u, it is no more assumed constant along the vertical but is discretized in the z direction using piecewise constant functions, see Fig. 2. As introduced in Sec. 2 the interval [z b , δη] is divided into N layers of thickness h α and we use the definitions (2. [START_REF] Mohammadi | Rough boundaries and wall laws[END_REF]),(2.20). We write

u mc (x, z, {z α }, t) = N α=1 1 [z α-1/2 ,z α+1/2 ] (z)u α (x, t) (3.66)
with the velocities u α , α ∈ [1, . . . , N ] defined by (2.8).

Notice that from (2.7) we have

z 1/2 = z b = O(1) and z N +1/2 = δη = O(δ).
The difference of magnitude between z 1/2 and z N +1/2 makes the assumption δ ≪ 1 difficult to integrate in the definition of the {z α+1/2 }.

Now we try to quantify the error between u and its piecewise approximation u mc . First we notice that in absence of friction at the bottom and due to the Shallow Water assumption, the relations (3.60) become

∂u ∂z s = ∂u ∂z b = O(ε 2 ). (3.67)
This means we can consider that except for the bottom layer, each layer inherits the approximation (3.67) i.e.

∂u ∂z = O(ε 2 ) for z ≥ z 3/2 ,
and therefore for all α > 1 u(x, z, t) -

u α (x, t) = O(ε 2 ), (3.68) or equivalently u(x, z, t) -u mc (x, z, {z α }, t) = O(ε 2 ), for z ≥ z 3/2 .
In the bottom layer we only have

u(x, z, t) -u 1 (x, t) = O(ε),
but as in [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems[END_REF][START_REF] Gerbeau | Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation[END_REF], it can be proved that we have an approximation of the velocity through a parabolic correction 

u = 1 + εκ 0 ν 0 z -z b - (z -z b ) 2 2H - H 3 u 1 + O(ε 2 ), ( 3 
∂H ∂t + N α=1 ∂h α u α ∂x = 0, (3.70 
)

∂h 1 u 1 ∂t + ∂h 1 u 2 1 ∂x + g 2l 1 ∂h 2 1 ∂x = -h 1 ∂p a ∂x -gh 1 ∂z b ∂x + u 3/2 G 3/2 + ∂ ∂x 4νh 1 ∂u 1 ∂x -4ν ∂z 3/2 ∂x ∂u 3/2 ∂x + 2ν u 2 -u 1 h 2 + h 1 -κ(v, H)u 1 , (3.71 
)

∂h α u α ∂t + ∂h α u 2 α ∂x + g 2l α ∂h 2 α ∂x = -h α ∂p a ∂x -gh α ∂z b ∂x + u α+1/2 G α+1/2 -u α-1/2 G α-1/2 + ∂ ∂x 4νh α ∂u α ∂x -4ν ∂z j ∂x ∂u j ∂x j=α+1/2 j=α-1/2 + 2ν u α+1 -u α h α+1 + h α -2ν u α -u α-1 h α + h α-1 , (3.72) 
for α ∈ {2, . . . , N -1}

∂h N u N ∂t + ∂h N u 2 N ∂x + g 2l N ∂h 2 N ∂x = -h N ∂p a ∂x -gh N ∂z b ∂x -u N -1/2 G N -1/2 + ∂ ∂x 4νh N ∂u N ∂x + 4ν ∂z N -1/2 ∂x ∂u N -1/2 ∂x -2ν u N -u N -1 h N + h N -1 , (3.73 
) 

with h α = l α H(x,
1 h α zα+1/2 z α-1/2 u 2 (x, z, t)dz = u 2 α + O(ε 2 ).
In the context of the hydrostatic approximation, we assume that the pressure satisfies (3.58),(3.59). The treatment of the inviscid part of the pressure has already been presented in the proof of Proposition 2.1 where we have written for the gravitational part of the pressure

zα+1/2 z α-1/2 ∂ ∂x (δη -z) dz = 1 2l α ∂ ∂x h 2 α + h α l α ∂z b ∂x . (3.74)
Notice that it is also possible to write

zα+1/2 z α-1/2 ∂ ∂x (δη -z) dz = 1 2 ∂ ∂x   h α   2 N j=α+1 h j + h α     - ∂z α+1/2 ∂x N j=α+1 h j + ∂z α-1/2 ∂x N j=α h j . (3.75)
The expressions (3.74) and (3.75) lead to the same property for the complete model even if the hyperbolic part is modified. The second formulation seems more adapted to the physical description "by layers" of the system but leads to complementary source terms whose discretization is subtle. We will use and analyse (3.75) in a forthcoming paper. In the following we use (3.74).

The integration of the viscous part of the pressure leads to

zα+1/2 z α-1/2 ∂ ∂x 2ν ∂u ∂x = ∂ ∂x 2νh α ∂u α ∂x + 2ν ∂z j ∂x ∂u j ∂x j=α+1/2 j=α-1/2 + O(ε 2 δ).
It remains to consider the viscous terms on the right hand side of (3.46). The first one is similar to the viscous part of the pressure term. For the second one, using finite differences along the vertical, we write 

z α+1/2 z α-1/2 ∂ ∂z ν 0 ∂u ∂z dz = ν 0 ∂u ∂z z α+1/2 -ν 0 ∂u ∂z z α-1/2 , ≈ 2ν u α+1 -u α h α+1 + h α -2ν u α -u α-1 h α + h α-

Properties of the multilayer system

In this paragraph we examine some properties of the model depicted in Proposition 3.1. We study its hyperbolicity and we exhibit an energy inequality and a kinetic interpretation of the system.

