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BLOW UP AND GRAZING COLLISION IN VISCOUS FLUID SOLID INTERACTION SYSTEMS

In this paper we investigate finite time blow up of strong solutions to the system describing the motion of a rigid ball inside a bounded cavity filled with a viscous incompressible fluid. The equations of motion for the fluid are of Navier-Stokes type and the equations for the motion of the rigid ball are obtained by applying Newton's laws. The whole system evolves under the action of gravity. First, we prove contact between the ball and the boundary of the cavity implies the blow up of the strong solution. Then we prove for some configurations such a contact has to occur in finite time.

Introduction

In this paper, we compute blowing-up solutions for the classical fluid solid interaction system. More precisely, we consider a bounded domain Ω ⊂ R 3 of class C 2 containing a viscous incompressible fluid and a rigid ball. The equations of motion for the fluid and the rigid body are the classical Navier-Stokes equations coupled with the Newton laws.

(1)

           ∂ t u + u • ∇u = div T(u, p) + f in F t , div u = 0 in F t , u = Ġ + ω × (x -G), on ∂B t , u = 0, on ∂Ω, (2) 
     - ∂B T(u, p)n dσ + B ρ B f dx = m G, - ∂B (x -G) × T(u, p)n dσ + B ρ B (x -G) × f dx = J ω.
In the above system, the set B t stands for the domain of the solid B: it is a ball with center G(t) and radius 1. Its complement in Ω, F t = Ω \ B t , is the domain occupied by the fluid.

The velocity/pressure field of the fluid is denoted by (u, p) and satisfies the Navier-Stokes system with no slip boundary conditions [START_REF] Conca | Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid[END_REF]. The fluid has a constant density ρ F = 1 and its stress tensor is given by:

T(u, p) = µ(∇u + [∇u] ⊤ ) -pI 3 = 2µD(u) -pI 3 ,
where µ is the viscosity of the fluid. For any matrix M, we denote by M ⊤ the transpose of M . The solid is homogeneous with constant density ρ B > 1 so that G(t) is the position of The vector ω stands for the angular velocity of B. We take into account the action of the fluid in the Newton laws. The whole system evolves under the action of gravity f = -ge 3 .

The main unknown in the system (1)-( 2) are (u, G, ω). This system is completed by the following initial conditions:

(3) u(0, •) = u 0 , G(0) = G 0 , Ġ(0) = Ġ0 , ω(0) = ω 0 .

1.1. Previous results. We call Fluid Solid Interaction System ((FSIS) for short) the set of equations ( 1)-(2). This system, and its many-bodies variant, is relevant on the theoretical level as in applications. It is the motivation for many recent studies. First, some authors obtain existence of weak solutions (in a sense which will be made precise later on) up to collision between two bodies [START_REF] Conca | Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid[END_REF][START_REF] Desjardins | On weak solutions for fluid-rigid structure interaction: compressible and incompressible models[END_REF][START_REF] Grandmont | Existence for an unsteady fluid-structure interaction problem[END_REF][START_REF] Gunzburger | Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions[END_REF][START_REF] Takahashi | Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain[END_REF]. Then these results "up-to-collision" are extended to a global one by San Martín-Starovoitov-Tucsnak in [START_REF] San Martín | Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid[END_REF] in dimension 2 and by E. Feireisl in [START_REF] Feireisl | On the motion of rigid bodies in a viscous incompressible fluid[END_REF]. More precisely, they prove there exist global weak solutions to (FSIS) regardless collisions. The two-dimensional result is slightly more general than the three-dimensional one. Indeed, in [START_REF] Feireisl | On the motion of rigid bodies in a viscous incompressible fluid[END_REF], the author impose that if there is contact between rigid solids then these solids remain "stuck" forever.

These results show that the existence of collisions is a major issue in (FSIS). Such a question has been already tackled in two ways, to our knowledge. A first method uses the fact that, in these fluid solid interaction systems, the bodies follow characteristics of the extended velocity field:

u = 1 Ft u + 1 Bt u Bt [ Ġ, ω],
where u Bt [V, ω] = V + ω × (x -G(t)). If this velocity field is sufficiently smooth (C 1 uniformly in time, for example), the Cauchy-Lipschitz theorem implies two particles following the characteristics cannot meet each other in finite time. Hence, collision is impossible. We emphasize such a regularity is unexpectable here because the Newton laws impose a jump in the derivatives of u on ∂B. Even though restricting to the fluid domain, estimates on derivatives of u in a solution to (FSIS) are known to depend drastically on the distance between solids (see [START_REF] Desjardins | Existence of weak solutions for the motion of rigid bodies in a viscous fluid[END_REF]). Nevertheless, a criterion based on these ideas is derived by V.N. Starovoitov [START_REF] Starovoitov | Behavior of a rigid body in an incompressible viscous fluid near a boundary[END_REF]. It does not enable to prevent solution to (FSIS) from collision between solids, but, it follows from this criterion that a certain class of strong solutions cannot persist through collisions in the two-dimensional as in the three-dimensional case. This argument is developed for our class of strong solutions in Section 2.

In the second method, one takes further advantage of the Newton laws. More precisely, in solutions to the above (FSIS) the least one can expect is decrease of the total energy of the system:

E := Ω ρ|u| 2 + B [ρ B -1] ge 3 ,
where ρ := 1 Ft + 1 Bt ρ B . In particular, in the toy-model of a ball falling over a horizontal ramp P, this yields that the speed of the ball remains bounded. Then integrating the Newton law on the linear momentum with respect to time, we deduce (4)

T 0 ∂Bt T(u, p)n dσ • e 3 dt < C 0 ,
where e 3 is the vertical direction and C 0 is a constant fixed by initial data. In the slow motion regime, computations due to Cooley and O'Neill [START_REF] Cooley | On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere[END_REF] imply that ∂Bt

T(u, p)n dσ • e 3 ∼ - κ ḣ(t) h α (t) ,
where h(t) = dist(B t , P). The factor κ depends on the radius of B and the exponent α depends on the dimension. Cooley and O'Neill computed α = 1 in the case of a ball falling over a ramp in the three-dimensional case. While, in the case of a disk over a ramp in R 2 , there holds α = 3/2. In both cases, (4) implies ḣ/h ∈ L 1 (0, T ) so that h cannot go to 0 in finite time. These arguments are adapted rigorously to the full non-linear system in the two-dimensional case in [START_REF] Hillairet | Lack of collision between solid bodies in a 2D incompressible viscous flow[END_REF] and in the three-dimensional case in [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF]. They are also extended in [START_REF] Gérard-Varet | Regularity issues in the problem of fluid structure interaction[END_REF] to more singular geometries yielding a threshold for the body-shape regularity under which collision can occur. These results are in contrast with the non viscous case in which it is proved that collision can occur with non-zero relative velocity [START_REF] Houot | On the motion and collisions of rigid bodies in an ideal fluid[END_REF]. In all these articles, only frontal collisions are taken into account. The aim of this paper is to show that in the three-dimensional setting, grazing collisions between smooth bodies can occur (see Theorem 2). Combining this result with the arguments mentioned above, we finally obtain the following result.

