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ABSTRACT

Motivation: Searching RNA gene occurrences in genomic sequences

is a task whose importance has been renewed by the recent discovery

of numerous functional RNA, often interacting with other ligands. Even

if several programs exist for RNA motif search, none exists that can

represent and solve the problem of searching for occurrences of RNA

motifs in interaction with other molecules.

Results:We present a constraint network formulation of this problem.

RNA are represented as structured motifs that can occur on more

than one sequence and which are related together by possible hybrid-

ization. The implemented tool MilPat is used to search for several

sRNA families in genomic sequences. Results show that MilPat

allows to efficiently search for interacting motifs in large genomic

sequences and offers a simple and extensible framework to solve

such problems. New and known sRNA are identified as H/ACA candi-

dates in Methanocaldococcus jannaschii.

Availability: http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl

Contact: milpat@toulouse.inra.fr

1 INTRODUCTION

Our understanding of the role of RNA has changed in recent years.

Initially considered as being simply the messenger that converts

genetic information from DNA into proteins, RNA is now seen as a

key regulatory factor in many of the cell’s crucial functions, affect-

ing a large variety of processes including plasmid replication, phage

development, bacterial virulence, chromosome structure, DNA

transcription, RNA processing, development control and others

[for review see Storz (2002)]. Consequently, the systematic search

of non-coding RNA (ncRNA) genes, which produce functional

RNAs instead of proteins, represents an important challenge.

Unlike double-stranded DNA, RNA is a single-stranded mole-

cule. This characteristic allows different regions of the same RNA

strand (or of several RNA strands) to fold together via base pair

interactions to build structures that are essential for the biological

function. The level of organization relevant for biological function

corresponds to the spatial organization of the entire nucleotides

chain and is called the tertiary structure. However, owing to the

difficulty of determining high-order RNA structures, the RNA sec-

ondary structure is viewed as a simplified model of the RNA tertiary

structure. In this article, we define the secondary structure of an

RNA gene as the set of base-paired nucleotides which appear in the

folded RNA, including possible bindings with other RNA mole-

cules. This extends the usual definition which is often limited to

planar structures (therefore excluding pseudo-knots and multiple

helices) and is restricted to intra-sequence interactions. For func-

tional RNA molecules, the secondary structure is generally con-

served among members of a given family. Thus common structural

characteristics can be captured by a signature that represents the

elements which are conserved inside a set of related RNA mole-

cules. We focus here on the problem of searching for new members

of a gene family given their common signature. Solving this prob-

lem requires (1) to be able to formalize what a signature is and what

it means for such a signature to occur in a sequence and (2) to design

algorithms and data-structures that can efficiently look for such

occurrences in large sequences. For sufficiently general signatures,

this is an NP-complete problem (Vialette, 2004).

Traditionally, two approaches have been used for this problem:

signatures can be modelled as stochastic context free grammars

(excluding pseudo-knots or complex structures) and then searched

using dynamic programming based parsers. This is, for example,

used in Sakakibara et al. (1994) and Eddy and Durbin (1994) for

RNA genes or in Bockhorst and Craven (2001) for terminators.

Another approach defines a signature as a set of interrelated motifs.

Occurrences of the signature are sought using pattern-matching

techniques and exhaustive tree search. Such programs include

RnaMot (Gautheret et al., 1990), RnaBob (Eddy, 1996), PatScan

(Dsouza et al., 1997), Palingol (Billoud et al., 1996) and RnaMotif

(Macke et al., 2001). Although these programs allow pseudo-knots

to be represented, they have very variable efficiencies. Both types of

approaches are restricted to single RNA signatures.

In this article, we clearly separate the combinatorial aspects from

the pattern matching aspects by modelling a signature as a constraint

network. This model captures the combinatorial features of the

problem while the constraints use pattern matching techniques to

enhance their efficiency. This combination offers an elegant and

simple way to describe several RNA motifs in interaction and a

general purpose efficient algorithm to search for all the occurrences

of such motifs.