Hyperbolicity

For the simplicity of the discussion we mainly restrict in this subsection to the two-layer version of the multilayer model.

Let us first say some words about the multilayer system (2.24)-(2.26) introduced by Audusse [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF]. This nonmiscible multilayer system was proved to be non-hyperbolic. In the general case the system exhibits complex eigenvalues. In the very simple case u 1 = u 2 = u the eigenvalues of the hyperbolic part was shown to be equal to the classical barotropic eigenvalues of the monolayer shallow water system u + √ gH, u -√ gH plus a baroclinic eigenvalue u that is concerned with the interface waves. Nevertheless the system is not hyperbolic since u is a double eigenvalue associated to a one-dimensional eigenspace. This lack of hyperbolicity may lead to the development of instabilities at the interface [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF][START_REF] Castro | Numerical simulation of two-layer shallow water flows through channels with irregular geometry[END_REF]. In [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF] a technical trick is proposed to cure the problem. Here we can prove the well-posedness of the system. Proof. The two-layer version of the multilayer system depicted in Proposition 3.1 stands -we denote u = u 3/2 with u = u 1 or u = u 2 (see 2.23) -

∂H ∂t + l ∂Hu 1 ∂x + (1 -l) ∂Hu 2 ∂x = 0, ∂Hu 1 ∂t + ∂Hu 2 1 ∂x + g 2 ∂H 2 ∂x = -gH ∂z b ∂x + u ∂H ∂t + ∂Hu 1 ∂x -H ∂p a ∂x + 2ν lH (u 2 -u 1 ) -κ(v, H)u 1 , ∂Hu 2 ∂t + ∂Hu 2 2 ∂x + g 2 ∂H 2 ∂x = -gH ∂z b ∂x + u ∂H ∂t + ∂Hu 2 ∂x - 2ν (1 -l)H (u 2 -u 1 ) -H ∂p a ∂x .
The previous formulation can be written under the quasi-linear form

M (X) ∂X ∂t + A(X) ∂X ∂x = S(X), with X =   H q 1 q 2   , M (X) =   1 0 0 -u 1 0 -u 0 1   , A(X) =   0 l (1 -l) gH -u 2 1 2u 1 -u 0 gH -u 2 2 0 2u 2 -u   , S(X) =     0 -gH ∂z b ∂x + 2ν lH (u 2 -u 1 )) -κ(v, H)u 1 -H ∂p a ∂x -gH ∂z b ∂x -2ν (1-l)H (u 2 -u 1 ) -H ∂p a ∂x     , and 
q i = Hu i , i = {1, 2}.
The three eigenvalues of M -1 (X)A(X) are the roots of D(x) = det(A -xM ) = 0 with

D(x) = -xΠ 2 i=1 (2u i -u -x) -l(2u 2 -u -x)(gH -u 2 1 + ux) -(1 -l)(2u 1 -u -x)(gH -u 2 2 + ux).
Let us fix H, l, u 1 and u 2 in R. Let us suppose u 1 < u 2 with u 2 = u 1 + γ 2 . We recall that the value of the interface velocity u is taken equal to u 1 or u 2 following the direction of the exchange of mass between the two layers.

Let us first suppose that u = u 1 . Then we obviously have

D(u 1 ) = -2gHlγ 2 < 0, D(-∞) = +∞, D(+∞) = -∞,
and some computations lead to

D(max(u 2 = u 1 + γ 2 , u 1 + 2lγ 2 )) > 0, since D(u 2 ) = (1 -2l)gHγ 2 + lγ 6 > 0 if l ≤ 1/2 and D(u 1 + 2lγ 2 ) = 2l(1 -l)(4l -1)γ 6 > 0 if l > 1/2.
It follows that D(x) has three real and simple eigenvalues.

Let us now suppose that u = u 2 . Then we have

D(u 2 ) = 2gH(1 -l)γ 2 > 0, D(-∞) = +∞, D(+∞) = -∞,
and some computations lead to

D(min(u 1 = u 2 -γ 2 , u 2 -2(1 -l)γ 2 )) < 0, since D(u 1 ) = (1 -2l)gHγ 2 -(1 -l)γ 6 < 0 if l ≥ 1/2 and D(u 2 -2(1 -l)γ 2 ) = 2l(1 -l)(4l -3)γ 6 < 0 if l < 1/2.
Here also D(x) has three real and simple eigenvalues.

The case u 2 < u 1 is similar and we can conclude that the two-layer version of the multilayer system depicted in Proposition 3.1 is strictly hyperbolic. Notice that when u 1 = u 2 = u, we find the same baroclinic and barotropic eigenvalues u, u+ √ gH, u-√ gH as for the nonmiscible multilayer system [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF], but they are all simple eigenvalues in this case since we consider a system with only three equations.