Theorem 1. The global Fluid Solid Interaction System is ill-posed i.e., there exists initial conditions for (FSIS) for which global strong solutions to (FSIS) do not exist.

In the three-dimensional context, it is not clear whether collision is the most important responsible for ill-posedness of strong solutions. Indeed, non-linear convective terms in the Navier-Stokes system could make strong solutions to blow up before collision. However our result does not depend on the size of initial data. In particular, blow up of strong solutions occurs for small as for large data, contrary to the pure Navier-Stokes system. In the frame of weak solutions, collision occurrence is also an important phenomenon because it is known that it causes failure of uniqueness [START_REF] Starovoȋtov | On the nonuniqueness of the solution of the problem of the motion of a rigid body in a viscous incompressible fluid[END_REF]. We emphasize this result does not contradict [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF] because the geometric configuration under consideration here does not enter in the frame of this former result. 1.2. Description of the geometry and formal arguments. The geometry of the problem is crucial to obtain Theorem 2. For simplicity, we set

Ω = B((0, 0, 0), M ) \ (B((2, 0, 0), 1) ∪ B((-2, 0, 0), 1)),
with M sufficiently large. However, our techniques extend to more general geometries. The main assumptions underlying our results are: G1. The cavity Ω is symmetric with respect to some line D.

G2. The cavity Ω has exactly two holes B l and B r symmetric with respect to D. These holes have the shape of balls with radius 1. The distance between the holes is 2.

G3. The gravity f is parallel do D.

G4. Near ∂D ∩ ∂Ω the boundary ∂Ω is flat.

Another example of such a geometry is represented in Figure 1.

f D Ω B l B r Figure 1. Example of Ω
In the following, we denote by G l = (-2, 0, 0) and G r = (2, 0, 0) the centers of the holes and the corresponding holes by B l = B((-2, 0, 0), 1) and B r = B((2, 0, 0), 1). We emphasize the distance between the holes is chosen so that B can fill exactly the gap between B l and B r . We introduce (e 1 , e 2 , e 3 ) the orthonormal basis corresponding to our coordinates for R 3 . In particular e 1 is a direction of the line joining the two hole centers and the last unit vector e 3 is a direction of the gravity. We underline D is the line which is parallel to the gravity and passes through the origin of our system of coordinates.

Our computations are motivated by the following formal arguments. If the ball B moves along the axis D, we have G(t) = (0, 0, d(t)). In our coordinates d(t) is the "altitude" of B at time t. We denote by h(t) the distance between B and the holes B l and B r at time t. With these conventions, contact occurs between B and the holes if d or h vanishes. We do not envisage other kinds of collision between B and ∂Ω because they are precluded by former arguments (see [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF]).

In a first approximation, when B comes close to the holes, the viscous force can be divided into the sum of two contributions. One is due to the vicinity of B l and the other one to the vicinity of B r . Concerning B l for example, we split the force in a frontal resistance preventing B from going closer to B l and a friction. It stems from computations in the lubrication theory we can neglect the frictions in what follows [START_REF] O'neill | On the slow motion of a sphere parallel to a nearby plane wall[END_REF] and the frontal resistance reads [START_REF] Cooley | On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere[END_REF]:

- 1 (|G l -G| -2) ( Ġl -Ġ) • (G l -G) |G l -G| (G l -G) |G l -G| .
We have an equivalent formula for the second contribution with G r . Eventually, the projection of the Newton laws on the linear momentum along e 3 reads:

(5) d = - 2 ḋd 2 ( √ d 2 + 4 -2)(d 2 + 4) -(m -|B|)g,
where we take into account the Archimede law. This equation is complemented with initial conditions d(0) = d 0 and ḋ(0) = ḋ0 . Standard Cauchy-Lipschitz arguments imply the system is locally well-posed for initial conditions d 0 ∈ R \ {0}. Moreover, maximal solutions to this system may blow up at finite time T * in three ways lim sup

t→T * | ḋ(t)| = ∞, lim sup t→T * |d(t)| = ∞, lim inf t→T * |d(t)| = 0.
However, multiplying (5) by ḋ, we obtain that this simplified model dissipates the total energy of the particle B. This implies the only way solutions to (5) may blow up is the third one. Furthermore, we remark d(t) = d 0 for all t 0 is a global supersolution to (5) regardless of the value of d 0 = 0. In particular, if d 0 > 0 and ḋ0 < 0, then d(t) ∈ [0, d 0 ] until blow up of the solution. So, under this assumption the only way the maximal solution may blow up in finite time T * is lim

t→T * d(t) = 0.
In the following, we assume d 0 > 0 and ḋ0 < 0.

Integrating (5) between 0 and t, we obtain

(6) ḋ(t) -ḋ0 = - t 0 2 ḋd 2 ( √ d 2 + 4 -2)(d 2 + 4) + (m -|B|g ds = -P (t) -(m -|B|)gt,
where, after a straightforward change of variable:

P (t) = P (|d(t)| 2 ) = |d(t)| 2 |d 0 | 2 √ rdr ( √ r + 4 -2)(r + 4) .
Standard computations lead to | P (z)| C for all z ∈ (0, d 0 ] Finally, assuming the function d is defined globally, (6) together with dissipation of total energy implies:

C P (t) K 0 -(m -|B|)gt ∀ t ∈ (0, ∞),
with a constant K 0 depending only on initial data. Because the solid is heavier than the fluid, we obtain a contradiction for large times and d must vanish in finite time. We emphasize considering a three-dimensional example is critical here. Indeed, in the two-dimensional case we would get a function P (α) which diverges when α goes to 0.

1.3. Notations. We use the classical Lebesgue and Sobolev spaces

L q (O), W m,q (O), H m (O), H m 0 (O) for any open set O ⊂ R 3 . We define H = {φ ∈ L 2 (Ω) ; div φ = 0, φ • n = 0 on ∂Ω}, V = {φ ∈ H 1 0 (Ω) ; div φ = 0}.
We recall that H and V are closed subspace of L 2 (Ω) and H 1 0 (Ω) respectively. Thus, they form Hilbert spaces with respect to the induced inner products. For an open subset O ⊂ Ω, we also consider the following Hilbert spaces:

H(O) = {φ ∈ H ; D(φ) = 0 in O}, V(O) = {φ ∈ V ; D(φ) = 0 in O}. To simplify, if G ∈ Ω we set B G := (B(G, 1)) and F G := Ω \ B G . Moreover, if B G ⊂ Ω, we define H(G) = H(B G ), V(G) = V(B G ).
Under the same assumption, we also denote by ρ G the function

ρ G (x) = ρ B if x ∈ B G , 1 if x ∈ F G . If v ∈ H(G), from [18, p.18], there exists a unique pair (V[v], ω[v]) ∈ R 3 × R 3 such that v| B G = V[v] + ω[v] × (x -G). In particular, if (u, v) ∈ H(G) 2 , Ω ρ G u • v dx = Ω\B G u • v dx + mV[u] • V[v] + Jω[u] • ω[v].