2 METHODS

The constraint network formalism (Rossi et al., 2006) is a powerful and

extensively used framework for describing combinatorial search problems�To whom correspondence should be addressed.
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in artificial intelligence and operations research. Constraint networks allow

to represent a problem as a set of inter-related variables in a very flexible

way. Variables may have arbitrary domains and inter-relations are essen-

tially arbitrary. This is usually well adapted to the definition of mathematical

problems raised by molecular biology (Gaspin and Westhof, 1995;

Muller et al., 1993; Altman et al., 1994; Major et al., 1991; Barahona

and Krippahl, 2002) and has been used to model the structured motif search

problem in Eidhammer et al. (2001), Policriti et al. (2004). The main

differences with our approach lies in the type of constraints modelled

[only distance constraints are considered in Policriti et al. (2004)] and in

the propagation algorithms used [i.e. Eidhammer et al. (2001) used a much

weaker propagation].

2.1 Constraint network

A constraint network (Rossi et al., 2003) is a triple (V, D, C):

� V ¼ {x1, . . . , xn} is a set of n variables.

� D¼{d1, . . . , dn} is a set ofndomains, each containing the possible values

for xi. d denotes the size of the largest domain.

� C is a set of econstraints. Each constraintcs is a relation over a subset s�V

of variables (called its scope) which defines the combinations of values

(or tuples) that these variables may take. If the scope involves one, two or

k variables, the constraint is said respectively unary, binary or k-ary.

A solution to a constraint network is an assignment of values from their

domain to every variable, in such a way that every constraint is satisfied

(only authorized value combinations are used). When a solution exists, the

constraint network is said to be consistent.

2.2 Structured motifs as constraint networks

The elements that may characterize an RNA gene family are usually

described in terms of the gene sequence itself (eg. it must contain some

possibly degenerated pattern), the structures the sequence creates (loops,

helices, hairpins and possible duplexes with other molecules) and by

specifying how these various elements are positioned relatively to each

other. An occurrence of such a structured motif on genomic sequences is

defined by the positions of the various elements on the (possibly different)

sequence(s), with correct relative positions.

A natural constraint network model emerges from this description: the

variables of the network will represent the positions on the genomic

sequence(s) of the elements of the description. More formally, each variable

xi 2 V (ym 2 V is also used for clarity in order to distinguish between two

interacting molecules) will represent a position on an associated sequence.

The initial domain of variable xi (ym), unless otherwise stated, will therefore

be equal to the size of the associated sequence. In order to represent infor-

mation on required patterns, structures, and on relative positions of these

elements, constraints will be used. To describe a constraint we separate the

variables xi, . . . , xj, yl, . . . , ym involved in the constraint and extra parameters

p1, . . . , pk that influence the combinations of values authorized by the

constraint. We now introduce the basic constraint types which are useful

for RNA signature expression.

content [word, error, typeer](xi). This constraint is satisfied if and only

if some given pattern occurs at position xi on the associated sequence. The

pattern that must occur is specified by the following constraint parameters:

word is a word on the IUPAC alphabet (http://www.iupac.org/dhtml_home.

html); error specifies the maximum number of tolerated mismatches

between an occurrence and the specified string; typeer indicates if the

error count is interpreted under the Hamming or edit distance metric

(Smith and Waterman, 1981). An example of possible use of this constraint

is illustrated in Figure 1 (case 1) where variable x1 is constrained to a position

where the AGGGCUAGG pattern appears precisely. An arrow indicates one

occurrence.

distance [lmin, lmax](xi,xj). This binary constraint is used to enforce the

relative position of elements. It is satisfied if and only if lmin � xj� xi� lmax.

The positive integer parameters lmin, lmax specify the bounds for the differ-

ence between the two variables.

helix [rule, err, typeer, lmin, lmax, bmin, bmax] (xi, xj, xk, xl). This con-

straint is used to enforce the existence of a generalized palindrome between

the substrings delimited by [xi, xj] and [xk, xl] assuming that the four variables

are related to the same sequence. Length and distances are also constrained.