In the case of N layers the matrices A(X) and M (X) can be written 

A N +1 =         0 l 1 . . . . . . l N gH -u 2 1 2u 1 ṽ1
-u 2 N vN,1 . . . vN,N-1 2u N         , with vij = u i-1/2 * l j /l i and ṽij = u i+1/2 * l j /l i , M N +1 =          1 0 . . . . . . 0 v 1 1 . . . . . . . . . 0 . . . . . . . . . . . . . . . . . . 1 0 v N 0 . . . 0 1          , with v i = u i-1/2 * i-1 j=1 l j /l i + u i+1/2
* N j=i+1 l j /l i . We have perfomed various numerical evaluations of the eigenelements of the matrix M -1 N +1 A N +1 with numerous choices of the parameters H, u α , u α+1/2 and l α . All these tests have always shown that the matrix is diagonalizable on R. In the simple case where all the layers have the same velocity u, the barotropic eigenvalues u + √ gH and u -√ gH are simple and the baroclinic eigenvalue u has a multiplicity of N -1 but the matrix remains diagonalizable on R and the problem is still well-posed.

Energy equality

The classical Saint-Venant system (3.64)-(3.65) admits an energy equality [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF][START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems[END_REF] under the form 

∂E sv ∂t + ∂ ∂x ū E sv + g H 2 2 -4νH ū ∂ ū ∂x = H ∂p a ∂t -4νH ∂ ū ∂x 2 - κ(v, H) 1 + κ(v,
+ ∂ ∂x N α=1 u α E mc sv,α + g 2 h α H -4νh α ∂u α ∂x = -κ(v, H)u 2 1 - ν h α N -1 α=1 (u α+1/2 -u α-1/2 ) 2 -4ν N α=1 h α ∂u α ∂x 2 + H ∂p a ∂t + gH ∂z b ∂t , (4.77 
)

with E mc sv,α = hαu 2 α 2 + ghα(η+z b ) 2 + h α p a .
Proof. The proof relies on classical computations. Starting from (3.46) with u = u mc , p = p h multiplying it with u mc and integrating over [z α-1/2 , z α+1/2 ] with 1 < α < N we obtain

∂ ∂t E mc sv,α + ∂ ∂x u α E mc sv,α + g 2 h α H -4νh ∂u α ∂x = - u 2 α-1/2 2 ∂z α-1/2 ∂t + u α-1/2 ∂z α-1/2 ∂x -w α-1/2 + u 2 α+1/2 2 ∂z α+1/2 ∂t + u α+1/2 ∂z α+1/2 ∂x -w α+1/2 -ν 0 u α-1/2 ∂u mc ∂z z α-1/2 + ν 0 u α+1/2 ∂u mc ∂z z α+1/2 +ν 0 ∂z α-1/2 ∂x u α-1/2 ∂u mc ∂x z α-1/2 -ν 0 ∂z α+1/2 ∂x u α+1/2 ∂u mc ∂x z α+1/2 - ν h α (u α+1/2 -u α-1/2 ) 2 -4νh α ∂u α ∂x 2 + h α ∂p a ∂t + gh α ∂z b ∂t , (4.78) 
where we have considered for z ∈

[z α-1/2 , z α+1/2 ] ∂u ∂z = 1 h α u α+1/2 -u α-1/2 .
An analoguous calculation is valid for α = 1 and α = N . A sum from α = 1 to α = N of the equalities (4.78) with the boundary conditions (3.48)-(3.52) completes the proof.

Kinetic interpretation

For the simulation of a multilayer system several strategies are possible. Pares et al. [START_REF] Castro | A q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system[END_REF] consider the full system and build a specific solver for the two-layer case. Following the discrete multilayer scheme proposed by Audusse [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF] we prefer to exhibit a kinetic formulation of the system obtained in Proposition 3.1. Indeed kinetic schemes might be one of the best compromise between accuracy, stability and efficiency for the resolution of Saint-Venant type equations, see [START_REF]A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. We refer to the next section for the presentation of the numerical scheme. Here we focus on the kinetic interpretation of the system.

The kinetic approach consists in using a description of the microscopic behavior of the system. In this method, fictitious particles are introduced and the equations are considered at the microscopic scale, where no discontinuities occur. The process to obtain the kinetic interpretation of the multilayer model is similar to the one used in [START_REF]A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes[END_REF] for the monolayer shallow water system. For a given layer α, a distribution function M α (x, t, ξ) of fictitious particles with microscopic velocity ξ is introduced to obtain a linear microscopic kinetic equation equivalent to the macroscopic model presented in proposition 3.1.