Cauchy theory and main result

As classical in Navier-Stokes like systems, there exist two concepts of solution. First, we can define the weak solutions.

Definition 2.1. Assume G 0 ∈ Ω such that dist(G 0 , ∂Ω) 1 and u 0 ∈ H(G 0 ), a pair (u, G) is called weak solution to (FSIS) on (0, T ) with initial data (u 0 , G 0 ) if G ∈ W 1,∞ (0, T ; Ω), with G(0) = G 0 , (7) dist(G(t), ∂Ω) 1, for all t ∈ (0, T ), (8) u ∈ L ∞ (0, T ; H) ∩ L 2 (0, T ; V), (9) 
u = V + ω × (x -G) in B G , with V = Ġ; (10) if for all v ∈ C([0, T ]; H 1 0 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)) with compact support in (0, T ) × Ω and such that v ∈ V(G(t)) for all t ∈ [0, T ], (11) - T 0 Ω ρ G u • ∂ t v dy dt + 2µ T 0 Ω D(u) : D(v) dy dt - T 0 Ω u ⊗ u : D(v) dy dt = T 0 Ω ρ G f • v dy dt; if for all v ∈ C([0, T ]; L 2 (Ω)) with compact support in [0, T ) × Ω and such that v ∈ H(G(t)) for all t ∈ [0, T ] we have (12) W : t → Ω ρ G u • v dx ∈ C([0, T ]) with W (0) = Ω ρ G 0 u 0 • v dx;
and if the energy estimate holds true:

(13) 1 2 Ω ρ G |u| 2 (t, x) dx + g(m -|B|)G(t) • e 3 + 2µ t 0 Ω |D(u)| 2 dx ds 1 2 Ω ρ G 0 |u 0 | 2 (x) dx + g(m -|B|)G 0 • e 3 for a.a. t ∈ (0, T ).
There could be slightly different definitions in other articles, here we use the same definition used in [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF]. For instance, the main differences between Definition 2.1 and the definition used in [START_REF] Feireisl | On the motion of rigid bodies in a viscous incompressible fluid[END_REF] are the following. First, as we work with a constant-density fluid, we introduce the position of the center of mass G as unknown instead of the density ρ and isometry η. From our weak solution, one can build back these unknowns setting

ρ(t, x) = 1 Ft (x) + ρ B 1 Bt (x) ∀ (t, x) ∈ (0, T ) × Ω,
and choosing for η the composition of the translation associated to G(t) -G 0 with some rotation associated to ω. We emphasize that we actually do not need any information on this rotation because B is a ball. Concerning energy estimate, we have the above particular form because, in [5, (1.16)], we replace the source term f by the gravity with direction e 3 . Hence, after integration by parts, we get

Ω ρ(t, x)f (t, x) • u(t, x) dx = - Bt (ρ B -1)gu(t, x) • e 3 dx = -g(m -|B|) Ġ(t) • e 3 .
Finally, we can apply the result in reference [START_REF] Feireisl | On the motion of rigid bodies in a viscous incompressible fluid[END_REF] to obtain that weak solutions to (FSIS) do exist globally regardless of the initial position of B with dist(G 0 , ∂Ω) > 1 and the value of initial data.

The second classical concept of solution can be rephrased as follows.

Definition 2.2. Given G 0 ∈ Ω such that dist(G 0 , ∂Ω) > 1 and u 0 ∈ V(G 0 ), a pair (u, G)
is a strong solution to (FSIS) on (0, T ) if it is a weak solution to (FSIS) with the additional regularity:

(14) u ∈ C(0, T ; V), and u(t, •) ∈ H 2 (F t ), p(t, •) ∈ H 1 (F t ), for a.a. t ∈ (0, T ), (15) sup 
(0,t) ∇u(t, •) 2 L 2 (Ω) + t 0 Ft |∇ 2 u(t, x)| 2 + |∇p(t, x)| 2 dx dt < ∞, in (0, T ).
This is the equivalent notion to the one developed in [START_REF] Takahashi | Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain[END_REF] but this reformulation allows us to deal with collision. In this definition, we measure the regularity of the velocity field after restriction to the fluid domain only. We emphasize that as long as no collision occurs, both concepts are equivalent. In particular, the classical local and uniqueness result still holds in three dimensions [START_REF] Takahashi | Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain[END_REF]. However, contrary to the weak solutions, there is no result for large times. Indeed, for a fixed ball B, (FSIS) becomes a particular case of the Navier-Stokes system. Consequently, (FSIS) contains the complexity of Navier-Stokes system. Moreover, as pointed out in [START_REF] Starovoitov | Behavior of a rigid body in an incompressible viscous fluid near a boundary[END_REF], (FSIS) is more singular in the sense that collision is a second way for strong solutions to blow up.

2.1. Main result. We prove here this second way for strong solutions to blow up can occur. To this end, we obtain the following fundamental result on collisions:

Theorem 2. Given (u, G) a global weak solution to (FSIS), such that G(t) = (0, 0, d(t)) for all t ∈ (0, ∞), with d(0) > 0, there exists T * < ∞ such that dist(B T * , ∂Ω) = 0.
Before going to the proof of Theorem 2 in further details, we explain how it implies Theorem 1. Let us assume at first Theorem 1 is false. Hence, given any initial condition (u 0 , G 0 ) there would be a global strong solution to (FSIS). Due to arguments in [START_REF] Takahashi | Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain[END_REF], this strong solution is unique before collision.

Given any velocity field v defined on Ω, we denote by S D the mapping

S D [v](x) = (-v 1 , -v 2 , v 3 )(-x 1 , -x 2 , x 3 ) ∀ x ∈ Ω,
and we assume that the initial data (G 0 , u 0 ) satisfies

S D [u 0 ] = u 0 , G 0 = (0, 0, d 0 ), with d 0 > 0.
Let (G, u) be a global strong solution to (FSIS) with initial data (G 0 , u 0 ). One can check that ( G, ũ) as defined by

G(t) = (-G 1 , -G 2 , G 3 )(t), ũ(t, •) = S D [u(t, •)], ∀ t 0,
is also a strong solution to (FSIS) with the same initial data. Hence G = G and ũ = u so that (G, u) is symmetric with respect to D before contact. In particular, it is a weak solution such that G(t) = (0, 0, d(t)) with d(t) > 0 before collision. Applying Theorem 2, there exists T * < ∞ for which dist(B T * , ∂Ω) = 0. Without further restriction, we assume T * is the first time of collision and in particular h(t) = dist(B t , ∂Ω) > 0 and

G(t) ∈ D for t ∈ [0, T * ). Then we have (see Appendix B recognizing V • ẽ3 = ḣ): (16) | ḣ(t)| C|h(t)| 3 2 ∇ 2 u(t, •) L 2 (Ft)
for some universal constant C. Consequently, ( 16) implies h might not vanish at time T * as ( 17)

T * 0 ∇ 2 u L 2 (Ft) dt < ∞. Thus (G, u) is not a strong solution defined until T * .
The remainder of this paper is devoted to the proof of Theorem 2.

