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Abstract

We give a new geometric proof of a conjecture of Fulton on the
Littlewood-Richardson coefficients. This conjecture was firstly proved
by Knutson, Tao and Woodward using the Honeycomb theory. A geo-
metric proof was given by Belkale. Our proof is based on the geometry
of Horn’s cones.

1 Introduction

Recall that irreducible representations of Glr(C) are indexed by sequences
λ = (λ1 ≥ · · · ≥ λr) ∈ Z

r. If λr ≥ 0, λ is called a partition. Denote
the representation corresponding to λ by Vλ. Define Littlewood-Richardson
coefficients cν

λ µ ∈ N by: Vλ ⊗ Vµ =
∑

ν cν
λ µVν . W. Fulton conjectured that

for any positive integer N ,

cν
λ µ = 1 ⇒ cNν

Nλ Nµ = 1.

This conjecture was firstly proved by Knutson, Tao and Woodward [KTW04]
using the Honeycomb theory. A geometric proof was given by Belkale in
[Bel07]. The aim of this note is to give a short proof of this conjecture based
on the geometry of Horn cones.

Note that the converse of Fulton’s conjecture is a consequence of Zelevin-
ski’s saturation conjecture. This last conjecture was proved in [KT99, Bel06,
DW00].

The key observations of our proof are:

(i) the non-trivial faces of codimension one of Horn cones corresponds to
Littlewodd-Richardson coefficients equal to one;

(ii) each non zero Littlewood-Richardson coefficient give a linear inequality
satisfied by Horn cones.
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Assume that cν
λ µ = 1. By Borel-Weyl’s theorem, cν

λ µ is the dimension of the
Glr invariant sections of a line bundle L on a certain projective variety X.
Then, cNν

Nλ Nµ is the dimension of the Glr invariant sections of L⊗N . This

implies that cNν
Nλ Nµ ≥ 1. In particular, cNν

Nλ Nµ gives a linear inequality for
a certain Horn cone: we prove that this inequality correspond to a face of
codimension one.

In this proof, the Littlewood-Richardson coefficients are mainly the co-
efficient structure of the cohomology of the Grassmannians in the Schubert
basis. Our technique can be applied to prove similar results for the coef-
ficient structure of the Belkale-Kumar’s product ⊙0 on the cohomology of
others projective homogeneous spaces G/P .

2 Geometry of Horn cones

2.1 Horn’s cone of Eigenvalues

2.1.1 — Schubert Calculus. Let Gr(a, b) be the Grassmann variety of
a-dimensional subspaces L of a fixed a + b-dimensional vector space V . We
fix a complete flag F•: {0} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fa+b = V . For any
subset I = {i1 < · · · < ia} of cardinal a in {1, · · · , a+ b}, there is a Schubert
variety ΩI(F•) in Gr(a, b) defined by

ΩI(F•) = {L ∈ Gr(a, b) : dim(L ∩ Fij ) ≥ j for 1 ≤ j ≤ n}.

The Poincaré dual of the homology class of ΩI(F•) does not depend on F•;
it is denoted σI . The σI form a Z-basis for the cohomology ring. It follows
that for any subsets I, J of cardinal a in {1, · · · , a + b}, there is a unique
expression

σI .σJ =
∑

K

cK
IJσK ,

for integers cK
IJ . We define K∨ by i ∈ K∨ if and only if a + b + 1 − i ∈ K.

Then, if the sum of the codimensions of ΩI(F•), ΩJ(F•) and ΩI(F•) equals
the dimension of Gr(a, b), we have

σI .σJ .σK = cK∨

IJ [pt].

2.1.2 — Horn’s cone. Let H(n) denote the set of n by n Hermitian
matrix. For A ∈ H(n), we denote its spectrum by α(A) = (α1, · · · , αn) ∈ R

n

repeated according to multiplicity and ordered such that α1 ≥ · · · ≥ αn. We
set

∆(n) := {(α(A), α(B), α(C)) ∈ R
3n : A, B, C ∈ H(n) s.t. A+ B + C = 0}.
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Set E(n) = R
3n, let E(n)+ denote the set of (αi, βi, γi) ∈ E(n) such that

αi ≥ αi+1, βi ≥ βi+1 and γi ≥ γi+1 for all i = 1, · · · , n − 1. Let E(n)++

denote the interior of E(n)+. Let E0(n) denote the hyperplane of points
(αi, βi, γi) ∈ E(n) such that

∑

αi +
∑

βi +
∑

γi = 0. The set ∆(n) is a
closed convex cone contained in E0(n) and of non empty interior in this
hyperplane.

2.1.3 — GIT-cone Let V be a complex n-dimensional vector space. Let
F l(V ) denote the variety of complete flags of V . The group G = Gl(V ) acts
diagonaly on the variety X = F l(V )3. Let us fix a basis in V , F• ∈ F l(V ) the
standard flag for this base, B its stabilizer in G and T the torus consisting
of diagonal matrices. We identify the character groups X(T ) and X(B)
with Z

n in canonical way. The line C endowed by the action of B3 given
by (λ, µ, ν) ∈ (Zn)3 = X(B3) is denoted by C(λ, µ, ν). The fiber product
G3 ×B3 C(λ, µ, ν) is a G3-linearized line bundle Lλ,µ,ν on X; we denote by

Lλ, µ, ν the G-linearized line bundle obtained by restricting the G3-action to
the diagonal.

We denote by CG(X) the rational cone generated by triples of partitions
(λ, µ, ν) such that Lλ, µ, ν has non zero G-invariant sections. The fist proof
of the following is due to Heckman [Hec82], (see also [Ful00].

Theorem 1 The cone ∆(n) is the closure of the rational convex cone CG(X).

2.2 Faces of ∆(n)

2.2.1 — We have a complete description of the linear forms on E(n) which
define faces of codimension one of ∆(n). The first proof using Honeycombs
is due to Knutson,Tao and Woodward (see [KTW04]). A geometric proof is
due to Belkale ([Bel03]). In [Res07], I made a different geometric proof. A
proof using quivers is also given in [DW06].

Theorem 2 The hyperplanes αi = αi+1, βi = βi+1 and γi = γi+1 spanned

by the codimension one faces of E(n)+ intersects ∆(n) along faces of codi-

mension one.

For any subsets I, J and K of {1, · · · , n} of the same cardinality such

that cK∨

IJ = 1, the hyperplane
∑

i∈I αi +
∑

j∈J βj +
∑

k∈K γk = 0. intersects

∆(n) along a face FIJK of codimension one. Any face of codimension one

intersecting E(n)++ is obtain is this way.

It is well known that if cK∨

IJ 6= 0, for all (α, β, γ) ∈ ∆(n), we have
∑

I αi +
∑

J βj +
∑

K γk ≤ 0. In particular, the interstion betwenn ∆(n)
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and
∑

I αi +
∑

J βj +
∑

K γk = 0 is a face FIJK of ∆(n).
2.2.2 — We now review some notions of [Res07, Res08] and use notation

of Paragraph 2.1.3. Let I, J and K be three subsets of {1, · · · , n} of the
same cardinality r such that cK∨

IJ 6= 0. We associate to this situation a pair
(C, λ) where λ is a one parameter subgroup of G, and C is an irreducible
component of the set of fix points of λ in X. Consider the set C+ of the
x ∈ X such that limt→0 λ(t)x ∈ C, and the parabolic subgroup P (λ) of G
associated to λ. The assumption cK∨

IJ 6= 0 implies that the morphism

ηIJK : G ×P (λ) C+ −→ X, [g : x] 7−→ g.x,

is dominant with finite general fibers. Now, FIJK correspond to a face
FQ

IJK of CG(X): the entire points in FQ
IJK correspond to the line bundles

L in CG(X) such that λ act trivialy on L|C . By [Res07, ] or [Res08, ], the

entire points in FQ
IJK correspond to the G-linearized line bundles L on X

such that Xss(L) intersects C.
By construction, λ acts with two weights on V , the first one has multiplic-

ity r and the other one n−r. In particular, the centralizer Gλ in G of λ is iso-
morphic to Glr×Gln−r. Moreover, C is isomorphic to F l(Cr)3×F l(Cn−r)3.
Now, consider the restriction morphism

ρQ
IJK : PicG3

(X) −→ Pic(Gλ)3(C).

2.2.3 — Let I, J and K be three subsets of {1, · · · , n} of the same
cardinality r. Define the linear isomorphism ρIJK by:

E(n) −→ E(r) ⊕ E(n − r)
(αi, βi, γi) 7−→ ((αi)i∈I , (βi)i∈J , (γi)i∈K) + ((αi)i/∈I , (βi)i/∈J , (γi)i/∈K).

One easily checks that with evident identifications, ρIJK is obtained from
ρQ

IJK by extending the scalar to the real numbers.

Proposition 1 Let I, J and K be as above with cK∨

IJ 6= 0. Let (α, β, γ) ∈
E(n)+. Then, (α, β, γ) ∈ FIJK if and only if ρIJK(α, β, γ) ∈ ∆(r)×∆(n−
r).

Proof. Assume that ρIJK(α, β, γ) ∈ ∆(r)×∆(n−r). Let A′, B′, C ′ ∈ H(r)
and A′′, B′′, C ′′ ∈ H(n−r) such that A′+B′+C ′ = 0 and A′′+B′′+C ′′ = 0
whose spectrums correspond to ρIJK(α, β, γ). Consider the three following
matrices of H(n)

A =

(

A′ 0
0 A′′

)

, B =

(

B′ 0
0 B′′

)

, C =

(

C ′ 0
0 C ′′

)

.
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By construction, α is the spectrum of A and
∑

I αi = tr(A′), and similarly
for B and C. We deduce that (α, β, γ) ∈ FIJK .

By Theorem 1, we can prove the converse for the cone CG(X). Let
L ∈ FIJK . Since Xss(L) intersects C, C contains semistable points for the
action of Gλ and ρQ

IJK(L). It follows that ρQ
IJK(L) ∈ ∆(r) × ∆(n − r). �

Corollary 1 Let I, J and K be as in the proposition. Then, if FIJK inter-

sects E(n)++, it has codimension one. In particular, cK∨

IJ = 1.

Proof. By Proposition 1, FIJK ∩ E(n)++ is isomorphic to an open subset
of ∆(r)×∆(n−r). So, FIJK has codimension 2 in E(n) and so codimension
one in ∆(n). Now, Theorem 2 implies that cK∨

IJ = 1. �

Remark. Corollary 1 for CG(X) is proved in [Res07] by purely Geometric
Invariant Theoretic methods; that is, without using Theorem 1.

The first example of face FIJK with cK∨

IJ > 1 is obtained for n = 6.
etc...

3 Proof of Fulton’s conjecture

Let λ, µ and ν be three partitions (with r parts) such that cν
λ µ = 1. Let

us fix n such that n − a is greater or equal to λ1, µ1 and ν1. Set I =
{n − a + i − λi : i = 1, · · · , a} ⊂ {1, · · · , n}. Similarly, we associate J and
K to µ and ν. It is well known that:

cν
λ µ = cK

IJ .

By Theorem 2, FIJK∨ is a face of codimension one in ∆(n).
Let (A,B,C,A′, B′, C ′) ∈ H(r)3 × H(n − r)3 corresponding to a point

in the relative interior ρIJK∨(FIJK∨). Consider N generic perturbations
(A′

i, B
′
i, C

′
i) of (A′, B′, C ′) ∈ ∆(n − r). Consider now the Hermitian matrix

A′′ of size r + N(n − r) diagonal by bloc with blocs A, A′
1, · · · , A

′
N ; and

similarly B′′ and C ′′.
Let now, I ′′, J ′′ and K ′′ be the three subsets of r+N(n−r) of cardinal r

corresponding to Nλ, Nµ and Nν respectively. It is clear that the image by
ρI′′J ′′K ′′∨ of the sprectrum of (A′′, B′′, C ′′) belongs to ∆(r) × ∆(N(n − r)).
By genericity of the matrices A′

i, B′
i and C ′

i, this implies that FI′′J ′′K ′′∨

intersects E(r + N(n − r))++. Now, Corollary 1 allows to conclude.
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Université Montpellier II
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