Let us introduce a real function χ defined on R, compactly supported and which have the following properties

χ(-w) = χ(w) ≥ 0 R χ(w) dw = R w 2 χ(w) dw = 1. (4.79)
Now let us construct a density of particles M α (x, t, ξ) defined by a Gibbs equilibrium: the microscopic density of particles present at time t in the layers α, in the vicinity ∆x of the abscissa x and with velocity ξ given by

M α (x, t, ξ) = l α H(x, t) c χ ξ -u α (x, t) c , α = 1, . . . , N, (4.80) 
with

c 2 = gH 2 .
Likewise, we define N α+1/2 (x, t, ξ) by

N α+1/2 (x, t, ξ) = G α+1/2 (x, t) δ ξ -u α+1/2 (x, t) , α = 0, . . . , N, (4.81) 
where δ denotes the Dirac distribution. The quantities G α+1/2 , 0 ≤ α ≤ N represent the mass exchanges between layers α and α + 1, they are defined in (2.16) and satisfy the conditions (2.15), so N 1/2 and N N +1/2 also satisfy

N 1/2 (x, t, ξ) = N N +1/2 (x, t, ξ) = 0. (4.82)
We also introduce the densities M α (x, t, ξ) that will be used for the energy equations , they are defined by

M α (x, t, ξ) = gH(x, t)h α (x, t) 4c χ ξ -u α (x, t) c .
Notice that the introduction of this second family of densities is not needed when we consider the two dimensional shallow water system. Here they take into account some kind of transversal effect at the kinetic level that is implicitely included into the macroscopic one dimensional shallow water system. We refer the reader to [START_REF]A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes[END_REF][START_REF] Perthame | A kinetic scheme for the saint-venant system with a source term[END_REF] for more details.

With the previous definitions, dropping the viscous, and friction terms, we write a kinetic representation of the multilayer Saint-Venant system described in proposition 3.1 and we have the following proposition: 

∂M α ∂t + ξ ∂M α ∂x - ∂ ∂x (p a + gz b ) ∂M α ∂ξ -N α+1/2 (x, t, ξ) + N α-1/2 (x, t, ξ) = Q α (x, t, ξ), (4.83) α = 1, . . . , N,
with {N α+1/2 (x, t, ξ)} N α=0 satisfying (4.81),(4.82). The set of equations (4.83) can also be written under the form

N α+1/2 (x, t, ξ) = α i=1 ∂M i ∂t + ξ ∂M i ∂x - ∂ ∂x p a + z b ∂M i ∂ξ -Q i , α = 1, . . . , N. (4.84) 
The quantities Q α (x, t, ξ) are "collision terms" equals to zero at the macroscopic level i.e. which satisfy for a.e. values of (x, t)

R Q α dξ = 0, R ξQ α dξ = 0.
The solution of (4.83),(4.84) is an entropy solution if additionally

∂ M α ∂t + ξ ∂ M α ∂x = Q α (x, t, ξ), α = 1, . . . , N, (4.85) 
with R ξ 2 2 Q α + Q α dξ ≤ 0.
Proof. As previously we denote X = (H, q 1 , . . . , q N ) T the vector of unknowns with q α = l α Hu α . We introduce M = (M 1 , . . . , M N ) T and an (N + 1) × N matrix K(ξ) defined by K 1,j = 1, K i+1,j = δ i,j ξ with δ i,j the Kronecker symbol.

Using the definition (4.80) and the properties of the function χ, we have

l α H(x, t) = R M α (x, t, ξ)dξ, (4.86) 
and

X(x, t) = R K(ξ) M (x, t, ξ)dξ. (4.87) 
The proof is obtained by a simple integration in ξ of the set of equations (4.83) against the matrix K(ξ). First, an integration in ξ of (4.83) gives the continuity equation (2.11) i.e.

∂l α H ∂t + ∂l α Hu α ∂x = G α+1/2 -G α-1/2 ,
and by summation we have (3.70). Actually from the definition (4.81) of N α+1/2 we have

R N α+1/2 (x, t, ξ)dξ = G α+1/2 (x, t),
and

R ξN α+1/2 (x, t, ξ)dξ = u α+1/2 G α+1/2 .
Likewise for the energy balance of the layer α we proceed an integration in ξ of (4.83) against ξ 2 /2. Since we have

R ξ 2 2 M α + M α dξ = h α 2 u 2 α + g 2 h α H, (4.88) R ξ ξ 2 2 M α + M α dξ = h α 2 u 3 α + gh α Hu α , (4.89) 
and for the source term

R ξ 2 2 ∂ ∂x (p a + gz b ) ∂M α ∂ξ dξ = - ∂ ∂x (p a + gz b )h α u α = - ∂ ∂x (gz b + p a )h α u α + (gz b + p a ) ∂h α u α ∂x = - ∂ ∂x (gz b + p a )h α u α -(gz b + p a ) ∂h α ∂t -(gz b + p a ) G α+1/2 + (gz b + p a ) G α-1/2 , (4.90) 
we obtain the equality

∂ ∂t h α 2 u 2 α + g 2 h α (η + z b ) + h α p a + ∂ ∂x u α h α u 2 α + g 2 h α H + g 2 h α (η + z b ) + h α p a + u 2 α-1/2 2 G α-1/2 - u 2 α+1/2 2 G α+1/2 -h α ∂p a ∂t -gh α ∂z b ∂t = R ξ 2 2 Q α + Q α dξ. (4.91) 
The previous relation corresponds to (4.78) where the viscous and friction terms are neglected. The sum of the equations (4.91) gives the energy equality for the global system and that completes the proof.