2.2.

Sketch of the proof of Theorem 2. The proof of Theorem 2 follows the same ideas as in [START_REF] Gérard-Varet | Regularity issues in the problem of fluid structure interaction[END_REF][START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF]. In the remainder of this section (u, G) is a given weak solution such that G(t) = (0, 0, d(t)) at any time. In particular, it has initial data (u(0, •), G(0)) where G(0) = (0, 0, d 0 ) with d 0 > 0. Following similar arguments as in [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF], collisions between B and ∂Ω \ (∂B l ∪ ∂B r ) are ruled out. On the contrary, we prove that simultaneous contact between B and (B l , B r ) occurs in finite time. So, we denote by h(t) the common distance between B and the holes B l and B r at time t. Combining that G(t) = (0, 0, d(t)) with d(t) > 0 and dist(B t , B l ) = dist(B t , B r ) = h(t) we obtain that, before contact (18)

G(t) = G h(t) = 0, 0, h(t) 2 + 4h(t) .
We restrict ourselves to the case d(t) > 0, because we assume initially that the solid is "above" the holes. We prove by contradiction that h(t) is bound to vanish in finite time.

We emphasize that, as collisions between B and ∂Ω \ (∂B l ∪ ∂B r ) are impossible, there exists h max > 0 such that h(t) ∈ (0, h max ] before collision and

dist(B h , ∂Ω \ (∂B l ∪ ∂B r )) δ 0 > 0 ∀ h ∈ [0, h max ],
where B h = B G h with the convention (18). In next section, we construct a suitable family of "stationary" test functions to use in the weak formulation. This family of test velocity fields reads (w[h]) h>0 where, for arbitrary h > 0, there holds w[h] ∈ H(G h ). In the following, we replace G by h in notation, assuming G = G h implicitly. For example B h = B G h , as above, and F h = Ω \ B h . The test functions w[h] will be constructed so that they satisfy many properties. First we have the following result.

Proposition 1. Given h min > 0, there holds:

(1) for any h ∈ [h min , h max ], w[h] ∈ C(Ω) with w[h] = e 3 on B h , w[h] = 0 on ∂Ω, (2) assume Q h := {(h, x), h ∈ (h min , h max ), x ∈ F h }, and 
w : (0, h max ) × Ω -→ R 3 , (h, x) -→ w[h](x), then w ∈ C ∞ (Q h ).
Assuming at first the function h does not vanish on (0, T ) (where T is arbitrary) there exists h min > 0 such that h(t) > h min for any t ∈ [0, T ]. Hence, for any χ ∈ D(0, T ) we can use the following test function in [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF]:

w : (0, T ) × Ω -→ R 3 , (t, x) -→ χ (t) w[h(t)](x).
This yields

(19) T 0 Ω ρ h u • ∂ t w dy dt + T 0 Ω ρ h f • w dy dt = - T 0 Ω u ⊗ u : D(w) dy dt + 2µ T 0 Ω D(u) : D(w) dy dt.
We split this identity in I l 1 + I l 2 = I r 1 + I r 2 where, after straightforward computations:

I l 1 = T 0 χ Ω ρ h u•w[h] dy dt+ T 0 ḣχ Ω ρ h u•∂ h w h dy dt, I l 2 = -(m-|B|)g T 0 χ(s) ds.
In Section 4, we prove:

Proposition 2. There exist a positive constant C depending only on ρ B and h max such that, for any v ∈ H(G h ), there hold:

Ω ρ h v • w[h] dy C v L 2 (Ω) , (20) 
Ω ρ h v • ∂ h w[h] dy C ∇v L 2 (Ω) √ h , ( 21 
) Ω v ⊗ v : D(w[h]) dy C ∇v 2 L 2 (Ω) . (22) Moreover, if v = ℓe 3 on B h then (23) Ω D(v) : D(w[h]) dy = ℓb(h) + R with |R| C ∇v L 2 (Ω) and with 0 b(h) C| ln(h)|.
The content of this proposition is twofold. First, inequalities (20)-( 22) enable to dominate remainder terms in (19). Indeed, combining these inequalities and energy estimate [START_REF] O'neill | On the slow motion of a sphere parallel to a nearby plane wall[END_REF], this yields

|I l 1 | T 0 C| χ| u(t, •) L 2 (Ω) + C|χ(t)| | ḣ(t)||h(t)| -1 2 ∇u(t, •) L 2 (Ω) dt,
where, applying [16, Theorem 3.1], there exists a universal constant for which

| ḣ(t)||h(t)| -1/2 C ∇u(t, •) L 2 (Ω) .
Consequently

|I l 1 | C 0 χ L 1 (0,T ) + χ L ∞ (0,T )
with C 0 a constant depending only on initial data and the size of Ω. We emphasize that here (13) implies decrease of the total energy of the system. As Ω is bounded this implies a T -independent control on the solution in L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)). This uniform estimate would not persist if f were not deriving from such a potential. Similarly

|I r 1 | T 0 C χ L ∞ (0,T ) ∇u(t, •) 2 L 2 (Ω) dt C 0 χ L ∞ (0,T ) .
Second, inequality (23) computes the drag acted on a body in a fluid flow v with a precision O(|∇v| L 2 (Ω) ). In the frame of our weak solution, this leads to

I r 2 -2µ T 0 χ(t) ḋ(t)b(h(t)) dt C 0 χ L ∞ (0,T ) √ T ,
where ḋ(t) = ḣ(h + 2)/ √ h 2 + 4h (see (18)).

Eventually (19) reduces to:

T 0 χ(t) 2µ ḣ(t)(h(t) + 2)b(h(t)) h(t) 2 + 4h(t) + (m -|B|)g dt C 0 (1 + √ T ) χ L ∞ (0,T ) + χ L 1 (0,T ) .
Using a family of functions χ converging in a monotone way toward the characteristic function of (0, T ), we obtain (24)

T 0 2µ ḣ(t)(h(t) + 2) h(t) 2 + 4h(t) b(h(t)) dt -(m -|B|)gT + C 0 (1 + √ T ).
On the other hand, the above control on b implies

h → h h 0 b(s) s + 2 √ s 2 + 4s ds
is bounded continuous when h goes to 0. Hence, (24) leads to a contradiction as in our toy-model. This completes the proof of Theorem 2.