The constraint accepts the following parameters: rule is a binary relation on

the RNA alphabet generalizing the usual pairing relation that defines when

two characters are ‘matching’. For an RNA helix one may use Watson–Crick

(A–U, G–C) possibly extended with Wobble (G–U) pairing instead of equality

relation. err gives the maximum number of tolerated mismatches between

the two substrings. typeer gives the Hamming or edit distance metric for error

counts. lmin, lmax represents the interval specifying possible lengths of the

two substrings. bmin, bmax represents the interval specifying the possible

distance between the two substrings (i.e. xk � xj). This constraint

is illustrated in Figure 1 (case 2), involving variables x1, x2, x3 and x4.

Note that several such constraints can describe more complex structures

like pseudo-knots [Figure 1 (case 4)] and triple helices [Figure 1 (case 5)].

duplex [lmin, lmax](xi, xj, yk, yl). This constraint enforces the existence

of a (purely Watson–Crick based) duplex between the substrings delimited

by [xi, xj] and [yk, yl] but without assuming that the two substrings belong to

the same sequence. This constraint is used to model RNA–RNA interactions

between different molecules with lmin, lmax representing the interval speci-

fying possible lengths of the two substrings. The constraint is illustrated in

Figure 1 (case 3) involving x1, x2 (on one sequence) and y3, y4 (on another

sequence). Arrows point to an occcurrence.

The flexibility of the constraint network representation using simply the

four previous basic constraints can be illustrated on famous RNA gene

families. A tRNA signature is represented in Figure 2A. tRNA genes include

four helices corresponding respectively to A-stem (7 bp), D-stem (from 3 to

4 bp), C-stem (5 bp) and T-stem (5 bp), six loops corresponding respectively

to the single strand between A-stem and D-stem (sequence UN with U

invariant), D-loop (4–14 bases), the single strand between D-stem and

C-stem (one base), C-loop (6–60 bases), the single strand between

C-stem and T-stem (also called V-loop, 2–22 bases), T-loop (NUC). The

corresponding constraint network is built from variables with 15 distance

constraints (one constraint between each successive pair of variables),

2 content constraints and 4 helix constraints.

The same process can be applied to archaeal H/ACA sRNA signature.

H/ACA sRNA are involved in a type of site-specific modification, the pseu-

douridylation (conversion of uridine into pseudouridine), within ribosomal

RNA (rRNA). They exhibit complementarity to specific sites within rRNA

Fig. 1. Basic constraints. (case 1): occurrence of a pattern at one position.

(case 2): an helix defined by two related segments separated by specified

lengths. (case 3): a duplex composed of two independent substrings (from

two sequences). (case 4): two helix constraints can describe a pseudo-knot

or (case 5) a triple helix.

Constraint network for locating RNA motifs
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sequences, thereby determining the site of modification. Archaeal H/ACA

sRNA contain one or more hairpins connected by single stranded regions,

all having similar characteristics. We have built a signature depicted in

Figure 2B of such a consensus hairpin on the basis of known available

H/ACA sRNA secondary structures in Pyrococcus furiosus, Pyrococcus

abyssi, Pyrococcus horikoshii and Archaeoglobus fulgidus genomes

(Rozhdestvensky et al., 2003). The signature identifies simultaneously a

sequence representing one sRNA hairpin containing all the characteristics

of both the sRNA and the sequence of the target able to form the interaction.

The sRNA is described as containing the lower stem of the hairpin, an

internal loop from which the two single stranded regions are able to form

a duplex with the target, two single stranded regions corresponding to an

irregular upper stem, a K-turn motif (Rozhdestvensky et al., 2003), a single

strand corresponding to the loop of the hairpin and, at the 30 end, an ACA box

element. The target is described as containing two regions separated by

‘UN’ (U being the uridine which will be converted into a pseudouridine)

and able to pair with H/ACA regions.

The corresponding constraint network is built from 16 variables

(12 variables for the sRNA motif, 4 variables for the target motif) one

helix constraint, two duplex constraints, 15 distance constraints

and 4 content constraints.

2.3 Algorithms and implementation

The central problem on constraint networks is to prove the existence of a

solution (consistency). This is an NP-complete problem usually solved by

exhibiting one solution. This problem is most often tackled using sophisti-

cated variants of backtrack search. In naive backtrack search, variables are

assigned values one after the other. If at some point an unauthorized com-

bination of values is used, backtracking goes back to the most recently

assigned variable which still has alternative values available. With at

most d values per variable, this means that backtrack explores a tree of

size O(dn). For practical efficiency, filtering algorithms are used at each

node of the tree. A filtering algorithm transforms a constraint network into an

equivalent network (with the same set of solutions) which satisfies an addi-

tional local consistency property. Typically, a local consistency property

ensures that some values (or combinations of) which do not participate in a

solution are explicitly deleted. If the filtered problem has an empty domain, it

has no solution and backtracking can occur more rapidly than in naive

backtrack. A trade-off arises in the strength of the filtering used since stron-

ger filtering is more expensive but may detect inconsistency earlier. Finally,

variable and value ordering heuristics may drastically improve search per-

formance in practice.

2.3.1 Data structure and filtering algorithms Compared with

usual applications of the constraint network formalism, this one is charac-

terized by its specific constraint types (except for the distance constraint

which is a usual arithmetic constraint) and by the potentially huge domain

size (the sequences handled can be complete genomic sequences of several

million base pairs).

With such large domains, the naive backtracking scheme, which succes-

sively tries all values of a variable, would lead to a branching factor equal to

the domain size and thereby would be difficult to manage in practice. Instead,

our algorithm explores a binary tree. The root of the tree corresponds to the

initial problem with no variable assigned. The two sons of a node are

obtained by (left) assigning to one variable the first value of its domain

and by (right) removing this value from the domain.

Another issue is the filtering algorithm used at each node. Traditional

filtering algorithms such as arc consistency (Rossi et al., 2006) can delete

any value in the domain of any variable which requires an O(nd) space

complexity to describe domains. This makes them unsuitable for problems

with very large domains. A usual choice in this case is to describe domains as

intervals [lb, ub] (for lower bound and upper bound) which reduces the space

complexity to a nice 2n. This leads to a property called bound consistency.

Bound consistency. For simplicity, we define bound consistency assuming

binary constraints. A variable xi with domain di ¼ [lbi, ubi] is bound con-

sistent w.r.t. constraint c{xi,xj}
involving variables xi and xj if and only if

9w1, w2 2 dj such that (lbi, w1) 2 c{xi,xj}
and (ubi, w2) 2 c{xi,xj}

. In this case, w1,

w2 are called the supports for the bounds of xi on constraint c{xi,xj}
. A

constraint is bound-consistent if it is bound consistent w.r.t. all the variables

involving it. A constraint network is bound-consistent if all its constraints are

bound-consistent. For constraints of largersencodi arities, the bounds must

participate in at least one tuple that is authorized by the constraint and other

domains. Compared to usual local consistencies, using an interval based

representation for the domains with bound consistency saves not only space

but may also save time since existence of a support needs only to be enforced

on the bounds. The basic operation used to enforce bound consistency

consists in directly computing for a variable xi, involved in a constraint

c, the largest interval R(c, xi) ¼ [a, b] such that a and b have a support

on the constraint c. R(c, xi) is called the reduction operator for the constraint

c and variable xi. To enforce bound consistency, for every variable xi and

every constraint c 2 C involving xi, the domain di is reduced to di \ R(c, xi).

This is done repeatedly until no modification occurs (a fix-point is

reached). For specific types of constraints, this reduction operator can be

computed more efficiently than by checking for the existence of supports for

successive values.

The arithmetic distance constraint lmin � xj � xi � lmax is a

classical example for which the reduction operator for xi is defined by

[a, b] ¼ [lbj � lmax, ubj � lmin]. In this case, bound consistency can be

enforced in time O(ed) (Hentenryck et al., 1992). For other types of con-

straint, dedicated reduction operators are needed.

2.3.2 Dedicated reduction operators For each type of constraint,

we developed reduction operators using appropriate pattern matching

algorithms. Each constraint implementation is independent from rest of

the system and can be described by the algorithm implementing the reduc-

tion operator of the constraint’s relation. The reduction operator for the

distance constraint has been described before. We now describe the

operator for other constraints.

content [. . .](xi). The lower bound of the domain of xi can be updated to

the first occurrence of the pattern after lbi in the associated text. To find this

occurrence, the algorithm of Baeza-Yates and Manber (Baeza-Yaltes and

Gonnet, 1992; Wu and Manber, 1991) is used.

helix [. . .](xi, xj, xk, xl). Imagine we want to reduce the domain of

variable xi. The problem is to find the first helix (a support) that satisfies the

parameters of the constraint. By first we mean the helix with the smallest

position of the 50 extremity of the first strand (pointed by xi). The problem for

helices (which can be seen as two related substrings) is more complex than

for content since the two substrings are initially unknown. A naive

approach that successively tries all possible positions for the first and second

substrings is obviously quadratic. However, in our case, the distance between

the regions where the substrings may appear is constrained by the length

Fig. 2. (A) Signature of tRNA and (B) H/ACA genes family. Circles represent

bases (small circles consolidate several bases); squares represent bases in the

target rRNA; edges represent interactions between two bases.

P.Thébault et al.
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parameters bmin and bmax. Together with parameters lmin and lmax, this makes

the complexity of the naive approach linear in the text length.

duplex [. . .](xi, xj, yk, yl). This constraint differs from the previous one

by the fact that there is no possible bmin and bmax parameters since the two

interacting words do not necessarily appear on the same sequence. The

previous naive approach is therefore impractical. We decided to use a

specialized version of suffix-trees (Ukkonnen, 1992) that captures occur-

rences of patterns of bounded length. This data structure, called a k-factor

tree (Allali and Sagot, 2004), allows to perform string search in time linear

in the length of the pattern searched (independently of the text length). The

data structure is built once and for all at the initialization of the constraint

network, in time and space linear in the length of the text (Ukkonen, 1992).

The associated reduction operator is only used when one of the two variables

xi or xj is assigned. All the occurrences of the Watson–Crick reverse com-

plement can then be efficiently found in the k-factor tree and used to update

the bounds of the other variables (taking the position of the first and last

possible occurrences as new bounds).

These reduction operators are quite expensive compared with the

operators of the simple distance constraint. In order to avoid repeated useless

applications of the reduction operator, once a support is found it is

memorized and reused until one of the value in the support is removed.

In this case, the support is lost and a new search for a valid support must be

performed.

3 RESULTS

This approach has been implemented in a general purpose program

called MilPat. MilPat is written in C++. The implementation of

filtering using reduction operators makes the architecture of MilPat

suitable for the simple addition of new constraint types. Indeed,

since (1) the application of reduction operators for a constraint

requires information only on its own variables and has effect

only on them and (2) all the constraints attached to a variable

can be checked independently, one after the other, in any order,

it suffices to just implement a new constraint type with associated

reduction operators to extend MilPat. We have implemented a

simple motif definition language making MilPat accessible through

a web interface at http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl.

MilPat has been tested on different RNA gene search problems

in order to assess its efficiency and its modeling capacities. All

the signatures used in this section are available on the website.

3.1 Efficiency

The tRNA genes are perhaps the best studied among RNAs; hence,

they are very appropriate for a first benchmarking. The signature of

tRNAs used here is deliberately a simple one that can be modeled

in all existing general purpose tools. We have concentrated on

finding sequences that can adopt a cloverleaf-like secondary struc-

ture within given ranges of stem and loop lengths and searched the

Escherichia coli and Saccharomyces cerevisiae genomes with two

different tRNA descriptors. The main differences between both

series of descriptors are the existence of the CCA arm in the

case of prokaryotes and the existence of an intron in the loop of

stem3 (for S.cerevisiae).

We compare the time execution of MilPat with three other gen-

eral purpose programs. Results are shown in Table 1. For each

genome search test, every program gives the same number of solu-

tions with a sensitivity close to 100%. Considering computing

efficiency, three groups may be formed from the slowest to the

fastest: (1) RnaMot and RnaMotif, (2) Patscan and MilPat

with variable order A and (3) MilPat with optimized variable

order B. It is well-known that variable assignment order may

have a significant influence on efficiency. Without the optimized

order, MilPat already has an execution time close to the most effi-

cient program, PatScan. Just changing the order leads to an earlier

pruning of the search tree and a considerably improved execution

time.

Additional tests have been performed by inserting in the genomes

of E.coli and S.cerevisiae an artificial sequence which can fold

into a complex motif that was then searched for. CPU times are

consistent with those obtained for tRNA search.

3.2 Modeling capacities

Other sRNA have been chosen to evaluate the modeling abilities.

Type A and B bacterial RNase P. Larger sequences than tRNA,

such as type A and type B bacterial RNase P have been searched. In

our tests, the signature uses type A and type B bacterial RNase P

conserved elements as described in (Massire et al., 1998). This

signature includes P1, P2, P4, P12 conserved helices and the

ACAGNRA and GUGNAA consensus sequences. Table 2 gives

results on a few bacterial genomes. Remarkably, results show

very good sensitivity and specificity.

C/D box sRNAs. In Archaea C/D box sRNA can be described

by C (RUGAUGA), D0 (CUGA), C0(UGAUGA) and D (CUGA) boxes,

and one or two duplexes the size of which is from 8 to 12 base pairs

(Gaspin et al., 2000) which are located just before the D or D0 box.

We have built a signature (available on MilPat web site) including

these elements, with 1 mismatch allowed in each box. Table 3

shows that taking into account both duplexes increases specificity

while decreasing sensitivity. Considering two errors instead of

one in both C and C0 boxes improves sensitivity (data not shown).

H/ACA box sRNAs. Several studies have recently identified

new H/ACA sRNA genes in Archaea (Klein et al., 2002;

Rozhdestvensky et al., 2003; Schattner, 2002; Charpentier et al.,
2005; Baker et al., 2005) and in Yeast (Schattner et al., 2004).

Table 1. Comparison of cpu-time efficiency

Software used E.coli [4,6 Mb] S.cerevisiae

[1207 Mb]

tRNA search
PatScan 1 min 32 1 h 40

RnaMotif 4 s 8 h 40

RnaMot 2 min 92 h

MilPat (order A) 39 s 1 h 52

MilPat (order B) 39 s 20 min

Artificial motif search

PatScan 15 s 40 s

RnaMotif 45 s 1 min 58 s

RnaMot 3 min 15 s 8 min 48 s

MilPat 13 s 40 s

For tRNA search, the order A used by MilPat orders variables following the 50 to 30 order

in the structured motif. Order B is an optimized order following the first fail principle:

most constrained variables are chosen first by the backtrack algorithm. For artificial

sequence, we have inserted in the genomes the sequence AUGCCAAAAAAAAGG-

CAUAAAAAAAAAAAAUGCCAAAAAAAAGGCAUAAAAAAAAAAA repeated five times

so as it can fold into a structure containing 10 hairpin loops with a stem size varying

from 5 to 10 and a loop of size 8.

Constraint network for locating RNA motifs
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In order to test the ability of MilPat to model interactions between

different molecules, we performed a computational screen of

the yeast chromosome XV for which 7 H/ACA sRNA are known

and archaeal Methanococcus jannaschii, Pyrococcus abyssi, Pyro-
coccus furiosus and Pyrococcus horikoshii genomes for H/ACA box

sRNA. A specific tool was recently developed for H/ACA sRNA

finding in S.cerevisiae (Schattner et al., 2004). A corresponding

signature (available on MilPat website) has been designed for

this problem. Its main characteristics is that it contains only one

hairpin. The results appear in Table 4. As done in (Schattner et al.,
2004), a further classification of candidates based on the position of

the modification and the minimum free energy would immediately

lead to improved specificity.

For archaea, results are described in Tables 5 and 6: Table 5

shows how interaction modeling can considerably increase speci-

ficity for archaeal genomes and Table 6 presents a GC% based

selection of the candidates obtained in Table 5 using interaction

modeling. Some of our candidates have been previously proposed

and some have been experimentally validated as sRNAs.

For all Pyrococcus genomes and each known H/ACA sRNA, we

have found one or more hairpins. For the M.jannaschii genome, we

identified five potential H/ACA sRNA (see Fig. 3a), all having

several possible targets (see target candidates via the web interface).

Several secondary structures are possible according to the selected

Table 2. Type A and type B bacterial RNase P

Genome Genome

size

# candidates RNase P Time (s)

Escherichia coli 4.64 Mb 1 yes 32.0

Yersinia pestis 4.7 Mb 1 yes 33.36

Bacillus subtilis 4.21 Mb 3 yes 33.09

Clostridium acetobutylicum 4.13 Mb 2 yes 22.25

Salmonella enterica 4.94 Mb 1 yes 30.0

Ralstonia solanacearum 5.81 Mb 1 yes 13.10

Walbachia pipientis wMel 1.27 Mb 2 yes 12.05

Staphylococcus aureus 2.84 Mb 3 yes 15.0

Shigella dysenteriae 4.55 Mb 1 yes 32.23

Each genome contains one RNase P.

Table 3. C/D box sRNA candidates

Genome Without

duplex (TP)

With D and D0

duplex (TP)

Pyrococcus abyssi 201 (57) 64 (46)

Pyrococcus horikoshii 216 (52) 80 (48)

Pyrococcus furiosus 217 (53) 62 (42)

Methanococcus jannaschii 295 (8) 31 (6)

Each line of the table indicates the number of candidates found when the duplexes

formed with the rRNA target is either ignored or explicitly modeled. TP are True

Positives.

Table 4. H/ACA sRNA candidates in S.cerevisiae chromosome XV

Target Nb. cand. snR5 snR8 snR9 snR31 snR35 snR36 snR181

18S 874 N N Y Y Y Y Y

25S 1237 Y Y Y N N N Y

H/ACA candidates. The complete sequence of chromosome XV was screened with 18S

and 25S sequences as possible target sequences. Every known sRNA is found by MilPat.

Y indicates a possible target.

Table 5. H/ACA sRNA candidates

Genome With interaction Without interaction

P.furiosus [1.91 Mb] 100 1155

P.abyssi [1.77 Mb] 89 765

P.horikoshii [1.74 Mb] 148 820

M.jannaschii [1.74 Mb] 118 1586

H/ACA candidates respectively with (without) the duplex. Signatures are available on

the web site. For each organism, complete genomic sequences were screened with 16S

and 23S sequences as possible targets sequences.

Table 6. H/ACA sRNA candidates

Name (known as) # HP with

MilPat/# known HP

Identified

in

P.furiosus [1.91 Mb]

Pf-H/ACA-1 (Pf1, Pfu-sR9, sR9) 1/1 [1],[3]

Pf-H/ACA-2 (Pf3, hgcE) 1/2 [1],[3]

Pf-H/ACA-3 (Pf4) 1/1 [3]

Pf-H/ACA-4 (Pf6, hgcF) 1/2 [1],[3]

Pf-H/ACA-5 (Pf7, hgcG) 1/3 [1],[3]

Pf-H/ACA-6 (Pf9) 1/1 [3], [4]

P.abyssi [1.77 Mb]

Pa-H/ACA-1 (Pab-sR9) 1/1 [1], [3]

Pa-H/ACA-2 1/2 [1]

Pa-H/ACA-3 (Pab-91) 1/1 [3],[5]

Pa-H/ACA-4 1/2 [1], [3]

Pa-H/ACA-5 2/3 [1], [3]

Pa-H/ACA-6 1/1 [3]

P.horikoshii [1.74 Mb]

Ph-H/ACA-1 (Pho-sR9) 1/1 [1], [3]

Ph-H/ACA-2 1/2 [1]

Ph-H/ACA-3 1/1 [3]

Ph-H/ACA-4 1/2 [1], [3]

Ph-H/ACA-5 2/3 [1], [3]

Ph-H/ACA-6 1/1 [3]

M.jannaschii [1.74 Mb]

Mj-H/ACA-1 1/unknown no

Mj-H/ACA-2 (Mj2, hgcA, cbr1) 1/unknown [2], [3]

Mj-H/ACA-3 (cnr7) 2/unknown [2]

Mj-H/ACA-4 (Mj4, Mj9, cnr9) 1/unknown [2], [3]

Mj-H/ACA-5 (cnr13) 1/unknown [2]

H/ACA sRNA identified by using the signature depicted in Fig. 2(B). Names between

parenthesis refers respectively to the different names found in the literature (first

column). The second column gives the number of hairpins found by MilPat relative

to the number of hairpins in known H/ACA sRNA. In the last column, [1], [2], [3], [4] and

[5] refer to the papers of respectively, Rozhdestvensky et al., (2003), Schattner (2002),

Klein et al., (2002), Baker et al. (2005) Charpentier et al. (2005). For each organism,

target sequences were complete sequences of 16S and 23S.
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target. Only one secondary structure is represented for each

candidate. Mj-H/ACA-1, was found as a new sRNA. Remarkably,

this sRNA is reported neither in (Klein et al., 2002) or (Schattner,

2002). After looking at the 50 and 30 ends of the sequence, we found

that Mj-H/ACA-1 contains only one hairpin which is homologous to

the HP-III hairpin of Pf7 and is therefore a true positive (see

Fig. 3B). Other candidates were already identified as sRNA but

not annotated as H/ACA sRNA. Mj-H/ACA-2 was computationally

identified in Schattner (2002) and Klein et al. (2002) and experi-

mentally identified in Klein et al. (2002). It contains all the char-

acteristics of an H/ACA archaeal sRNA. Mj-H/ACA-3 and Mj-H/

ACA-5 also appear to be new H/ACA genes with respectively two

hairpins and one hairpin. They are identified as sRNA (respectively

as cnr7 and cnr13) in Schattner (2002), but were not experimentally

identified. Mj-H/ACA-4, identified partially in Schattner (2002),

computationally and experimentally identified in Klein et al.
(2002) also presents all the characteristics of an H/ACA archaeal

sRNA. Homologue sequences are found in the three Pyrococcus
(Fig. 3C). They correspond to the Pf 9 H/ACA sRNA gene identified

in Baker et al. (2005). The signatures we used provides a good

example of a quick and efficient modeling of interacting molecules.

One may note that processing one of the archaeal genomes and one

rRNA target with the H/ACA signature typically takes <2# minutes

on a 700 Mhz Athlon.

4 CONCLUSION

The aim of this work is to offer a way of describing new generations

of RNA patterns, including the specification of complexes formed

by interactions between different regions of a genome. The combi-

nation of constraint network methodology with pattern matching

algorithms provides (1) an increased efficiency, (2) extended mode-

ling capabilities for intermolecular interactions and (3) an easily

extensible framework. First results show that MilPat is at least as

efficient in CPU time as related tools and that, in archaea, modeling

H/ACA sRNA motif in interaction with their target improves

specificity without decreasing sensitivity. Beyond this, a number

of evolutions are possible to improve MilPat efficiency and

modeling capabilities, including the ability to describe optional

or alternative motifs.

In its current version, MilPat provides all the true occurrences

(satisfying all constraints). Future developments aim to offer a

scoring system based on mismatches, thermodynamic or proba-

bilistic parameters. Taking advantage of such information would

require the use of more complex weighted constraint network

algorithms (Larrosa and Schiex, 2004).
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