The formulation (4.83) reduces the nonlinear multilayer Saint-Venant system to a linear transport system on nonlinear quantities {M α } N α=1 , {N α+1/2 } N α=0 for which it is easier to find a simple numerical scheme with good theoretical properties. In the case of a single layer, for a detailed proof of the kinetic interpretation refer to [START_REF]A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes[END_REF] and for the treatment of the source term at this microscopic level see [START_REF] Perthame | A kinetic scheme for the saint-venant system with a source term[END_REF]. Notice that the choice of the function χ remains quite open at this stage since several functions satisfy the requested properties. Following this choice the deduced kinetic scheme will have different properties.

Numerical results

In the applications discussed here, we assume p a = 0 and we neglect the horizontal viscosity. Then the N + 1 equations of the multilayer system (3.70)-(3.73) can be written with the general form

∂H ∂t + N α=1 ∂(l α Hu α ) ∂x = 0, (5.92) 
∂(l α Hu α ) ∂t + ∂ ∂x (l α Hu 2 α + g 2 l α H 2 ) = -gl α H ∂z b ∂x + u α+1/2 G α+1/2 -u α-1/2 G α-1/2 + 2ν α l α+1 + l α u α+1 -u α H - 2ν α-1 l α + l α-1 u α -u α-1 H -κ α (u, H)u α , α = 1, . . . , N, (5.93) 
with

κ α = κ(u, H) if α = 1 0 if α = 1 ν α =    0 if α = 0 ν if α = 1, ..., N -1 0 if α = N
The previous system is of the form:

∂X ∂t + ∂F (X) ∂x = Sb(X) + Se(X) + Sv(X) (5.94) 
with F (X) the flux of the hyperbolic part, Sb(X) the topography source term, Se(X) the mass transfer source term and Sv(X) the viscous and friction terms.

To approximate the solution of the multilayer Saint-Venant system, we use a finite volume framework. We assume that the computational domain is discretised by I nodes x i . We denote C i the cell of length ∆x i = x i+1/2x i-1/2 with x i+1/2 = (x i + x i+1 )/2. For the time discretization, we denote t n = k≤n ∆t k where the time steps ∆t k will be precised later though a CFL condition. We denote X n i = (H n i , q n 1,i , . . . , q n N,i ) the approximate solution at time t n on the cell C i with q n α,i = l α H n i u n α,i .

Time discretization

For the time discretization, we apply time splitting to the equation ( 5.94) and we write

Xn+1 -X n ∆t n + ∂F (X n ) ∂x = Sb(X n ) + Se(X n ), (5.95) 
X n+1 -Xn+1 ∆t n -Sv(X n , X n+1 ) = 0. (5.96)
Classically we first compute the hyperbolic part (5.95) of the multilayer system by an explicit scheme. This first computation includes the topographic source term in order to preserve relevant equilibria [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows[END_REF] and also defines the mass transfer terms. Concerning the viscous and friction terms (5.96) that are dissipative, we prefer a semi-implicit scheme for reasons of stability.

Numerical scheme : explicit part

To perform the explicit step we deduce a finite volume kinetic scheme from the previous kinetic interpretation of the multilayer system. Notice that even if the system is hyperbolic, the eigenvalues are unknown. Thus any solver requiring the knowledge of the eigenvalues while but the kinetic scheme is easily extended [START_REF]Finite-volume solvers for a multilayer saint-venant system[END_REF].

Starting from a piecewise constant approximation of the initial data, the general form of a finite volume method is Xn+1

i -X n i + σ n i F n i+1/2 -F n i-1/2 = ∆t n Sb n i + ∆t n Se n i , (5.97) 
where σ n i = ∆t n /∆x i is the ratio between space and time steps and the numerical flux F n i+1/2 is an approximation of the exact flux estimated at point x i+1/2 . The topographic source term Sb n i is not deduced from the kinetic interpretation (see [START_REF] Perthame | A kinetic scheme for the saint-venant system with a source term[END_REF]) but computed by hydrostatic reconstruction, see prop. 5.1. As in [START_REF]A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes[END_REF][START_REF] Audusse | Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model[END_REF] the kinetic interpretation (4.83) is used to precise the expression of the fluxes F n i+1/2 in (5.97). First, by analogy with (4.80) we define the discrete densities of particles M n α,i by

M n α,i (ξ) = l α H n i c n i χ ξ -u n α,i c n i , with c n i = gH n i 2 .
Then the equation (4.83) without the atmospheric pressure and topographic terms is discretised for each α by applying a simple upwind scheme for the advection term

f n+1 α,i (ξ) = M n α,i (ξ) -ξσ n i M n α,i+1/2 (ξ) -M n α,i-1/2 (ξ) + ∆t n N n+1/2 α+1/2,i (ξ) -N n+1/2 α-1/2,i (ξ) , (5.98) 
where

M n α,i+1/2 = M n α,i if ξ ≥ 0 M n α,i+1 if ξ < 0
and the terms N n+1/2 α+1/2,i will be defined in the following. We define the vectors

f n+1 i (ξ) = (f n+1 1,i (ξ), . . . , f n+1 N,i (ξ)) T , M n i (ξ) = (M n 1,i (ξ), . . . , M n N,i (ξ)) T .
Each new density function f n+1 α,i is not an equilibrium but thanks to the property of the right hand side of (4.83), by analogy with (4.86),(4.87) we can recover the macroscopic quantities at time t n+1 . We write

l α H n+1 i = R f n+1 i (ξ)dξ, (5.99) 
and by a simple integration in ξ of (5.98) against K(ξ), we can precise the macroscopic formula (5.97) (without the topographic term)