Constructing the test functions

In this section we construct the test functions used to prove Theorem 2. We build these test functions in the half space P l := (x 1 , x 2 , x 3 ) ∈ R 3 ; x 1 0 , the constructions of the test functions in the half space P r := (x 1 , x 2 , x 3 ) ∈ R 3 ; x 1 0 are done by symmetry. In each half space, it is more convenient to work in a local orthonormal frame attached to the moving ball B. The origin of this local frame is G and the associated direct orthonormal basis is (ẽ 1 , ẽ2 , ẽ3 ). We consider ẽ2 = e 2 and ẽ3 is such that G -G l = (2 + h)ẽ 3 . For any x ∈ R 3 we denote by x = (x 1 , x2 , x3 ) its coordinates in this new frame. In particular, the following holds:

x = Q α (x -G) or x = G + Q -1 α x
with Q α the rotation with axis Re 2 and angle α (see Figure 3 for the definition of α). We also introduce (r, θ, z) the cylindrical coordinates:

x1 = r cos(θ), x2 = r sin(θ), x3 = z.
In the following, we keep this convention for sets. So, if not precisely mentioned, for any set S ⊂ R 3 the following holds:

S = Q α (S -G) or S = G + Q -1 α S.
Actually, we shall only make one exception. Indeed, in this new frame the ball B is fixed and centered in 0 whereas the center G l of B l has moving coordinates (0, 0, -2-h). Consequently, we prefer to use B * for the image of B (which is fixed) and Bh for the image of B l . Hence, B * and Bh are the unit balls in R 3 centered in the origin and in (0, 0, -2 -h) respectively.

When h = 0, the fluid domain F0 has a cusp where B * is in contact with B0 . In order to surround this singularity we introduce a family of neighborhoods of the points realizing the distance between Bh and B * . Given h ∈ (0, h max ) and l ∈ (0, 1), we denote by Ωh,l the cylindric domain between B * and Bh with radius l:

(25)
Ωh,l := {(r, θ, z) ∈ Fh such that r ∈ [0, l), z ∈ (-(2 + h), 0)}.

We remark that, given h max > 0, there exists l max > 0 such that Ωh,lmax ⊂ Pl for any h ∈ [0, h max ]. We assume l max > 1/2. We emphasize that this is only for legibility. Indeed, one could replace 1/2 by l max /2 in what follows without changing the computations.

We notice that the upper boundary and the lower boundary of Ωh,l are parametrized respectively by: (r, θ, z)

∈ ∂ Ωh,l ∩ ∂ B * ⇔ {r ∈ [0, δ) and z = δ * (r)} , where (26) δ * (s) := -1 -s 2 ∀ s ∈ [0, 1), and (r, θ, z) ∈ ∂ Ωh,l ∩ ∂ Bh ⇔ {r ∈ [0, δ) and z = δ h (r)} ,
where, for all h > 0,

(27) δ h (s) := -(2 + h) + 1 -s 2 ∀ s ∈ [0, 1).
Finally, the remainder of the geometry (i.e. outside Ωh,1/2 ) is "smooth" in the sense that, there exists a width h 0 such that, for any distance h ∈ [0, h max ] there exists a set with width 

h 0 = 1 2 inf 0 h hmax dist(∂ B * ∩ ( Ωh, 1 4 ) c , ∂ Bh ∩ ( Ωh, 1 4 
) c ) = 17/16 -1 2 .
With this choice, for M large enough, for any h ∈ [0, h max ] and x / ∈ Ωh,1/4 , if 0 < dist(x, Bh ) < h 0 or 0 < dist(x, B * ) < h 0 then x is in the fluid domain Fh . We have moreover that, if dist(x, Bh ) h 0 then x ∈ Pl .

3.1. Parallel component. We first construct a velocity field that is rigid in B * with rigid velocity equal to ẽ1 . At first, this velocity field is computed in the local frame, which means with coordinates computed in the local orthonormal basis (ẽ 1 , ẽ2 , ẽ3 ). Between the two spheres, our potential vector field reads, in cylindrical coordinates: ãd // (r, θ, z) = 0, φ // (r, z),

1 2 r sin(θ) ∀ (r, θ, z) ∈ Ωh,1/2 .
Hence, the components of wd // [h] = curl ãd // [h] read:

(28) wd // (r, θ, z) = 1 2 -∂ z φ // (r, z), 0, cos(θ)∂ r φ // (r, z) ∀ (r, θ, z) ∈ Ωh,1/2 .
In this expression, d stands for "diverging part" and φ // is a truncation function enabling wd //

to go from (1, 0, 0) on ∂ B * to (0, 0, 0) on ∂ Bh . We set, in order to fit with these boundary conditions (this shall be critical in Lemma 3):

(29) φ // (r, z) = - χ // (λ(r, z)) 4 (δ * (r) -δ h (r)) + 2 + h 4 , with (30) χ // (s) = 2s 2 -2s + 1, ∀ s ∈ (0, 1),
and where λ is the normalized vertical distance do ∂ Bh :

λ(r, z) = z -δ h (r) δ * (r) -δ h (r)
.

In the complement of Ωh,1/2 we set:

ãs // = η h 0 (|x + (0, 0, 2 + h)| -1) 2 (0, (z + 2 + h)/2, r sin(θ)/2) + η h 0 (|x| -1) 2 (ẽ 1 × x) ∀ x ∈ R 3 .
Here and in what follows, we denote by η : [0, ∞) → [0, 1] a smooth function such that

η(s) = 1, if s < 1 2 , 0, if s > 1,
and, we set η α = η(•/α) for all parameter α > 0. By definition of h 0 , if x / ∈ Ωh,1/4 , then at most one of the functions η h 0 (|x + (0, 0, 2 + h)| -1) and η h 0 (|x| -1) is different from 0.

Finally, we set:

ã// =    η 1/2 (r)ã d // + (1 -η 1/2 (r))ã s // , in Ωh,1/2 , ãs // , in R 3 \ Ωh,1/2 ∪ B * ∪ Bh , and w// [h] =      curl ã// , in R 3 \ B * ∪ Bh , ẽ1 , in B * , 0, in Bh .
This family of functions w// [h] h>0 satisfies the following result.

Proposition 3. For any h > 0, the following holds:

(1) w// [h] ∈ C(R 3 ), with:

w// [h] = ẽ1 on B * , w// [h] = 0 on Bh . (2) In a neighborhood of ∂ Pl (31) w// [h](x) = curl x η h 0 (|x| -1) 2 ẽ1 × x .
Proof: As h > 0, the only difficulty to obtain (1) is to prove continuity through ∂ Bh and ∂ B * . In the following we drop arguments in λ and we denote by subscripts its differentiations. For example,

λ z = 1 δ * (r) -δ h (r) λ r = - δ ′ h (r) δ * (r) -δ h (r) -λ δ ′ * (r) -δ ′ h (r) δ * (r) -δ h (r)
.

