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Constant flux atom deposition into a porous medium is shown to generate a dense overlayer and
a diffusion profile. Scaling analysis shows that the overlayer acts as a dynamic control for atomic
diffusion in the porous substrate. This is modeled by generalizing the porous diffusion equation
with a time-dependent diffusion coefficient equivalent to a nonlinear rescaling of time.
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Thin film depositions on substrates are important in
many physical processes and applications. Moreover, de-
position on porous substrates is particularly useful for
catalytic systems [1, 2] in which atomic deposition carried
out by plasma sputtering is then coupled with the diffu-
sion of the atoms into the porous substrate. Diffusion
in a porous medium is generally anomalous and is char-
acterized by the mean square displacement < z2(t) >:
it evolves with a power law in time tα different from
the well known linear behavior ( α = 1) for normal dif-
fusion. Anomalous diffusion [3, 4] is a general process
that can be observed in many domains such as transport
in porous [5] and/or fractal media [6], surface growth
[7], solid surface diffusion [8] or hydrodynamics (rotat-
ing flows [9], turbulence [10] or diffusion in an array of
convection rolls [11, 12]). It can be described by differ-
ent models that involve space-dependent diffusion coeffi-
cients [3, 4, 13, 14, 15, 16, 17]. In these models anomalous
diffusion is included through the propagator (the solution
of the diffusion equation starting with a Dirac distribu-
tion at t = 0) that exhibits both power laws and stretched
exponential behaviors. Here, we study platinum deposi-
tion by plasma sputtering on a porous carbon substrate.
The platinum atoms are sputtered by the plasma ions
and travel to the substrate so that both deposition and
diffusion processes can depend on plasma operating pa-
rameters. The experimental results consist in a measure
of the density profiles of the deposited matter at differ-
ent times. The goal of this Letter is to characterize this
diffusion-deposition process in a porous carbon medium
using the time evolution of the platinum density profile.

Platinum atoms are deposited by plasma sputtering
into a porous carbon layer supported (See Fig. 1) on
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a carbon cloth. This porous layer is a few tens of mi-
crons thick and is composed of randomly stacked car-
bon nanoparticles (Vulcan XC 72) and PTFE particles
brushed onto the carbon cloth. The specific area is
15 m2g−1 before Pt deposition and slightly lower at 13
m2g−1 after Pt deposition. Examination of Fig.1 shows
the pore size reduction. Platinum atoms are deposited
onto this porous carbon layer and diffuse in the course
of deposition. The platinum deposition reactor is a pre-
viously described [1, 2] plasma sputter system which de-
livers a constant deposition rate. An argon plasma is
created in the stainless steel deposition chamber 18 cm
inner-diameter and 25 cm-long by using an external pla-
nar antenna (also known as TCP antenna). The porous
layer is placed on a movable grounded substrate holder
in front of the platinum sputter target with a target-
substrate distance of 4.5 cm. The porous layer is thus
exposed to a flux of sputtered platinum, into which it
diffuses under the operating conditions. The diffusion
process was studied at argon pressures of 0.5 and 5 Pa,
leading to a mean kinetic energy Ek of the sputtered
Pt atom around 7 eV [2] and 0.04 eV respectively [18].
The resulting platinum depth profiles were measured us-
ing Rutherford Backscattering Spectroscopy, which gives
an indirect measure of the average density as a func-
tion of the depth z. The density is obtained by fitting
the experimental spectrum with a spectrum derived from
a defined profile function. Firstly, we observe that the
platinum profile can in fact be decomposed in two dis-
tinct regions: a growing layer above the porous medium,
of mean thickness h(t) = z0(t) and constant density
ρ(z, t) = Z1(t),−z0(t) < z ≤ 0 and a density profile
ρ(z, t), z > 0 in the porous medium (which extends in the
z > 0 domain, z = 0 corresponding to the porous inter-
face). The Pt depth profile is thus deduced by minimizing
the difference between the experimental RBS spectrum
and the simulated RBS spectrum using the profile de-
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FIG. 1: Scanning Electron Microscopy top view of porous
carbon layer a) before Pt deposition b) after Pt deposition
(Courtesy D. Cot, IEMM CNRS-ENSCM-Univ. Montpellier
II)

fined by Eq. 1. It corresponds to the known solution of
anomalous diffusion processes [2] i.e. a stretched expo-
nential.

ρ(z, t) = Z1(t), −z0 < z ≤ 0

ρ(z, t) = Z1(t)e
−

z
2+θ

Z2(t) , z > 0 (1)

where θ is the dimensionless coefficient which character-
izes the anomalous diffusion behavior [13, 14, 15].This
fitting procedure leads to the error bar of the exponent θ
as reported hereafter. The density profile is continuous at
the interface between the growing platinum layer and the
porous medium at z = 0 so that we have ρ(0, t) = Z1(t).
Z2(t) is the time dependent spreading of the stretched ex-
ponential. Such a profile suggests that the particle flux
delivered by the plasma sputtering cannot be absorbed
directly by the porous layer with the result that a frac-
tion of the incident atoms have to deposit at the interface.
It also implies that the diffusion process into the porous
layer is a consequence of both the diffusion of the plat-
inum atoms that have penetrated into the substrate and
the diffusion of those absorbed at the interface.
Some fitted platinum depth profiles at different deposi-
tion times t in the porous medium are displayed in Fig.
2. The best fits correspond to θ = −1.45 ± 0.05 ≈ −3/2
which suggests a super-diffusive behavior in the porous
medium (see below). Moreover, given θ = −1.5, Z1(t)
and Z2(t) asymptotically follow power law behaviors with
time (Z1 ∼ tm and Z2 ∼ tp) with m being 0.40 ± 0.05
and p being 0.20 ± 0.05 as shown in Fig. 3(a). h(t)
also obeys a less well defined power law behavior with
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FIG. 2: (Color online) Pt depth profiles in porous carbon at
different successive deposition times. z = 0 corresponds to
the porous carbon layer surface

∼ tn, n = 1.1 ± 0.1 . The mass of platinum inside the
porous medium is found to scale as t0.8±0.1 while the Pt
mass of the surface overlayer, Z1(t).h(t), scales as t1.5±0.1

as shown on Fig. 3(b). However, we obtain an almost
linear evolution of the total mass (∼ t1.1±0.1) of platinum
deposited in and on the porous medium, as expected by
the experimental process. At the higher pressure, 5 Pa,
θ = −1.33± 0.05,m = p = 0.25± 0.05 and n = 1.0± 0.1.
Hence, a change of deposition conditions yields a change
of Pt concentration profile within the porous carbon. To
help explain our results, we use a classical model of the
anomalous diffusion process [13, 14, 15, 16] in fractal
and porous media, considered here in one dimensional
space accounting for the in plane averaging (we can dis-
card nonlinear diffusion in the porous media from the
experimental results) resulting in the following general-
ized diffusion equation for the density profile ρ(z, t) for
z ≥ 0:

∂ρ

∂t
=

∂

∂z

(

K0

zθ

∂ρ

∂z

)

(2)

where θ is a real parameter characterizing anomalous dif-
fusion and is a priori unknown. This equation is obtained
by postulating a distance dependence K0

zθ of the diffusion
coefficient in Fick’s law. Classical Brownian diffusion
holds for θ = 0, whereas positive (negative) θ corresponds
to sub(super)-diffusive dynamics where the mean-square
displacement scales as < z2 >∝ t2/(2+θ). The general
solution for this equation (the so-called propagator) ex-
hibits a power law and stretched exponential behavior
and is given by [4, 13, 14, 15, 16, 17]:

ρ(z, t) ∝
[

K0 (2 + θ)
2
t
]−1/(2+θ)

exp

[

−
z2+θ

K0(2 + θ)2t

]

(3)
which holds for a normalization condition consistent with
mass conservation. Since the deposition is carried out
with a constant flux, the total mass is expected a priori



3

1

10

100

1000

10 100 1000 10000

Deposition time t (s)

P
t m

as
s 

(µ
g.

cm
-2

)

Pt mass inside C Layer

Surface Pt mass

Total Pt Mass

0.1

1

10

100

10 100 1000 10000

Deposition time t (s)

Z αα αα
(t)

 (a
rb

. u
ni

ts
) 

Z1(t)

Z2(t)

h(t)

(a)

(b)

FIG. 3: (Color online) For the 0.5 Pa deposition, a) thickness
of the Pt layer h(t) above the porous medium and value of
Z1(t) and Z2(t) from the fitted law (1) as a function of time
(log-log plot). The lines correspond to the power laws Z1(t) ∼
t
0.4,Z2(t) ∼ t

0.2 and h(t) ∼ t
1.1; b) Amount of Pt mass in the

porous medium calculated using (1) as a function of time (log-
log plot).

to grow linearly and the solution to our problem should
obey the boundary condition at z = 0:

K0

zθ

∂ρ

∂z
= C0 (4)

where C0 is the constant flux of platinum imposed by
the plasma sputtering. Therefore, the solution can be
obtained using the propagator solution (3) through a lin-
ear superposition consistent with the boundary condition
(4). It is in fact more convenient to investigate the solu-
tion in the following self-similar form:

ρ(z, t) = tβf
( z

tα

)

. (5)

While the propagator obeys α+β = 0 (constant mass so-
lution), the constant flux solution must have α + β = 1.
Inserting (5) into the diffusion equation (2) we obtain
α = 1

2+θ while β is fixed by the flux condition. The

self-similar function f(ξ) is then the solution of the ordi-
nary differential equation (ξ = z/tα being the self-similar

variable):

βf − αξf ′ =
K0

ξθ+1
(ξf ′′

− θf ′) (6)

which gives the propagator solution (3) for α + β = 0.
Moreover, it can be seen that the density profile for
large z follows the stretched exponential law (1) with
Z1(t) ∝ tβ and Z2(t) = K0(2 + θ)2t.
The predictions of this simple model do not agree with
the experimental results: from θ = −1.5, one would ob-
tain α = 2 and β = −1 since we have the condition
α+β = 1. Hence, there is a marked discrepancy between
the experimental measurements (α ∼ 0.4 and β ∼ 0.4)
and the model even when the error bars of the exper-
iments are taken into account. However, the underly-
ing physical processes of atomic diffusion and the mea-
sured density profiles suggest that the general diffusion
equation proposed here is a good framework for model-
ing atomic deposition through plasma sputtering. It is
thus tempting to model the effect of the growing external
platinum layer and of the plasma by keeping the same
equation with the anomalous diffusion coefficient K(t)
and a flux of mass at z = 0, both time dependent. Al-
though we are far from a detailed microscopic derivation
of the model, it is postulated here that the growth of the
platinum layer has a screening effect on the diffusion and
thus alters the mass flux towards the porous medium. In
particular the platinum overlayer acts as a reservoir for
diffusion. In addition, the temperature distribution, not
accounted for directly by this model, is certainly influ-
enced by the presence of the platinum layer. Since the
diffusion coefficient is a function of the temperature, it is
probably time dependent. This time dependent diffusion
coefficient can also be understood as a time rescaling and
it is needed in the framework of the diffusive equation
since it is the only way to change the time dependence
in the exponential law (3). We thus propose to model
the deposition/diffusion dynamics through the previous
equation (2) with a time dependent diffusion coefficient
K(t):

∂ρ

∂t
=

∂

∂z

(

K(t)

zθ

∂ρ

∂z

)

(7)

The presence of the external growing layer is also ac-
counted for by an a priori time dependent boundary con-
dition:

K(t)

zθ

∂ρ

∂z
= C(t) (8)

To illustrate the results with no loss of generality, we
will seek a power law behavior for a sufficiently time. We
introduce two additional exponents ǫ and γ such that the
flux of atoms and the diffusion coefficient follow:

C(t) = C0t
ǫ K(t) = K0t

γ (9)

The relations between the exponents are straightforward:

α =
γ + 1

2 + θ
and α + β = 1 + ǫ (10)
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Eq. (7) can be understood by rescaling the time following
τ = t1+γ in terms of the initial diffusion equation (2):

∂ρ

∂τ
=

∂

∂z

(

K0

1 + γ

1

zθ

∂ρ

∂z

)

(11)

And we obtain the stretched exponential behavior for
large z in agreement with the experimental measure-
ments:

ρ(z, t) ∝ tβ exp

[

−
(1 + γ)z2+θ

K0(2 + θ)2t1+γ

]

(12)

Within this general approach, we can now describe our
experimental results. For simplicity’s sake and to illus-
trate the model with no loss of generality, we estimate
from the experimental fits that θ = − 3

2 , α = 0.4 and
β = 0.4 which leads to:

γ = −0.8 and ǫ = −0.2

This corresponds to a time decreasing diffusion coefficient
such as t−0.8 and of the flux at z = 0 such as t−0.2. The
diffusion coefficient is expected to decrease versus time,
while the porous medium is gradually filled by the plat-
inum atoms. This leads to a more difficult diffusion. At
the z = 0 interface, the growing external layer provides
an additional source for the diffusion of atoms inside the
porous substrate. Moreover a decreasing flux indicates
that the growing external layer is gradually screening the
influence of the plasma, and that diffusion becomes less
efficient due to pore filling as mentioned above. These
effects are also observed at 5 Pa, with θ = − 4

3 , α = 0.5
and β = 0.25 which leads to: γ = −0.83 and ǫ = −0.25.
These last two scaling exponents are very close to those

at 0.5 Pa. Consequently, the self similar exponents de-
pend on the deposition conditions whereas the critical
exponents of the diffusion are unchanged. This means
that the diffusion equations (7-8-11) are robust enough
to provide a general frame for deposition/diffusion mech-
anisms.

On the basis of experimental results and a general dif-
fusion model, we have proposed a new scenario for mass
deposition and diffusion on a porous substrate. As the
flux of sputtered atoms cannot be absorbed immediately
by the substrate, an overlayer grows. The combined ef-
fects of the deposition that change the porosity properties
of the substrate and of this growing layer that can act as
a reservoir for diffusion can be accounted for by general-
izing a standard model of diffusion in a porous medium
with constant diffusive properties (θ is constant). This
allows time dependent coefficients to be introduced. This
model provides a clear understanding of the experimental
results: in particular, we show that the diffusion coeffi-
cient in the porous substrate and the flux at the inter-
face decrease with time due to the atom deposition in
the substrate. This general model can be also be applied
to many other diffusion processes where the inner porous
structure of a material is modified by a penetrating flux
of matter, as for example, for filtration through porous
membranes, sedimentation processes, ...
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