Xn+1 i = R K(ξ) f n+1 i (ξ)dξ.
(5.100)

If we denote

F n i+1/2 = F (X n i , X n i+1 ) = F + (X n i ) + F -(X n i+1 ), we define F -(X n i ) = ξ∈R - ξK(ξ) M n i (ξ) dξ, F + (X n i ) = ξ∈R + ξK(ξ) M n i (ξ) dξ.
(5.101)

More precisely the expression of F + (X i ) can be written

F + (X i ) =      F + H (X i ) F + q1 (X i ) . . . F + qN (X i )      , (5.102) 
with

F + H (X i ) = N α=1 F + hα (X i ) = N α=1 l α H w≥- u α,i c i (u α,i + wc i )χ(w) dw, F + qα (X i ) = l α H w≥- u α,i c i (u α,i + wc i ) 2 χ(w) dw.
We denote also

F hα,i = F hα,i+1/2 -F hα,i-1/2 = F + hα (X i ) + F - hα (X i+1 ) -F + hα (X i-1 ) + F - hα (X i ) . (5.103)
This kinetic method is interesting because it gives a very simple and natural way to propose a numerical flux through the kinetic interpretation. If we can perform analytically the integration in (5.102), i.e. if the probability function χ defined in (4.79) is chosen to be simple enough, it is also numerically powerfull because the kinetic level disappears and the scheme is written directly as a macroscopic scheme for which only very simple computations are needed. In this paper we have used

χ(w) = 2 3 1 |w|≤ √ 3 2
(w).

Let us now precise the terms N n+1/2 α+1/2,i and so the exchange terms Se n i defined by

Se n i = R K(ξ) N n+1/2 α+1/2,i (ξ) -N n+1/2
α-1/2,i (ξ) dξ.

(5.104)

Proposition 5.1. The discretization of the source terms given by (5.111),(5.112) preserves the steady states

{u n α,i = 0} N α=1 , H n i + z b,i = Cst ∈ R, ∀i, ∀n.
given by a "lake at rest".

Proof. For the proof of this proposition, the readers can refer to [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows[END_REF].

The scheme explained in this paragraph allows to calculate Xn+1 given by (5.95) and (5.97).

Numerical scheme : implicit part

Now we aim to calculate X n+1 from (5.96). Neglecting the horizontal viscosity, the vertical viscosity source term can be interpreted as a friction term between one layer and the two adjacent ones. As usual we treat this friction term implicitly. This leads to solve a linear system.

The implicit step does not affect the discrete water height therefore

H n+1 i = Hn+1 i ,
and the computation of the new velocities {u n+1 α,i } N α=1 leads to solve a tridiagonal N × N linear system that reads T n,n+1 i

U n+1 i = qn+1 i , with U n+1 i = (u n+1 1,i , . . . , u n+1 N,i ) T , qn+1 i = (q n+1 1,i , . . . , qn+1 N,i ) T and T n,n+1 i (1, 1) = l 1 H n+1 i + 2∆t n H n+1 i ν 1 l 1 + l 2 + ∆t n κ(X n i , H n+1 i ), T n,n+1 i (α, α) = l α H n+1 i + 2∆t n H n+1 i ν α l α + l α+1 + ν α-1 l α + l α-1
, for α ∈ {2, . . . , N },

T n,n+1 i (α, α + 1) = - 2∆t n H n+1 i ν α l α + l α+1
, for α ∈ {1, . . . , N -1},

T n,n+1 i (α -1, α) = - 2∆t n H n+1 i ν α-1 l α + l α-1
, for α ∈ {2, . . . , N }.

For the friction at the bottom, several models can be used among which are Navier, Chezy and Strickler laws.

Stability of the scheme

We now establish the stability property of the kinetic scheme. Classically for the Saint-Venant system, a CFL condition ensures the water height is non negative. This CFL condition means that the quantity of water leaving a given cell during a time step ∆t n is less than the actual water in the cell.

For the multilayer Saint-Venant system we have the same kind of requirement concerning the time step ∆t n . But due to the vertical discretization, the water can leave the cell C i of the layer α either by the boundaries x i±1/2 or by the interfaces z α±1/2 , see Fig. 3. This makes the CFL condition more restrictive and we have the following proposition Proposition 5.2. Assume that the function χ has a compact support of length 2w M then under the CFL condition

∆t n ≤ min 1≤α≤N min i∈I l α H n i ∆x i l α H n i |u n α,i | + w M c n i + ∆x i G n+1/2 α+1/2,i - + G n+1/2 α-1/2,i + (5.113) F i-1/2 bottom free surface Cell C i u i+1 Cell C i+1 u i u i-1 Cell C i-1 F i+1/2 Cell C i+1 LAYER α LAYER α + 1 LAYER α -1 G α+1/2,i G α-1/2,i u α,i Cell C i F α,i-1/2 F α,i+1/2 Cell C i-1 u α,i-1 u α,i+1
Figure 3. Interpretation of the CFL condition for the classical Saint-Venant system (up) and for the multilayer system (down).

the kinetic scheme (5.97), (5.111) and (5.102) keeps the water height positive i.e. H n i ≥ 0 if it is true initially. Notice that this condition does not depend on ∂z b ∂x .