Differentiating φ // , this yields

(32) ∂ z φ // (r, z) = - χ ′ // (λ) 4 λ z (δ * (r) -δ h (r)) = - χ ′ // (λ) 4 , ( 33 
) ∂ r φ // (r, z) = - χ ′ // (λ) 4 λ r (δ * (r) -δ h (r)) - χ // (λ) 4 (δ ′ * (r) -δ ′ h (r)),
where:

χ // (0) = χ // (1) = 1, χ ′ // (0) = -2, χ ′ // (1) = 2.
As a consequence for λ = 0 (z = δ h (r)):

(34) ãd // (x) = (0, (z + (2 + h))/2, r sin(θ)/2) and wd

// (x) = 0 ∀ x ∈ ∂ Bh ,
and for λ = 1 (z = δ * (r)):

(35) ãd // (x) = (ẽ 1 × x)/2 and wd // (x) = ẽ1 ∀ x ∈ ∂ B * .
Concerning the smooth part, we recall that we chose h 0 so that outside Ωh,1/4 , we have :

η h 0 (|x -(0, 0, -(2 + h))| -1) = 1, η h 0 (|x| -1) = 0, η ′ h 0 (|x -(0, 0, -(2 + h))| -1) = 0, η ′ h 0 (|x| -1) = 0, ∀ x ∈ ∂ Bh , and 
η h 0 (|x -(0, 0, -(2 + h))| -1) = 0, η h 0 (|x| -1) = 1, η ′ h 0 (|x -(0, 0, -(2 + h))| -1) = 0, η ′ h 0 (|x| -1) = 0, ∀ x ∈ ∂ B * .
Consequently, outside Ωh,1/4 :

(36) ãs // (x) = (0, (z + 2 + h)/2, r sin(θ)/2), ws // (x) = 0, on ∂ Bh , ãs // (x) = (ẽ 1 × x)/2, ws // (x) = ẽ1 , on ∂ B * .
The continuity of w// [h] through ∂ B * and ∂ Bh yields by interpolation of (34)-( 35) and (36).

Finally, equality (31) holds outside Ωh,1/2 and at distance larger than h 0 of Bh . Due to our choice for h 0 and because we assume 1/2 < l max , this equality holds in particular in a neighborhood of ∂ Pl . ⋄ 3.2. Normal component. Now, we construct a velocity field that is rigid in B * with rigid velocity equal to ẽ3 . This is the direction along which the ball B * gets closer to the hole Bh . This construction is completely similar to the one in [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF]. We only change the value of λ by using the formula of the previous section. Hence, our potential vector field reads, in cylindrical coordinates:

ãd ⊥ (r, θ, z) = (-φ ⊥ sin θ, φ ⊥ cos θ, 0) ∀ (r, θ, z) ∈ Ωh,1/2 , where (37) φ ⊥ (r, z) = rχ ⊥ (λ) , with χ ⊥ (s) = s 2 (3 -2s) 2 (s ∈ (0, 1)).
Consequently, for all (r, θ, z) ∈ Ωh,1/2 :

(38) wd ⊥ (r, θ, z) = curl ãd ⊥ = -∂ z φ ⊥ cos θ, -∂ z φ ⊥ sin θ, ∂ r φ ⊥ + φ ⊥ r .
In the complement of Ωh,1/2 , we set:

ãs ⊥ = η h 0 (|x| -1) 2 (ẽ 3 × x) ∀x ∈ R 3
and we obtain the final potential by interpolation:

ã⊥ = η 1/2 (r)ã d ⊥ + (1 -η 1/2 (r))ã s ⊥ , in Ωh,1/2 , ãs ⊥ , in R 2 \ Ωh,1/2 ∪ Bh ∪ B * .
Finally, we set:

w⊥ [h] =      curl ã⊥ , in R 3 \ B * ∪ Bh , ẽ3 , in B * , 0, in Bh .
Proposition 4. For any h > 0, the following holds:

(1) w⊥ [h] ∈ C(R 3 ), with:

w⊥ [h] = ẽ3 on B * , w⊥ [h] = 0 on Bh . (2) In a neighborhood of ∂ Pl w⊥ [h](x) = curl x η h 0 (|x| -1) 2 ẽ3 × x .
Proof: The proof is exactly the same as for the parallel component. We refer the reader to [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF] for technical details. ⋄ 3.3. Complete test function. We recall that, by definition:

e 3 = cos(α)ẽ 3 -sin(α)ẽ 1 , ẽ3 = Q -α e 3 , ẽ1 = Q -α e 1 ,
with α ∈ (0, π/2) given by ( 39)

sin(α) = 2 2 + h , cos(α) = √ h 2 + 4h 2 + h .
Hence, in order to obtain a velocity field with rigid velocity e 3 , we set

(40) w[h](x) = cos α w⊥ [h](x) -sin α w// [h](x).
In the global frame (the one without tildas), this velocity field reads

(41) w[h](x) = Q -α w[h] (Q α (x -G h ))
for all x ∈ P l , or more precisely:

w[h](x) = cos αQ -α w⊥ [h] (Q α (x -G h )) -sin αQ -α w// [h] (Q α (x -G h )) .
As mentioned above, we obtain our test-velocity field in the remainder of the geometry by symmetry

w[h](x) = S D [w[h]](x) ∀ x ∈ P r .
The family (w[h]) h>0 constructed this way satisfies Proposition 1. The only difficulty to prove this, is to obtain that w is smooth in a neighborhood of ∂P l = ∂P r . But, in a neighborhood of ∂P l inside P l , we have by substitution:

w[h](x) = curl x η h 0 (|x -G h | -1) (e 3 × (x -G h )) 2 , = η ′ h 0 (|x -G h | -1) x -G h |x -G h | × (e 3 × (x -G h )) 2 + η h 0 (|x -G h | -1)e 3 .
As e 3 is symmetric with respect to D, the same formula holds in the other half space. Therefore, w is smooth in the whole fluid domain as long as h = 0. We also emphasize that w is symmetric with respect to D so that we only estimate the restriction of w to P l in what follows.

Estimating the test functions

This section is devoted to prove Proposition 2. The method is similar for all inequalities. First, we reduce these computations in the global framework to inequalities in the local one. We then complement the study by some technical description of w[h] in Ωh,1/4 .

For example computing (20), we have:

Ω ρ h u • w[h] dy = P l ρ h u • w[h] dy + P r ρ h u • w[h] dy.
We focus on the term in P l . The other domination is computed by symmetry. We split:

P l ρ h u • w[h] dy = Ω h,1/4 ρ h u • w[h] dy + P l \Ω h,1/4 ρ h u • w[h] dy. By construction, ã[h](x) := cos α(t)ã ⊥ [h](x) -sin α(t)ã // [h](x).
is continuous in h, smooth in the spatial variable and with compact support in

{(h, x) ∈ [0, 1] × R 3 ; x / ∈ Ωh,1/4 }.
Thus, there exists a constant C = C(β) independent of h such that

ã H β ( Fh \ Ωh,1/4 ) C ∀ h < h max .
As a consequence, we only focus on

Ω h,1/4 ρ h u • w[h] dy C u L 2 (Ω) w[h] L 2 (Ω h,1/4 ) .
Using that Q α is a unit transformation, the proof of (20), as other dominations in Proposition 2, is reduced to estimate w[h] in Ωh,1/4 .

First, to end up the proof of (20) and in preparation for (23), we obtain the following result.

Proposition 5. The function w[h] defined in (40) satisfies

(42) w[h] L 2 ( Ωh,1/4 ) C, (43) ∇ w[h] L 2 ( Ωh,1/4 ) C ln(1/h),
for any h > 0, with a constant C independent of h.