Proof. The proof has been adapted from those given in [START_REF] Audusse | Transport of pollutant in shallow water flows : A two time steps kinetic method[END_REF][START_REF] Perthame | A kinetic scheme for the saint-venant system with a source term[END_REF]. To prove the stability property of the scheme, we come back to the kinetic interpretation and we proceed by induction. We assume that H n i ≥ 0, ∀i and we prove that H n+1 i ≥ 0, ∀i.

From the definition of the functions M α in (4.80) and the positivity of the function χ, we deduce M n α,i ≥ 0, ∀i, for α = 1, . . . , N.

We now introduce the quantities

[ξ] + = max(0, ξ), [ξ] -= max(0, -ξ),
and so we can write the upwind microscopic scheme (5.98)

f n+1 α,i = (1 -σ n i |ξ|) M n α,i + σ n i [ξ] + M n α,i-1 + σ n i [ξ] -M n α,i+1 + ∆t n N n+1/2 α+1/2,i + -N n+1/2 α+1/2,i - -N n+1/2 α-1/2,i + -N n+1/2 α-1/2,i - . ( 5 

.114)

The quantity

σ n i |ξ|M n α,j + ∆t n N n+1/2 α+1/2,i - + N n+1/2 α-1/2,i +
, represents, at the microscopic level, the water leaving the cell C i of the layer α during ∆t n . A sufficient condition to obtain the stability property, i.e.

l α H n+1 i = R f n+1 α,i dξ ≥ 0, ∀i, for α = 1, . . . , N, (5.115) is then R σ n i |ξ|M n α,i + ∆t n N n+1/2 α+1/2,i - + N n+1/2 α-1/2,i + dξ ≤ R M n α,i dξ, (5.116) 
and this requirement is satisfied when

σ n i |u n α,i | + w M c n i l α H n i + ∆t n G n+1/2 α+1/2,i - + G n+1/2 α-1/2,i + ≤ l α H n i .
We recall that we have obtained in (5.109) an explicit form of G n+1/2 α+1/2,i . If ∆t n satisfies (5.113), then the condition (5.115) is satisfied and that completes the proof.

Second order scheme

The second-order accuracy in time is usually recovered by the Heun method [START_REF] Bouchut | An introduction to finite volume methods for hyperbolic conservation laws[END_REF] that is a slight modification of the second order Runge-Kutta method. The advantage of the Heun scheme is that it preserves the invariant domains without any additional limitation on the CFL.

We also apply a formally second order scheme in space by a limited reconstruction of the variables. An advantage of the new multilayer approach with only one continuity equation is that the water height can be reconstructed while preserving the mass conservation without difficulty.

Numerical simulations

Transcritical flow over a bump

We first consider an academic test case that is very commonly used for the validation of classical one-layer shallow water solvers. Here we add some friction at the bottom in order to compare solutions of one-layer and multilayer shallow water systems with the solution of hydrostatic incompressible Navier-Stokes equations. We impose an inflow (left boundary) of 1.0 m 2 .s -1 and the water height at the exit (right boundary) is prescribed to be equal to 0.6 m. The Strickler friction coefficient at the bottom is 30 m 1/3 .s -1 and the kinematic viscosity is 0.01 m 2 .s -1 . The data are chosen such that the flow is supposed to reach a stationary regime that presents some transitions between sub-and supercritical parts and an hydraulic jump. Notice that an analytical solution exists for this test in the case of a single layer [START_REF]A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes[END_REF][START_REF] Perthame | A kinetic scheme for the saint-venant system with a source term[END_REF].

The simulation results are depicted in Fig. 4, 5 and 6. The presented results correspond to a time instant t f where the permanent regime is achieved. Notice that we present some results related to the vertical velocity in Fig. 5. Since we consider a shallow water type system we do not need this vertical velocity for the computation. But it is possible to recover it for postprocessing purpose : departing from the computed horizontal velocity we use the divergence free condition (3.31) and the non penetration condition at the bottom (2.5) to evaluate an approximation of the vertical velocity. Notice also that the actual computations are purely one dimensional. Hence Fig. 4 and 5 present velocity results on a postprocessing mesh that is constructed departing from the 1d mesh by the use of the computed layer water heights.

The results depicted in Fig. 4 and 5 are consistent with computations performed using the hydrostatic Navier-Stokes equations [START_REF] Audusse | Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model[END_REF] and also using the former multilayer Saint-Venant system [START_REF] Audusse | A multilayer Saint-Venant System : Derivation and Numerical Validation[END_REF]. The results depicted in Fig. 6 exhibit that the presented solver is quite robust since it is able to compute transcritical solutions and shock waves even when a large number of layers are considered. Notice also that the hydraulic jump appears to be overestimated by the one-layer computation when compared with other results -see Fig. 6. 

Wind effects

We claim in the introduction that the great interest of the new multilayer formulation that we proposed here is to allow mass exchanges between layers. This effect is exhibited in the numerical test that we present now. We consider a lake with a non trivial bottom and vertical shores. We impose a constant wind stress (from left to right) at the free surface. The flow is then supposed to reach a stationnary state that includes some water recirculations in the lake. Notice that this kind of stationnary flows is clearly impossible to compute with the classical one-layer shallow water system since the velocity is imposed to be constant along the vertical. They are also out of the domain of application of the former multilayer shallow water system that was introduced by Audusse [START_REF] Audusse | Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model[END_REF] since they clearly involve large mass transfers (at least near the shores) between the layers.

As for the previous case we use a reconstruction strategy in order to estimate a vertical velocity field and we present the results on a postprocessing 2D mesh that is presented in Fig. 7. In Fig. 8 we present the two dimensional velocity vectors on this 2D mesh. The results exhibit a global recirculation that is combined with two local recirculations that are induced by the topography of the lake. The qualitative aspect of the solution is consistent with the previsions. 

Conclusion

In this paper, the authors have described an exchanging mass multilayer Saint-Venant system. The derivation of the model, the study of its main properties and a numerical scheme for its discretization are given. Some simulations are also presented. Notice that the model and the results presented here in 2D (x, z) are also available in 3D (x, y, z).

Because of its accuracy and simplicity, the kinetic scheme seems well adapted for the simulations of such a model. Moreover since the eigenvalues of the hyperbolic system are not explictly known, a lot of finite volume schemes fails in this situation.

As depicted in Fig. 7, the vertical discretization proposed for water height leads to a regular mesh. A strategy of "mesh refinement" based on a inhomogenous number of layers have to be added.

The presented system can be enriched in several ways. First, the hydrostatic assumption concerning the pressure terms can be relaxed leading to the models presented in [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems[END_REF]. Then we can also consider a passive pollutant in the flow. This implies to add a conservation equation for the pollutant concentration. Finally, we can consider the density of the fluid varies with the concentration of pollutant. These three improvements have been added to their model by the authors and will be presented in forthcoming papers.
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 1 Figure 1. Averaged models derived from Navier-Stokes equations.
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 1 and relation(3.72) follows. Notice that equations (3.71) and (3.73) are concerned with the evolution of the discharge in the lowest and uppest layers, respectively. The difference between equations (3.71) and (3.73) and the general equation (3.72) comes from the particular form of the viscous effect at the bottom and at the free surface.Finally we drop the O(ε 2 δ) terms and recovering the variables with dimension, we obtain the system (3.70)-(3.73).
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 41 The two-layer version of the multilayer Saint-Venant system (3.70)-(3.73) is strictly hyperbolic when the total water height is strictly positive.
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 43 The functions (H, u mc ) are strong solutions of the multilayer Saint-Venant system (3.70)-(3.73) if and only if the set of equilibria {M α (x, t, ξ)} N α=1 is solution of the kinetic equations
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 4 Figure 4. Horizontal velocities {u α (x, t f )} N α=1 with N = 15 layers.
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 5 Figure 5. Vertictal velocity {w α (x, t f )} N α=1 with N = 15 layers.
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 6 Figure 6. Shape of the free surface for simulations carried out with different number of layers.
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 7 Figure 7. The geometrical model with the horizontal mesh and the vertical discretization by layers.

Figure 8 .

 8 Figure 8. A wind blow from the left part of the domain to the right part. The arrows represent the velocity field in the lake.

  t) and G α+1/2 given by (2.16), results from a formal asymptotic approximation in O(ε 2 δ) coupled with a vertical discretization of the Navier-Stokes equations (3.37)-(3.39) with hydrostatic pressure.Proof. The integration of the divergence equation (3.45) on each layer has been already performed in the proof of Proposition 2.1. We recall that the deduced layer mass equations(2.11) are not meaningful if no hypothesis is made concerning the mass exchange term G α+1/2 defined by (2.16). We thus consider a global mass equation (3.70) by adding them up. We can also directly integrate the divergence equation from bottom to free surface in order to obtain equation(3.70).We now consider the horizontal velocity equation (3.46) integrated over the interval [z α-1/2 , z α+1/2 ]. Using for each layer an approximation similar to (3.68),(3.69), we prove that
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From the conditions (4.82) we prescribe

(5.105)

So we recover Se n H,i = 0 and the equation (5.100) defines H n+1 i

. By summation of (5.98) we have 

(5.108)

Then using the discrete mass conservation equation giving

α+1/2,i can be written under an explicit form (see (2.22)) i.e. depending only of

we have to notice that this definition is compatible with the free surface condition of (5.105).

We define

with, according to (2.23)

Then the exchange term Se n i in (5.104) is completely defined. We have denoted the approximations in time of N α+1/2 and G α+1/2 with an upperscript n + 1/2 because we have to define H n+1 i at the macroscopic level to obtain the microscopic approximation of N α+1/2,i which is used for the computation of the momentum l α H n+1 i u n+1 α,i . The source term Sb n i = (Sb n H,i , Sb n 1,i , . . . , Sb n N,i ) is an approximation of the topographic source terms. For stability purpose, see [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows[END_REF] we use the following discretization (5.112)

And we have the following proposition