Proof: To prove (42), we apply Lemmata 3 and 4. This yields that, for any (r, θ, z) ∈ Ωh,1/4 , and h ∈ (0, 1),

(44) | wd ⊥ | |∂ z φ ⊥ | + |∂ r φ ⊥ | + |φ ⊥ | r C 1 + r δ * (r) -δ h (r) (45) | wd // | 1 2 + ∂ z φ // + ∂ r φ // C.
Both above estimates combined with Lemma 1 imply (42).

To prove (43), we first notice that for any v,

(46) |∇v| C |∂ r v| + |∂ θ v| r + |∂ z v| .
From (38) and Lemma 3, we deduce

(47) |∂ r w⊥ | C |∂ rz φ ⊥ | + |∂ rr φ ⊥ | + ∂ r φ ⊥ r - φ ⊥ r 2 C δ * -δ h , ( 48 
) |∂ θ w⊥ | r |∂ z φ ⊥ | r C δ * -δ h , ( 49 
) |∂ z w⊥ | C |∂ zz φ ⊥ | + |∂ rz φ ⊥ | + ∂ z φ ⊥ r C r (δ * -δ h ) 2 + 1 δ * -δ h . Gathering (46)-(49) yields (50) |∇ w⊥ | C r (δ * -δ h ) 2 + 1 δ * -δ h .
From (39) and Lemma 22), we split as previously and this yields

P l ρ h u • ∂ h w[h] dy = I 1 + I 2 , P l u ⊗ u • D(w)[h] dy = J 1 + J 2 ,
where:

|I 1 | = P l \Ω h,1/4 ρ h u • ∂ h w[h] dy u L 2 (Ω) ∂ h w[h] L 2 (P l \Ω h,1/4 ) , |J 1 | u 2 L 2 (Ω) w[h] H 3 (P l \Ω h,1/4 ) ,
and, with the same technique as in [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF]Lemme 3.1]:

|I 2 | M 2 ∇u L 2 (Ω) |J 2 | M ∞ 2 ∇u L 2 (Ω)
, where:

M 2 = 1 4 0 (δ h (r) -δ * (r)) 2 δ h (r) δ * (r) sup θ∈(0,2π) |∂ h w(r, θ, z)| 2 dz r dr 1 2 , M ∞ 2 = sup r∈(0, 1 4 ) (δ h (r) -δ * (r)) 3/2 δ h (r) δ * (r) sup θ∈(0,2π) |∇w(r, θ, z)| 2 dz 1 2
.

Consequently, (21) and ( 22) are consequences of the following result.

Proposition 6. There exists a positive constant C such that (55)

1 4 0 (δ h (r) -δ * (r)) 2 δ h (r) δ * (r) sup θ∈(0,2π) |∂ h w(r, θ, z)| 2 dz r dr C h , (56) 
∂ h w[h] L 2 (P l \Ω h,1/4 ) C √ h , (57) sup r∈ 
(0, 1 4 )   (δ h (r) -δ * (r)) 3/2 δ h (r) δ * (r) sup θ∈(0,2π) |∇w(r, θ, z)| 2 dz 1 2   C,
for any h > 0.

Proof: To prove (55), we remark that in P l :

∂ h w = ∂ h [Q -α w[h](Q α (x -G h ))] = M ⊤ h w[h] + Q -α (M h (x -G h ) -Q α ∂ h G h ) • ∇ w[h] + Q -α ∂ h w[h], (58) 
with

∂ h w[h] = ∂ h (cos α) w⊥ [h] + cos α ∂ h w⊥ [h] -∂ h (sin α) w// [h] -sin α ∂ h w// [h].
Due to (39) and ( 18), there exists a universal constant C for which:

|∂ h cos α| C √ h , |∂ h sin α| C, |∂ h G h | C √ h .
Moreover, outside Ωh,1/4 , w// and w⊥ are smooth functions of all its arguments. Consequently, the only singular terms in ∂ h w, outside Ω h,1/4 , are ∂ h cos α and ∂ h G h so that the above control leads to (56).

Finally, inside Ωh,1/4 , we already estimated w[h] and ∇ w[h]. Combining these dominations with:

|M h (x -G h ) -Q α ∂ h G h | C √ h ∀ x ∈ Ω h,1/4 ,
and the above control on ∂ h cos α, this yields

|M ⊤ h w[h] + Q -α (M h (x -G h ) -Q α ∂ h G h ) • ∇ w[h]| C 1 + 1 √ h(δ * -δ h ) + r (δ * -δ h ) 2 .
In ∂ h w[h] the same right-hand side dominates:

|∂ h (cos α) w⊥ [h] -∂ h (sin α) w// [h]|.
Finally, from Lemmata 3 and 4, we compute that

| cos α ∂ h w⊥ [h] -sin α ∂ h w// [h]| C √ h 1 δ * -δ h + r (δ * -δ h ) 2 + r δ * -δ h + 1 δ * -δ h .
The above dominations reduce to:

|∂ h w| C 1 + 1 √ h(δ * -δ h ) + r (δ * -δ h ) 2 in Ωh,1/4 .
From Lemma 1, we finally obtain (55).

To prove, (57), we use (50) and ( 54):

(δ h (r) -δ * (r)) 3 δ h (r) δ * (r) sup θ∈(0,2π) |∇w(r, θ, z)| 2 dz C (δ * -δ h ) 2 + r 2 .

⋄

In order to prove (23), we first construct a suitable pressure field:

Proposition 7. Given h > 0, there exists a smooth pressure-field q[h] such that

(59) -∆ w[h] + ∇q[h] = f 1 + f 2 , in Pl with (60) 1 4 0 (δ h (r) -δ * (r)) 2 δ h (r) δ * (r) sup θ∈(0,2π) | f 1 (r, θ, z)| 2 dz r dr and f 2 L 6/5 ( Ωh,1/4 )
uniformly bounded for h ∈ (0, 1).

Proof: With arguments similar to those in [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF]Lemma 3.8], we first construct a pressure field q ⊥ [h] such that -∆ w⊥ + ∇q ⊥ = f⊥ in Pl with:

1 4 0 (δ h (r) -δ * (r)) 2 δ h (r) δ * (r) sup θ∈(0,2π) | f⊥ (r, θ, z)| 2 dz r dr uniformly bounded.
Then by definition of w// we have

-∆ w// =   ∆(∂ z φ // ) 0 -∆(cos(θ)∂ r φ // )   . First ∆(∂ z φ // ) = ∂ rrz φ // + 1 r ∂ rz φ // + ∂ zzz φ // .
Using that ∂ zzz φ // = 0 and Lemma 4, we deduce

∆(∂ z φ // ) C δ * -δ h . Second ∆(cos(θ)∂ r φ // ) = cos(θ) ∂ rrr φ // + 1 r ∂ rr φ // - 1 r 2 ∂ r φ // + ∂ zzr φ // . Using again Lemma 4, we obtain that cos(θ) ∂ rrr φ // + ∂ zzr φ // C r (δ * -δ h ) 2 and cos(θ) 1 r ∂ rr φ // - 1 r 2 ∂ r φ // C r .
From Lemma 1, C.

f 1 // =   ∆(∂ z φ // ) 0 -cos(θ) ∂ rrr φ // + ∂ zzr φ //   and f 2 // =   0 0 -cos(θ) 1 r ∂ rr φ // -1 r 2 ∂ r φ //   satisfy 1 4 0 (δ h (r) -δ * (r)) 2 δ h (r) δ * (r) sup θ∈(0,2π) | f 1 // (r, θ, z)| 2 dz r dr C,
Finally, we set q[h] = cos αq ⊥ [h] so that f 1 = sin α f 1 // + cos α f⊥ and f 2 = sin α f 2 // . This ends up the proof.

⋄

To complete the proof of ( 23 We split this integral as previously I = I l + I r with obvious notation. Then we introduce w[h], and ṽ in the same fashion. Because Q α is a unit transformation, we have:

I l = Fh ∩ Pl D(ṽ) : D( w[h]) dỹ.
Integrating by parts, this yields

I l = ∂( Fh ∩ P l ) (2D( w[h])n -q[h]n) • ṽ dσ - Fh ∩ Pl (∆ w[h] -q[h]) • ṽ dỹ.
For symmetry reasons, after compensation with I r the relevant boundary integral is:

∂ B * ∩ P l (2D( w[h])n -∇q[h]n) • ṽ dσ,
we notice that it is fixed by h and proportional to ℓ. Consequently, we can rewrite as ℓb(h)/2 with some function b to be made precise. Moreover, applying the previous proposition, and similar technique to [11, Lemma 3.9], we obtain that The following computations are inspired by [START_REF] Hillairet | Interactive features in fluid mechanics[END_REF]. For simplicity we consider symmetric geometries and we apply notation introduced in Section 3. .

Proof: For simplicity, we assume u is smooth in the fluid domain. The result is then obtained by a density argument. We also introduce the orthonormal basis (ẽ r , ẽθ , ẽz ) associated to cylindrical coordinates.

Integrating div(u) = 0 in Ω h,l , this yields We remark that no slip boundary conditions together with symmetry arguments imply ϕ(δ * (l), l) = 0, ϕ(δ h (l), l) = 0, ∀ l ∈ (0, 1).

As a straightforward consequence, we obtain |ϕ(z, l)| (δ * (l) -δ h (l)) We optimize this last inequality taking r = √ h and obtain the expected inequality when h < 1.

⋄

[18] Temam, R. Problèmes mathématiques en plasticité. Gauthier-Villars, Montrouge, 1983.
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 2 Figure 2. Detailed description of the geometry

and f 2 // L 6 / 5 (

 265 Ωh,1/4 )

  ), let v ∈ H(G h ) with v = ℓe 3 on B h , and considerI = Ω D(v) : D(w[h]) dy.

  Fh ∩ Pl (∆ w[h] -∇q[h]) • ṽ dỹ C ∇ṽ L 2 ( Pl ∩ Ω) C ∇v L 2 (Ω) .Computing similarly P r , we finally obtainI = ℓb(h) + R with |R| C ∇v L 2 (Ω) where C is an absolute constant.Taking in particular v = w[h] we might compute our integral in the same way. This yieldsb(h) = Ω |D(w)| 2 + R with |R| C ∇w L 2 (Ω) .From the control on this L 2 (Ω) norm obtained in Proposition 5, we finally obtain that b(h) C ∇w 2 L 2 (Ω) + C ∇w L 2 (Ω) C| ln h| + C | ln h| C| ln h|.
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 82 There exists a universal constant C for which, givenG ∈ D and u ∈ H ∩ H 2 (F G ) such that u(x) = 0, on ∂Ω, u(x) = V + ω × (x -G), on ∂B G ,whenever h := dist(B G , ∂Ω) < 1, there holds:|V u • ẽ3 | C|h| 3 G |∇ 2 u(y)| 2 dy 1 2

  ∂B G ∩ ∂Ω h,l u • n dσ = -lΦ(l)where:Φ(l) = δ * (l) δ h (l) ϕ(z, l) dz, with ϕ(z, l) = π -π u(l, θ, z) • ẽr dθ.

u|∂ 2 .|∂ 2 . 2 r 2 |∇ 2

 22222 • n dσ Cl (δ * (l) -δ h (l)) zz u(r, θ, z)| 2 dr dθ 1 Moreover, one might compute ∂B G ∩ ∂Ω h,l u • n dσ = 2πl 2 V • ẽ3 , so that, (61) reads: 2πl 2 |V • ẽ3 | Cl (δ * (l) -δ h (l)) zz u(r, θ, z)| 2 dz dθ 1Finally, we integrate the above inequality over l ∈ [0, r]. This yields|V • ẽ3 | C (δ * (r) -δ h (r))5 u| L 2 (F G ) .

  [START_REF] Desjardins | On weak solutions for fluid-rigid structure interaction: compressible and incompressible models[END_REF]. We have the following sizes:φ // ≺ (δ * -δ h ), ∂ r φ // ≺ r, ∂ z φ // ≺ 1, ∂ h φ // ≺ 1, ∂ rh φ // ≺ r/(δ * -δ h ), ∂ zh φ // ≺ 1/(δ * -δ h ), ∂ rr φ // ≺ 1, ∂ rz φ // ≺ r/(δ * -δ h ), ∂ zz φ // ≺ 1/(δ * -δ h ), ∂ rrr φ // ≺ r/(δ * -δ h ), ∂ rzz φ // ≺ r/(δ * -δ h ) 2 , ∂ rrz φ // ≺ 1/(δ * -δ h ).

	Appendix B. Computation of Inequality (16)

Appendix A. Detailed description of potentials φ // and φ ⊥ This appendix is very similar to the one given in [START_REF] Hillairet | Collision in 3D fluid structure interactions problems[END_REF], however there are some differences since we estimate not only the size of φ ⊥ and its derivatives, but also the size of φ // and its derivatives. However, since the proofs are completely similar, we only state the results used in this paper.

We emphasize that φ // and φ ⊥ depend on h, even if the dependency is not explicitly mentioned. In order to compare such functions in what follows, we introduce the following conventions. Given families (f h : Ωh,1/4 → R) h∈(0,1) and (g h : Ωh,1/4 → R) h∈(0,1) , we denote by f h ≺ g h if there exists an absolute constant C such that

Given non negative functions f : (0, 1) → R + and g : (0, 1) → R + , we also denote by f (s) ∼ g(s) ∀s ∈ (0, 1), if there exist two positive constants c and C such that cf (s) g(s) Cf (s) ∀s ∈ (0, 1).

First, we compute typical L 1 (0, 1/4)-sizes of functions r → r α /(δ * (r) -δ h (r)) β . Lemma 1. Given (α, β) ∈ (R + ) 2 , we have the following estimations for all h ∈ (0, 1):

We now compare λ(r, z) = z-δ h (r) δ * (r)-δ h (r) to functions (r, θ, z) → r α /(δ * (r) -δ h (r)) β in Ωh,1/4 .

Lemma 2. We have the following sizes

Then we obtain the following lemmata.

Lemma 3. We have the following sizes: