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UNIFORM MINIMALITY, UNCONDITIONALITY AND INTERPOLATION | N
BACKWARD SHIFT INVARIANT SPACES

ERIC AMAR & ANDREAS HARTMANN

ABSTRACT. We discuss relations between uniform minimality, unctiodality and interpola-
tion for families of reproducing kernels in backward shiftariant subspaces. This class of spaces
contains as prominent examples the Paley-Wiener spacadioh it is known that uniform min-
imality does in general neither imply interpolation nor anditionality. Hence, contrarily to the
situation of standard Hardy spaces (and other scales oéspathanging the size of the space
seems in this context necessary to deduce unconditiormalityterpolation from uniform mini-
mality. Such a change can take two directions: lowering theqy of integration, or “increasing”
the defining inner function (e.g. increasing the type in thgecof Paley-Wiener space).

1. INTRODUCTION

A famous result by Carleson states that a sequence of p®irts{a, } in the unit diskD =
{z € C: |z|] < 1} is an interpolating sequence for the spat€ of bounded analytic functions
onD, meaning that every bounded sequencé@an be interpolated by a functighin H°° on
S,i.e. H*|S D (*, if and only if the sequence satisfies the Carleson condition:

(1.1) inf [B,(a)] =0 >0,

whereB, = [,, b. is the Blaschke product vanishing exactly $n {a}, andb,(z) = ‘%’%
(see [Caj8]). We will writeS € (C') for short whenS satisfies[[1]1). Obviously in this situation
we also have the embeddifg>|A C (>, so thatS € (C) is equivalent toH>*|A = [*.
Subsequently it was shown by Shapiro and Shidlds [SS61fdhat € (1,00) a similar result

holds:
H?|S D 1P(1 = |a]?) = {(Va)aes : D (1 = |af*)|va]” < o0}

acs
if and only if S € (C). Again, it turns out that we also havé?|S c (1 — |a|?) (the measure
Sues(l — |al?)é, is a so-called Carleson measure), so thiat (C) is equivalent toH?|S =
IP(1 — |a|*). Considering reproducing kernels(z) = (1 — az)~! the interpolation condition
and the Carleson condition can be restated in terms of gemnpebperties of the sequence
(ka)acs- More precisely the Carleson condition is equivalentig/| k.||, ). being uniformly
minimal in H?', and the interpolating conditiof/?|S = 1P(1 — |a|) to (ka/||kall,)acs being
an unconditional sequence #? (precise definitions will be given below). Hence, another
way of stating the interpolation result in Hardy spaces isag that a sequence of normalized
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2 ERIC AMAR & ANDREAS HARTMANN

reproducing kernels ilH?" is uniformly minimal if and only if it is an unconditional bissin

its span (since interpolation in the scale of Hardy spaces dot depend op, the distinction
betweenp andp’ may appear artificial here). This special situation is nokaied. It turns out
to be true in the Bergman space (see [SchS98]), and in Focksjpad Paley-Wiener spaces for
certain indices op (see [SchSQ0])).

More recently, in [AmOB] the first named author has given ahoetllowing to deduce inter-
polation from uniform minimality when the size of the spasénicreased by lowering the power
of integration. This result requires that the underlyingais the closure of a uniform algebra,
and applies in particular to Hardy spaces on the ball.

We would like to use some of the methods discussefl iIn JAmO8htaw that uniform mini-
mality implies unconditionality in a bigger space for carthackward shift invariant subspaces
K7 for which the Paley-Wiener spaces are a particular instaReeall that for an inner function
I, K7 = H?NTHE (when considered as a space of function§prwhich is equal to the orthog-
onal complement of 72 whenp = 2. Note also that these spaces are projected subspaégs of
(1 < p < o0), and the projection — orthogonal when= 2 — is given byP; = IP_I, where
P_ = Id— P, andP, isthe Riesz projections ¢f(¢’*) = 3=, ., a,e™" € LP(T) onto the analytic
party", -, a,e™. We would like to draw the attention of the reader to the sesifuation when
I(z) = I(2) := exp(27(z + 1) /(2 — 1)). Then, the spac&? is isomorphic to the Paley-Wiener
spacePW? of entire functions of exponential typeandp-th power integrable on the real line
(see Sectiof] 3). By the Paley-Wiener theordthl’? is isometrically isomorphic td.?(—7, 7).
Already in this “simple” case the description of interpaigtsequences is not known (see more
comments below). There exist sufficient density conditifmmsnterpolation (or unconditional-
ity) whenp = 2. They allow to check that a certain uniform minimal sequendaich is not
unconditional, becomes unconditional when we “increake’itner function meaning that we
replacel by I'*, ¢ > 0. (Itis well known thatK7 C K7 .. and everk?,. = K? + [K%.) The
density conditions fop = 2 do not seem to generalize po# 2 (see Proposition 3.2 and com-
ments at the end of Sectigh 3), so that there is no easy arguhstrcould show that lowering
the integration power without changirgs sufficient to deduce unconditionality from uniform
minimality. This makes the problem extremely delicate. i8the general situation that we con-
sider and where density or other usable conditions are rmvknit seems extremly difficult to
deduce interpolation from uniform minimality only be inageng the space in one direction (ei-
ther adding factors té or lowering the integration powey. Let us mention however that under
the assumptiori(\,,) — 0 the equivalence between uniform minimality and unconddidy in
K7? has been established [NJHNP81] (see aJso JFro9] for a vertiored version of this result).

Our results will require some conditions on the inner fumetsuch as being one-component.
This means that the level skt/,c) = {z € D : |I(z)| < €} of the inner functior/ is connected
for somees € (0,1) (which is for instance the case fdy). One-component inner functions
appear in work by Aleksandrov, Treil-Volberg etc. in the meation with embedding theorems
and Carleson measures.

As a consequence of our discussions we state here a samyte res

Theorem 1.1.Let I be a one-component singular inner functichC D, 1 < p < 2. Suppose
that sup,cq [I(a)| < 1. If (KI/||kL]|,)acs is uniformly minimal inK?, wherel/p + 1/p' =
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1, then for everye > 0 and for everys < p, S is an interpolating sequence fdk{,.. and
(KL/||kE||+)aes is an unconditional sequence Ids ., 1/s + 1/s" = 1.

As already pointed out, a characterization of interpotatiequences already for Paley-Wiener
spaces is unknown for general(whenp = oo Beurling gives a characterization, and for
0 < p < 1, see [FI9p]; a crucial difference between these cased ang < o is the bounded-
ness of the Hilbert transform af’). For the case of complete interpolating sequence3iiry,

i.e. interpolating sequences for which the interpolatingctions are unique, these are charac-
terized in [CS9)] appealing to the Carleson condition arel Muckenhouptd?-condition for
some function associated with the generating functiofl. Bufficient conditions are pointed out
in [EchS0P] using a kind of uniform zero-set condition in #périt of Beurling. Such a condi-
tion cannot be necessary since there are complete inténpEequences in the Paley-Wiener
spaces. Another approach is based on invertibility proggedf P;| K7, whereB = [, b, and
discussed in the seminal papgr [HNP81] (see dIso Ni02])cedraving observed that the Car-
leson condition forS' is necessary (under the conditiorp, . ¢ |/(a)| < 1), and sdk,/||kal|p)acs

is an unconditional basis fdk%, the left invertibility of P;| K%, guarantees that! /||k!||,).es

is still an unconditional sequence. The invertibility peofes of P;| K%, can be reduced to the
invertibility properties of a certain Toeplitz operatdr,£). Again, and also in this approach,
one can feel an essential difference between completgoittding sequences and not necessary
complete interpolating sequences. The case of completgwlating sequences corresponds to
invertibility of 7,5, and a criterion of invertibility of Toeplitz operators isidwn. This is the
theorem of Devinatz and Widom (see e[g. [Ni02, Theorem B4).8r p = 2 and Rochberg (see
[Ro71]) forl < p < oo, and again itis based on the Muckenho(s) condition (or the Helson-
Szegd condition in case = 2), this time for some function € H? such that/ B = h/h. A
useful description of left-invertibility of Toeplitz opators, the situation corresponding to gen-
eral not necessarily complete interpolating sequencestisivailable. For the cage= 2 an
implicit condition is given in[HNP81], and a condition balsen extremal functions in the kernel
of the adjointl5, can be found in[[HSSDA4].

The paper is organized as follows. In the next section wedhice the necessary material on
uniform minimality, dual boundedness and unconditiogalit characterization of unconditional
bases of point evaluations (or reproducing kernels) wilphen in terms of interpolation and
embedding. We will also discuss some Carleson-type camditivhich are naturally connected
with embedding problems. Sectiph 3 is devoted to a longerudson of the situation in the
Paley-Wiener spaces. We essentially put the known matetilaé perspective of our work. This
should convince the reader that it is difficult to get bete=uit. In the last section we give our
main result Theorerfi 4.5 which as a special case containgdimgb].

2. PRELIMINARIES

2.1. Geometric properties of families of vectors of Banach spase We begin with some ob-
servations in the classical” concerning the relation between uniform minimality andamati-
tionality. Recall that the reproducing kernel BP in a € D is given byk,(z) = (1 —az)~".
The Carleson conditioimf,cs |B,(a)| > ¢ > 0 can then be restated &&,/|| k.||, ).cs being a
uniformly minimal sequence itf*" (which is equivalent here tg:, /|| k.||, )acs being uniformly
minimal in H?). Let us explain this a little bit more. By definition a sequerof normalized
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vectors(z,, ), in a Banach spac# is uniformly minimal if
(2.1) irnlfdist(xn, \ zx) =6 >0.
k#n
(HereV, x; denotes the closed linear span of the vecigrs By the Hahn-Banach theorem this

is equivalent to the existence of a sequence of functiofgalg, in X* such thatp,,(zx) = 6.,
whered,,;. is the usual Kronecker symbol, asdp,, ||¢||x~ < oo. In our situation, setting

Ba ka

a = ka s
90 Ba(a) k:a(a) || Hp
we get
Fy
<80a7 —> = 5ab-
1]l

Since||ka||s == (1 — |a|?)'~'/* we moreover haveup, g || ¢all, < co. Another way of viewing
the uniform minimality condition whep = 2 is given in terms of angles: a sequerag),

of vectors in a Hilbert space is uniformly minimal if the aeglbetween:,, andV/, ., ;. are
uniformly bounded away from zero.

A notion closely related with uniform minimality is that ofidl boundedness (sde JTAmO08]).
Let us give a general definition

Definition 2.1. Let X C Hol(Q2) be a reflexive Banach space of holomorphic functions on a
domain(2. Suppose that the point evaluatiofis are continuous for every € ). A sequence

S C Qis called dual-bounded if the sequende, /|| E. || x+).cs Of reproducing kernels is uni-
formly minimal.

Again, by the Hahn-Banach theorem this means that therésexisequencé, ).cs of ele-
ments inX (= X**) with uniformly bounded normup,, || p.llx < oo and{pa, Ep/|| Ep||x+) =
Oabs 1.€. pa(b) = dap|| Ep|| x+-

This condition is termed weak interpolation [n [SchS00].

Let us discuss the unconditionality. Recall that a bésjg,, of vectors in a Banach spacé
is an unconditional basis if for eveny € X, there exists a numerical sequerieg) such that
the sumy_, o, x,, converges ta:;, and for every sequence of signs- (¢,,), the sumy_, €, x,
converges inX to a vectorz. with norm comparable tdz||. We will discuss the interpolation
condition?|A D IP(1—]al|?) in the light of this definition using reproducing kernelstsErecall
from [SS6]L] that we havé/?|A = [*(1 — |a|?). Let B = Bg be the Blaschke product vanishing
onS. SetK% = H? N BHE, where HY = »H?. The spacek’; is a backward shift invariant
subspace. AlsoK%, = V,cg ke, andH? = K% + BH? (K% = PpH? is a projected space).
So the interpolation condition is equivalentAd;|A = I7(1 — |a|?), and since the interpolation
problem has unique solution i;, we have for every € K73, ||| ~ 3, (1 — |a|*)|f(a)[.
Clearly under this condition the functions, introduced above exist and are kY,. Then for
every finite sequence,) and every sequence of sigfts,) we have

1D cavarally = 3 (1 = lal*)ealloal” = 3 (1 — |af*) jval”
acsS acs acs
which shows thaty, ), is an unconditional basis ik};. Then(k,/| k.|l,) is also an uncondi-
tional basis ink%,.
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Again, the unconditionality can be expressed in terms ofengherp = 2: a sequencér,,),,
of vectors in a Hilbert space is unconditional if the anglesateen\V/ ., z, and V., 7 IS
uniformly bounded away from zero for everyc N.

So the interpolation results tell us thatiff a sequence of reproducing kernels is uniformly
minimal if and only if it is an unconditional sequence. Suebuits also hold in other spaces like
e.g. Bergman spaces (s¢e [ScS98]) and in Fock and Palaek¢ipaces for certain values;of
(see [SchSQ0]).

We will be interested in the situation in backward shift inaat subspace&?.

2.2. Unconditional bases and interpolation. In this section we will establish a general link
between unconditional basis on the one hand and interpolatith an additional embedding
property on the other hand. It turns out that this link candfermulated, in the spirit of [Ni78,
Theorem1.2], in abstract terms without appealing to théonatf interpolation. We will start
with this general result before coming back to the speciatexd of interpolation.

Suppose thak is a reflexive Banach space, and (g} ), be a sequence of normalized ele-
ments inX™ that we suppose at least minimalist (y,,, V.., yx) > 0 for everyn € N. We set
Y = Vy, andN := Y+ C (X*)* = X. By the minimality condition there exists a sequence
(zp)n € X** = X such thatz,, yx) x—x+ x+ = Ok, 1, k € N.

For a sequence spakteve consider the canonical systém, },, wheree,, = (d,.x)x. The space
[ will be called ideal if whenevefa,,), € [ and|b,| < |a,|, n € N, then(b,) € [. Recall also
that a family of vectors in a Banach space is called fundaahérit generates a dense set in the
Banach space. Observe that the canonical system is an uticoabbasis in/ if and only if [ is
ideal and the canonical system is fundamental in

We obtain the following result.

Proposition 2.2. Let X be a reflexive Banach space. With the above notation, thewlg
assertions are equivalent.

(1) The sequencey,, ), is an unconditional basis i = \/,, y,,.
(2) The sequencer,, + N), is an unconditional basis i/ N (in general not normalized).
(3) There exists two reflexive Banach sequence spgacksin which the respective canoni-
cal systems are unconditional bases and such that
(i) The set of generalized Fourier coefficientsXotontains;:

{<x7yn>X,X*)n HMAS X} D) lla
(i) foreveryu = (pn)n € lo,
1> tnynllxe S pelliss

moreoverl, ~ [ and the duality of;, and l; ~ * is given by((a,)n, (ftn)n )0 =
> n Q.

This theorem is in the spirit of [Ni78, Theorem 1.2]. HoweuerNikolski's theorem there
does not really appear the condition (i) together with an eshaing of type (ii). The condition
(i) will later on play the role of the interpolation part.
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Proof. . Observe first that'* = (X*)*/Y+ = X/N. Moreover, for everyy € N = Y+,
(Tp 4+, yk) = (Tn, Yn) = Ok, and henceé(y,),, (z, +N),) is a biorthogonal system ifY, Y*).
By the general theory (see for instanfe [Sig70, Corollat®.2, Theorem 11.17.7]) we obtain
the equivalence of (1) and (2).

Let us now prove that (1) and (2) imply (3). By [N]78, Theorert]the sequencey,,).,, is an
unconditional sequence i if and only if the multiplier spacenult(y,,) = {1 = (ttn)n : T
Lin(yn) — Lin(Yn)s 2 finite OnYn F— 2 finite HnCnYn €Xtends to a bounded operator B is
equal tol>~. And this, by [Ni78, Lemma 1.2] is equivalent to the existelné a sequence space
Iy in which the canonical system is an unconditional basis $hat(y, ), is al,-basis, which
means that

T:1, — Y
() +— Z:unyn

is an isomorphism. Note that is reflexive as a closed subspace of the reflexive Banach space
X*, and so i9,.

For exactly the same reason, by (2) there exists a sequeacel swith the required properties
such that

S:ly — X/N
(an)n +— Zanxn =2, +N

is an isomorphism. Note thaf/N is reflexive as a quotient space of the reflexive Banach space
X, and so id;. Take(ay,), € 4, thenS((a,)n) = zo + N € X/N for a suitabler, € X.
NOW ((Za, Yn))n = ((Xk el Yn))n = (an)n (NOte thaty", arzy, + N converges inX/N). So
(an)n € {({z,yn)) : v € X}

Finally, sincel; ~ X/N,l, ~ Y andY* = X/N we havel; ~ [, and by reflexivityl, ~ [;.
Moreover, by the idenfication maps we can write fay,),, € Iy and(u,), € lo ~ [3:

<(an)na (Mn)n)h,lg = <Z QT + N7 ,ukyn>X/N,Y = Z O‘n,uk<xna yn>X,Y = Z Ol [«
n n,k n

We finish by showing that (3) implies (1). By (ii), the openaidis bounded and by construc-
tion onto, so that we are done if we can show thas left invertible: |||/, < [|T1|ly. Now by
(i) for (an)n € [y, there existg:, € X such thaty, = (x,,y,). Let us introduce the operator

A:ly, — X/N
(n)n +— xo+ N.

This operator is well defined (if we choosé with (z.,y,) = «a,, then(z, — z,,y,) = 0 for
everyn andz!, —z, € N). Itis also linear. Let us check that its graph is closed.thizrconsider

a sequencénl),, converging ta(a,),, in /;. Since the canonical basis is an unconditional basis
in /;, we obtain coordinate-wise convergence} — «, when N — oo. We assume that
A((aM),) = 2oy + N — z + N. Note thatA((a,),) = z, + N. Then for everyn we
have (z,y,) = limy_oo(Ton, yp) = limy oo @ = a, = (24,9,). SO — 2, € N and
x+ N = A((an)n). By the closed graph theoreris bounded.
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Let us show thatd* : (X/N)* =Y — [ is the left inverse td" (modulo the isomorphism
from [ to [;). Equivalently it is sufficient to show thdt*A : [; — [ is an isomorphism. Note
that for («,),, € I; and(uy,), € Iz, we have

<T*A(an)na (Mn)n)lg,b - <A(an)na T(,un)n>X/N,Y - <xa + Na Z ,unyn>X/N,Y
= Z ,un<xom yn>X,X*

= Z Moy Oy

By assumption this is equal {0, )., (1tn)n )1, 1, SO that for everyfa, ), € Iy and(u,), € la, we
have

(T A ), (:Un)n>l§,lz = ((n)ns (Hn)n )1y 1o
Hencel™ A is the identity (modulo the identification betwekrand(}). |

It is interesting to note that wheX is a Hilbert space more can be said about the structure of
it is clear that theri = /2. However, by a result of Lindenstrauss and Zippin ($€€ JIIZ60in a
Banach spac&” every two normalized unconditional bases are isomorphéatt other, theiX
is isomorphic to one of the following spaces ' or /2. In other words the general theory does
not yield! = [ when(z,), is an unconditional basis in (a subspace &f)= L? (Pelczynski
constructed actually unconditional baseg#mwhich are not equivalent to the canonical basis,

[PE5D)).

Let X be Banach space of holomorphic functionsiyrsuch that the point evaluatiors, in
a € D are continuous inX. A sequenceé C D is calledi-interpolating for a sequence spdce
(defined onS) if for every sequence = (v,)acs With (v./|| Eq|lx+)acs € I there is a function
f e X with f(a) = v, i.e.

XIS D U(1/]|Eallx=) = {v = (Va)aes : (Va/ || Eallx+)acs € I}

Since, || Bl ey = ||kally = (1 = |a]*)~"? (1 < p < ), this definition is consistent with the
definitions we gave before fa?, in which case we had chosér- (7.

The reader should also note that in the previous subsecomawe repeatedly used the fact
that interpolation inf?, i.e. H?|S D (1 — |a|?) (we will not consider the case = oo here)
implies in fact the equality7?|S = I*(1 — |a|?) (this is Shapiro and Shields’ resulf, [S$61]).

In the general case, without any further information, weehtavimpose an additional embed-
ding. For the convenience of the proof in the following réseg will suppose thak is reflexive
(and sol will be). We will also need the notion of ideal space. A sedqueespace is called
ideal if whenevew = (v,), € l andw = (w,), iS any numerical sequence with,, | < |v,| for
everyn then alsow € [. This notion appears naturally in the context of free intéapon and
unconditional bases.

Proposition 2.3. SupposeX C Hol(D) is reflexive andS is a sequence if>. The following
assertions are equivalent.

(1) There exists a reflexive and ideal sequence spaaeh that
(i) Sisl-interpolating



8 ERIC AMAR & ANDREAS HARTMANN

(i) There is a constant’ such that for every finitely supported sequepnce (1t).cs,
we havel X,cs puprt—lx- < Cllulr
(2) (E,)qes is an unconditional sequence xi*.

A sequence satisfying condition (ii) will be callédCarleson ok-Carleson wher* = [? (a
Carleson embedding fox* with respect to the sequence sp&ge See Subsectidn 2.3 for more
on Carleson conditions.

Note that another way of writing (ii) is
VieX,Vuel, | u
acesS
which means that for every € X, the sequencéf(a)/||E.l|x+)qes IS in (I*)* = [, and hence
(ii) is equivalent to
(2.2) 1(f(@)/ | Eall x-)aeslli < Cll £l x,

which meansX|A C I(1/||E.||x+) (there will be more discussions on Carleson measures in
Subsectiof 2]3). We thus have

HE H

Corollary 2.4. SupposeX C Hol(D) is reflexive andS is a sequence if. The following
assertions are equivalent.

(1) There exists a reflexive and ideal sequence spaaeh thatX |A = [(1/||E,|| x+)
(2) (E.).es is an unconditional sequence X* (an*-basis in its span).

Proof of Propositioff 2]3By [Ni78, Theorem 1.1] the sequen¢E, ),cs is an unconditional se-
quence in its span if and only if the multiplier spaceilt(£,) = {1 = (tta)acs = T :
Lin(E,) — Lin(Ea), 3 finite @alla = X pinite Ha®al, €Xtends to a bounded operator on
X} = Vaes Eu} is equal tol*. And this, by [Ni78, Lemma 1.2] is equivalent to the existenc
of an ideal spacé such that E, ).cs is alo-basis, which means thaf, ~ o(E,) := {(®)aes :
(|| Eqllx+) € lo}, in other words the mappin@y,)aes —— Yacs @aFa IS @an isomorphism
from [y(E,) onto X, or equivalently

T ZO — X
(ﬁa a€eS ﬁa
o Tt

is an isomorphism. Note th&, is reflexive as a closed subspace of a reflexive Banach space,
and so idy. Setl := [} (so that* = [y). By the preceding argumerttZ, ).cs is an unconditional
sequence in its span if and only if

(2.3) cllaller < 1 2 tagmr—
%@ IE H

for some fixed constants C'. This yields in particular (ii).

[x+ <

We will compute the adjoint operat@r : X — [. Letu € [*,

(T"f, ) = (f, Ty = {f, Zua

aesS

= % m

aesS

IE ||x
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Hence, the functiondl™ f on[* is represented by a sequence the entries of which are given by
f(a)/||Eallx+ a € S. InotherwordsT™ f = (f(a)/||Fallx+)acs € (I*)* = 1.

Now the left hand inequality if(3.3) is equivalent to the lefertibility of 7" which is equiv-
alent to the surjectivity off ™ i.e. to the factS is [-interpolating. This show that (2) implies

(1)

For the converse implication, note that (ii) implies thehtimequality in [Z.B). Moreover this
inequality shows also thdt is well defined and bounded. By the above arguments the suifgc
of T is equivalent to the fact thétt is interpolating. On the other hand the surjectivityltfis
equivalent to the left invertibility of” and so to the left inequality i (2.3). |

Still the following is true

Corollary 2.5. If S is interpolating for K7 and if there is a constanf’ such that for every
finitely supported sequenge = (u1)acs, We have| Coes taks/ ksl My < Cllull, then

(kL/||KkL|,)aes is an unconditional sequence it .

More precisely the conclusion would be tfi&f) . is ani?”’-basis in its span. This conclusion
can in general not be deduced only from the condition of uditmmality as explained above.
However, in the special situatienp, ¢ |/ (a)| < 1, [HNP8], Theorem 6.3, Partie 1] shows that
if the reproducing kernels form an unconditional sequendéﬁ' then automatically they form
anl”’-basis in their span.

2.3. Carleson measures.Let us fix the framework of this subsectiof.is a sequence i, 1
an inner function and < ¢ < oco. Fora € S we denote by:! , = k!/||k[||, the normalized
reproducing kernel.

Let1 < ¢ < co. Recall that a sequenceis calledg-Carleson if

> takg,

aesS

D, > 0,Yu € 19, < Dyl pullg-

q

We will also use the notion of weakCarleson sequences:

Definition 2.6. Let2 < ¢ < co. The sequenc# is called weakly;-Carleson if

> |ial*kg.al®

acesS

aD, > 0,Vu € 19,

< Dyllpell2.
q/2

Note that by [AmOB, Lemma 3.2], theCarleson property implies the weakCarleson prop-
erty.

Observe also thatl?)* = [?, that the dual ofK{ can be identified withx¥, and that the
functional of point evaluatior, can then be identified with!. Now, using the notation from
the preceding subsection, Hy {2.8)is ¢-Carleson if and only if for every € K7,

LA

acs Ikalle —

which means that := 3" ,.¢ ./ || k.|, is aK}-Carleson measurdi} C L7 (v).
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In the special situation whehis one-component, then by a result by Aleksandrov (Seg)(4.1)

we have
i, = (Lt
T
p’ being the conjugated index {9 and so, ifS is g-Carleson and is one-component, then the
measure
1—|af?

W=D T e

acs
is K7-Carleson.

Geometric Carleson conditions

In [TVI4q], the following geometric notion of Carleson meesappears. For an inner function
ITandare > 0,letL(I,e) = {2z € D: |I(2)| < } be the associated level set. In the notation of
[AI0Z], let C(I) be the set of measures for which there exists 0 such that

(2.4) Ll (S(¢,r)) < Cr

for every Carleson window§(¢ = ¢, h) :={z =re? e D: 1 —-h <r < 1,|t — 0| < h}
meetingL(1,1/2) (this is of course a weaker notion than the usual one requ{®) on all
Carleson windows; the value= 1/2 is of no particular relevance). Let algi(/) be the set
of measures for whicl&? C LP(u). Strengthening the results ¢f[TV96], Aleksandrov proved
in [AI02, Theorem 1.4] that for one component inner funct6it/) = C,(/). In other words,
the geometric Carleson conditioh (2.4) on Carleson windoweting the level sek(7,1/2)
characterizes th&?-Carleson measures for one component inner functions.

Combining these observations, we get the following charazition.
Fact 2.7.Let I be a one-componentinner function. Then the following d&ses are equivalent.

(i) Sisp/-Carleson
2
(i) v="34cq %% is K7-Carleson

(iii) v (as defined in point (ii)) satisfies the geometric Carlesamdi@n (2.4) on Carleson
windows meeting the level sét(/, 1/2).

Question. Do there exist in backward shift invariant subspaces imlatpng sequencesS that
are notp’-Carleson?

3. PALEY-WIENER SPACES

We will discuss a special class of backward shift invariaftspaces. Lef(z) = ¢'*™* be the
singular inner function in the upper half plane with solegsilarity atoco (to fix the ideas, we
have chosen the mass of the associated singular measuré#d. iRecall (see[[NiJ2, B.1]) that
the transformation

U,: H’(D) — HP(C™)

e e () o)
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is an isomorphism of the Hardy space on the diBKD) onto the Hardy spac&?(C™) of the
upper half planeC*™ = {z € C : Imz > 0}. This transformation sends the inner function
In(z) =exp(2m(2+1)/(z —1))onDto I onC™.

Let PIWP be the Paley-Wiener space of entire functions of typ&hich arep-th power in-
tegrable on the real line. Pick e PW?. By a theorem by Plancherel and Polya (dee JCEv96,
Lecture 7, Theorem 4]) we get

3.1 £ (@ +ia)de < e |

for everya € R. SettingF'(z) = ¢™* f(z) (which means that in a sense we compensate the type
in the positive imaginary direction) yields

LIFG+iypde = [ 1f@+iy)Per™de <| £l

in particular for everyy > 0 which means that” € H?(C™). Dividing F by I we obtain an
analytic function in the lower halfplan@_ and for everyy < 0,

L1F@+ iy pig = [ |f(@+ iyl < |/

so thatF/I is in the Hardy space of the lower halfpla@d®(C_). HenceF € H?(C") N
TH(C_) =: K ; (now considered as a space of functionsRyrthe elements of which can of
course be continued analytically to the whole plane). Itéaicthat/s; ; can be identified vid/,
with K7 onD (or T). Hence there is a natural identification between Paleyréfispaces and
backward invariant subspaces (Bror R): PW? = e~ "™*U,K¥.

It is well known that in the particular cage= 2, PW? is nothing butF L?(—r, ) (this comes
from the Paley-Wiener theorem).

Let us make another observation concerning imaginarylatoss. Fora € R, let
o, : PW? — PWP
f o {®uf 2 f(z —ia)}.
Using again the Plancherel-Polya theorem (geg (3.1))eeé&®wmtd,, is well-defined and bounded

(it is clearly linear). It is also invertible with inverse;! = ®_,. So®, is an isomorphism of
PW? onto itself (the type that we fixed tohere does not really matter).

So the Paley-Wiener spaces are special candidates of ocessfd, which motivates the
following important observations. In general it is not tthat uniform minimality implies inter-
polation or unconditionality which we will explain now follving [SchS00].

By definition a sequencE = {x; + iy}, is interpolating forPWW? if for every numerical
sequencéuvy ), With

(3.2) Z \vk|p6_p7"7k|(1 + |nx|) < o0
%

there exists € PW? with f(vx) = ay.

Theorem 3.1(Schuster-Seip, 2000)et2 < p < oco. There exists a dual bounded sequehce
which is not interpolating ilPW~.

We would like to recall here the construction of Schuster @aig since it will serve later on.
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Proof. Define a squencE = {v;}rez by 70 = 0 andi(p) = k + dx(p), k € Z \ {0}, where
dx(p) = sign(k)/(2py) andpy, = max(p,p’), 1/p+ 1/p’ = 1. Since this sequence is real, the
weight appearing in(3.2) is equal to 1.

Now letG(z) = 2 [Tx.0(1 — %) which defines an entire function of exponential typeith
|G (z)| ~ d(z,T)(1 + |=|)~1/P°. Note that the»-th power integrability of G| onR is determined
by (1+|x|)~/70, and the latter function is nevesth power integrable oR (one could distinguish
the case > 2 andp < 2). Hencel' is a uniqueness set and thus interpolating if and only if it is
completely interpolating.

We will use the same type of computations as in the prodf oB[f,. S’ heorem 2] to check that
I" is not (completely) interpolating when> 2. According to [CS9J7, Theorem 1], it suffices to
check thatF'?, whereF (z) = |G(x)/d(z,T)| ~ (1 + |z|)~/?, is not(A,), i.e.

1 1 ;A\
= [ prgt —/F—p dt
|f\/f <|f\ i )

is not uniformly bounded in the intervals Forp > 2, we havep, = p and hence we have to

consider
1 e o)
=@ ) —/1 ty'edt)
77 e (m (1412 )

This expression behaves likez(1 + |z|) when! = [0, z|, which is incompatible with theA,,)-
condition. So the sequentés not interpolating.

On the other handy,(z) = G(2)/(z — ) vanishes oi" \ {7} and satisfies

(3.3) |9k ()] 22 [ gkl o R)-

Note thatG' € L? (if and) only if (14 |=|)~Y/?" € L?,i.e.p/p' = p—1 > 1 orp > 2. Thisimplies
that the sequence is dual bounded. In fact, note that thedaping kernel of the Paley-Wiener
spacePW? in z € R is given byk,(z) = sinc(n(z — z)) = sin(n(z — x))/(7(z — x)), the
norm of which inL” (R) can be easily estimated to be comparable to a constant indapty
of z. Hence [[3]3) implies thak, := gi/||gx||, is of uniformly bounded norm andy ()| ~ 1 ~
[k |l 1o () Suitably renormedgy ), thus furnishes the familfp., ), mentioned after Definition
: |

As a consequence, IRIV? there exists a sequentesuch thaf k., /| &, ||
minimal in PW?" but not unconditional.

pwp’}l is uniformly

Still, it can be observed thatis uniformly separated in the euclidean distance and heynce b
the classical Plancherel-Polya inequality we have foryeyec PWP

(3.4) 1wl < ClfIB,
k
so that the restriction operatgr— f|I" is continuous fromPW? to [? (onto whenl" is interpo-
lating), in other words the measuye . J, is PIW2-Carleson.
More can be said. The following result is nothing but a rexiptetation of[LS37].

Proposition 3.2. Let1 < p < 2. Then for everyl < s < p there exists a sequencethat is
interpolating for PW? without being interpolating fo?>.
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So, in the scale of Paley-Wiener spaces — which representsdass of backward shift in-
variant subspaces — an interpolating sequence is not redgsaterpolating in an arbitrary
bigger space, and sofortiori a dual bounded sequence for a giyeis not necessarily interpo-
lating for a bigger spacg&;, s < p. This should motivate why in our main result discussed in the
next section we increase the space in two directions to ¢@taalation from dual boundedness:
we increase the space by adding factors to the defining immetibnandby decreasing.

Again we translate the result to the language of unconditipn The sequence constructed
in this proposition is again a real sequence which is unifpiseparated in the euclidean metric
so that [3}4) holds fop and s and hence the measuye,.; d,, is a Carleson measure. This
implies that ifl" is interpolation forPW? then we do not only hav€@W?|I" O [* (recall that the
reproducing kernel is given by théc-function in4, € R the norm of which is comparable to
a constant) buPW?|I" = [?. By Corollary[2.# this means thét, /| k|, ),er) IS unconditional
in PW?'. Clearly, sincd” is not interpolating for1V?, the sequencék, /| k|| )-er cannot be
unconditional inP1W?'. We recapitulate these observations in the following tesul

Corollary 3.3. Let1 < p < 2. Then for everyl < s < p there exists a sequendesuch that
(ky/|lk+ |l )rer) is unconditional inPW?" and (k. /||k, || )-er iS not unconditional foP W'

Recall thatk,, the reproding kernel i®1V? is given by asinc-function the norm of which is
comparable to a constant where R.

It can be noted that > p’ so thatPW?' is a smaller space thaPiV?'.

Proof of Propositiorf 3]2Sincel < p < 2 we havep, := max(p,p’) = p' (recalll/p+ 1/p =

1). In contrast to the above example where we have 'spreadsbgiitly the integers (by adding
a constant to the positive integers and subtracting the samstant from the negative integers)
to obtain a dual bounded sequence which is not interpoldting 2) we will now narrow the
integers: lety, = —sign(k)/2s’. We have in particulas, = max(s,s’) = s > p/. Define

' = (Vi)kez BY % = k + 0k, k € Z \ {0}, 70 = 0. Then as the example if [C397, Theorem
2], the sequenck is not interpolating for”1V:. On the other hand, singé&,| = 1/2s' < 1/2p’
we deduce from the sufficiency part ¢f[L397, Theorem 2] thig complete interpolating for
PWP. |

Remark 3.4. We have mentioned the translatiohs, a € R. These allow to translate the above
examplel’ to any line parallel to the real axisb,I". By the properties ofb,, we keep the
properties of uniform minimality and (non)-interpolation

We now discuss the effect of increasing the size of the spattesiPaley-Wiener case “in the
direction of the inner function”. More precisely we will ceider the situation when we replace
I by I'*¢ on the K¥-side, which means on the Paley-Wiener side that we replecg/per by
7(1+¢) =: 7+ nforsomen > 0. And for p = 2, on the Fourier side this means that we replace
[, 7] by [~(7 + 1), 7+ 1.

We will use [Se9b, Theorem 2.4] to prove the following result

Proposition 3.5. LetI" = {v; }1ez be defined by, = 0, v, = k + sign(k)/4. Then(k, ) er is
uniformly minimal and not unconditional i*1¥2, and for every; > 0, I' is an unconditional

sequence iPW?, .
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Proof of Propositiorf 3]5The first part of the claim is established by Theoiferh 3.1.

We use [Se95, Theorem 2.4] for interpolation in the biggercep Seip’s theorem furnishes
a sufficient density condition for unconditional sequeniceBaley-Wiener spaces when= 2
which makes this proof very easy. Recall thatr) denotes the largest number of points from a
sequence of real numbe#sto be found in an interval of length The upper uniform density is
then defined as

"
D*(A) = lim © :T)

(the limit exists by standard arguments on subadditivity 0fr)). [S€9%, Theorem 2.4] states
that when a sequence which is uniformly separated in the euclidean distandisfees D" (A) <
2%, then(k,/||kx|| pwz)rea is @an unconditional sequence V7 (strictly speaking Seip’s theo-
rem yields the unconditionality for exponentialsli([—7, 7]), but via the Fourier transform this
is of course the same as for reproducing kernels). Our seguedlearly satisfiedD*(T") = 1,
and hence whenever> 2x, thenl is interpolating inP1V2. |

The proposition can also be shown by appealing o [SghS0€orEm 3] which gives a kind
of uniform non-uniqueness condition as sufficient conditior interpolation in Paley-Wiener
spaces. It can in fact be shown using a perturbation resuRdaheffer that the weak limits (in
the sense of Beurling) of our sequencénave the same completeness radius (in the sense of
Beurling-Malliavin) asl’, i.e. 7. So increasing the size of the interval makes these weakslimi
non-uniqueness in the bigger space (this is the most diffearidition of Schuster and Seip’s
result to be checked; concerning the other conditions apymean their theorem, i.e. uniform
separation and the two-sided Carleson condition, thesenanediate).

Question. A natural question arises in the context of these resulisptssible that the sequence
I" of Propositior[ 3]5 — which is dual bounded but not interdatatn P17? — is interpolating
in PWP for somep = 2 — ¢ (or p in some intervallé2 — ¢, 2)) for suitable smalk?

So this time we increase the size of the space in the diregti®nopositior{ 32 indicates that
e cannot be chosen arbitrarily big. This proposition alsoivadés another important remark. A
sufficient condition for interpolation in terms of a suitalolensity and depending on the value of
p, as encountered e.g. in the context of Bergman spaces wisepance satisfying the criticial
density is automatically interpolating in the bigger sag@ems not expectable. This makes the
question very delicate (note that the sequeha#f Proposition3]5 has the critical density for
PW?).

4. THE MAIN RESULT

Let / be an inner function, i.e. a function analytic®nbounded by, and such that/ ()| = 1
for a.e.( € T. Such a function is called one-component when there existsa (0, 1) such
that L(/,c) = {z € D : |I(2)| < ¢} is connected. Simple examples of such functions are for
examplel (z) = exp((z + 1)/(z — 1)) or Blaschke products with zeros not “too far” suchias
associated with the interpolating sequerice- {1 — 1/2"},. One-component inner functions
appear for example in the context of embeddings for stariewasubspaces. For example, Trell
and Volberg [TV9F] discuss the embeddiAg C L?(x) when! is one-component.



UNIFORM MINIMALITY AND UNCONDITIONALITY 15

The following result will be of interest for us

Theorem ([AI0Z]). If I is a one-component inner function ahe p < oo, then

M)/ < Hﬂ - |f<a>|2>1-1/p

(4.1)01<I,p>( T lap T |, < D) (ﬁ

forall a € D.

We will now discuss the principal results that lead to Thetffe].

For a sequenc# of points in[D, we introduce the related sequeniee}..s of independent
Bernoulli variables.

We now increasek?, whenp is fixed, which means that we multiply a factor to the in-
ner function/. More precisely let/ = [E where E is another inner function. Recall that
K} + IK% = K’ (which gives an idea on the increase of the space; note tisatémtity can
also be derived from a more general one in de Branges-Rospades).

We first discuss when dual boundednessfor 1 implies interpolation fog = 1.

Lemma4.1.LetS C D be dual bounded ik?, p > 1, and letE be another inner function. If

Feally 1%z 113
4.2 /{EJ o H allp a 112

||p’ 7

thenS is interpolating inK’} with J = IE.

SO [ |1 LA 8

Proof. Let firstc, e

Since S is dual bounded irk?, the sequencék! /| kL||,/)aes is uniformly minimal, so that

there exists a dual sequen@e, ,)acs iN K7 (ppa. kb ) = Gapy 1.€. ppa(b) = dusl|kf]l,, @and
SUP,es |lopall, < 0o. Asin [AMOY] the idea is now to take

E
A€ L T(N) == 3 MeCappatii
byer’ 1B,

The sum defining” converges clearly under the assumption of the theorem gircsummable.
Also kZ(a) = ||kF||3, and hence

which is comparable to a uniform constant.

kg (a) &2l 12113
T(N)(a) = Aacapap(a) LE = AaCa ]{I:E 2= )‘aHkaJHOO'
1EZ ], [[EZ]]pr
So, by equation[(4] 2) is interpolating inK!. |

We shall now discuss the general situation.

Lemma 4.2. Suppose that and £ are one-component inner functions. Letc D be a dual
1 1 1 .

bounded sequence ik; let 1 < s < pandq be such that = —+ —; suppose that the following
s P (g

conditions are satisfied.

. kE o k[ /
@ k2l = Vlsllile

||p’
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(i) VA € 7(S 3" Ma€abrpa

} < A
acesS P

(i) if ¢ > 2, Sis weaklyg-Carleson inK{,,

ThenS is K interpolating and moreover there exists a bounded line&ripolation operator
T:15(8) — K35, T(v)(a) = vallk||s-

Observe that we do not need to require the Carleson conditichwheng < 2.

Remark 4.3. Before proving the result, we discuss some special case®\iecondition (i) is
satisfied. Recall from{(4].1) that for an arbitrary inner @oeaponent functio® we have

1 |@<a>|2>”8
1—af” '
Hence when', E are one-component, we get
1/s
IEE Lk, (= E@P) T (1= H@)F)
HkaEHp’ (1 _ |E(a)|2)1/p (1 _ |a|2)1/5
1/q 1/p
(1= E@P) " (1= 1))
(1—laP)"”

From this we can deduce that (i) holds in the following cases.

4.3) 1K€ = (

1/p

(4.4) -

(1) SupposeF, I are one-component armilp\E( ) <n<l1 andsup|I( ) <n <1

Suppose also that = I E is one- component (it is not clear whether this follows frém
and E being one-component). Cleadyp, s |./(a)| < 1, and (i) follows.

(2) E = I and[ is one-component, theih = I? (note that it is clear that wheh(1, ¢) is
connected then so (12, £?)); in this case we do not need thep-condition, since

(1= @) = (L= @) (1 1P ",

which by (4.B8) and[(4]4) yields (i);
(3) I singular and/ar > 0, E = I* which impliesJ = 1't,

Remark 4.4. If p = 1 then dual boundedness 8fin K} implies thatS interpolating ink’; (take
the interpolation operator constructed in the proof of Leaff).

Proof of the Lemmaln view of Lemmd 4]l we can suppose< s < p.

In order to prove the lemma we will construct a functipnnterpolating a sequence € [*
weighted by the norm of the reproducing kernels. To do thesywdl consider finitely supported
sequences, say with only the firstV components possibly different from zero, and check that
the constants do not depend &he N. So, forl < s < p andv € ¢4, we shall build a function
h € K3 such that:

Vj=0,..,N — 1, h(a;) = v;|[kZ. |+ and]A|
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where the constant’ is independent ofV. The conclusion follows from a normal families
argument (see alsp JAm08]).

1 1 1 . .
We choose such that- = — + —; theng €]p’, co[ with p’ the conjugate exponent pfand we
s P g

sety; = Ay With 1y = ;]9 € (9, A, = |HmweﬂwmmM||wmwg
J
Let now
B L7 I
FeallyFeg (a)
By (i), we have
oo MR Mallke s N llallF [l
1k 1k (@) N1k [ 15213

N . 1 [E@)?\""
SinceE is one-component we havg (¢.1), ijé” ||, ~ (%@) , wherel + 4 = 1.
— |a

Clearlyl/q'+1/s—1/p+2x1/2=1/¢'+1/g—1 =0, and hence, ~ C, the constant being
independent ofi € S.

Next seth(z) := T'(v)(2) := X e VaCaPakl,- Then, becausg, (b) = da kL[ -
Va € S, h(a) = vaca|lkL|lkE, (a).

Recall thatk” (a) = k7 (a)/||kY ||,- Hence
LA
(LA

andh satisfies the interpolation condition.

ka (a)
12l

h(a) = VaCaHkin’kga(a) = Vg X X Hkin’ X = VaHk;z]HS’

Let us now come to the estimate of thg norm ofh.

Set
z) = Z AaCa€apa(z), and g(e, 2) Z uaea
aesS aesS
Thenh(z) = E(f(e, 2)g(e, z)) becausé(e;ex,) = 0,y
So we get
()" = [E(f9)I* < (E(|fg]))* < E([fg]*),
and hence

il = ([ o)) < ([ E(roldot)

By Holder’s inequality, we get

(4.5) /E |fg|®) do(z |:/|fg‘ do(z }§< U P dO_Ds/p (E [/T‘g‘q daDS/q
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Now fora € S, set\, := c,\.. Then||\||, < C||\|, and the first factor in[(45) is controlled
by (ii) of the hypotheses of the Lemma:

(4.6) E|[ 117 do] - ||ZA Cabalpa

} M < 1Al

and the constants appearing here do not depend.on
Consider the second factor in (#.5). Fubini’s theorem gives

E|[ 19" do| = [Elgl" do

We apply Khinchin's inequalities t& [|g|]:

/2
Blo = (5l i)
a€esS

If ¢ > 2, thenS weakly ¢g-Carleson implies

@) fElar dr < [ (bl [,

where, again, the constants do not dependon

) q/2
) < 3 l? K,
aesS

) q/2
) do <l

q, and integrating ovet we get:

If ¢ < 2then <Z \ta|? ‘kfa
a€sS

= [lullpa-

a8 [Ela < [ (Sl

So putting [4J6) and (4.7) of (4.8) i (#.5) we get thais an interpolating sequence féf.
Clearly the operatdr is a bounded linear interpolation operator. |

) do < 3 lpal” [ kL[
a€s

We are now in a position to prove the main result of this paper.
1 1 1
Theorem 4.5.Let1 < p <2, 1 < s < pandg suchthat- = — + —. Suppose that
s P g

() the dual squuenc{anp «tacs €Xists and is norm bounded i,
Gy (7] ~ & H|]L E|;\k My ang
2
(ii) S is weaklyg-Carleson inK,.

ThenS is Kj-interpolating and there exists a bounded linear interpiala operator.

Before discussing special cases we mention a first conseguyesing Propositiop 4.3 and
Fact[2.]7) for the case of unconditionality.
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Corollary 4.6. Suppose the conditions of the preceding theorem fulfillessufe moreover
that J is one-component and and that we have condition (iii) of fa@t the measure =

1 —|af?
>a — 14§, satisfies
1@

(4.9) ul(S(¢,r)) < Cr

for every Carleson window (¢ = €, h) meeting the level sét(J, 1/2). Then(k!/||k!||s)acs
is an unconditional sequence I .

As a corollary we obtain the first part of Theorém 1.1.

Corollary 4.7. Let1 < p < 2. LetI be a one-component singular inner function asid—
D. Suppose thasup,.g |I(a)| < 1. If (KL/||kX|l,)aes is uniformly minimal inK?, where
1/p+1/p" = 1then for every > 0 and for everyl < s < p, S is an interpolating sequence in

S
Il+s-

Proof of Corollary[4.Y.Condition (ii) of the theorem follows from the case (3) of Ra[4.3.
The condition (i) of the theorem is fulfilled by the fact th@f /||%.||,/).cs is uniformly min-

imal in Kf/. Let (pp.a)acs be the corresponding dual family iR%. It remains to check the
weak ¢-Carleson condition. In fact more is true: Sinfds one-component and inner with
SUp,es |1(a)| < 1, we have forevery € S, 1 < r < o0

1-1/r 1-1/r
i~ (@B AT
‘ o TP

Hence, up to some constants a € S, whose moduli are uniformly bounded above and below
we get

dab = {Ppa klg/Hkl{H:D) = Ca{Pp,as klg/Hkaﬁ = calPp.ar Pr(k/|[Kol]p))
= ca{Pr1Ppa: ko/ || Kol,))
= CalPpa> Ko/ |Ksllp)-
Hence(k,/| kally )acs is @ uniform minimal sequence i which by the interpolation results

is equivalent ta\ € (C'). (We could also have shown this by using direcfly](2.1).) antjoular,
(ka/|lkallp )acs is an unconditional sequence in afy, 1 < r < oo.

From this we can deduce théitis evenr-Carleson for any < r < oo: indeed, let(1i,)qecs €
[", then

T r

" il ke
paky,| = ‘ 12 Hat pa =c||> ta
2 takar| 2 i el T 2 1 Tl
k I8
(410) = Z| ll| <|||k[||:q> Z|rull|7
acsS acsS

where we have used thét,||, ~ ||kI|.. This holds in particular for = ¢, wherel/s =
1/p+1/q. |

We are now in a position to deduce also the second part of €hdar]L.
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Corollary 4.8. Let1 < p < 2. Let] be a one-component singular inner function afidC

D. Suppose thasup, g |1(a)] < 1. If (k1/||k!|l,)ees is uniformly minimal ink?’, where
1/p+ 1/p' = 1 then for every: > 0 and for everyy < p, (k!/||kL||,)aes is an unconditional
basis ink?, ..

So in the present situation, wecreasethe space in the direction of the inner function and
we decreasehe space by increasing the power of integration to deducenditionality from
uniform minimality.

Let us make another observation. [nJNi02, D4.4.9(5)] ittatesd (in conjunction with[[Ni(2,
Lemma D4.4.3]) that under the Carleson conditior (C') the conditionsup,.|(a)] < 1is
equivalent to the existence of € N such that(k!" /||k!"|,).cs is an unconditional sequence
in K?7y. In the present situation, whek? /||kl||,/)aes, P > 2, is supposed uniformly minimal
(which itself implies the Carleson condition under the aggtions on/ andS; we do not know
whether the Carleson condition could imply the uniform mmality in our context) then instead
of taking IV we can choosé!*< for anys > 0 (paying the price of replacing by ¢’ > p’).

Proof of Corollary[4.8.In view of the preceding corollary and Corolldry]2.5, it rensto check
thatS is (1°)* = I*'-Carleson, which follows at once frofi (4}10) by taking- s'. |

Proof of the theoremit remains to prove that the hypotheses of the theorem intpbge of
Lemmg4.2.We thus have to prove that

> Aa€aPpa

a€esS

P

E S A -

p
under the assumption that the dual sequémnge } . s is uniformly bounded iK?: sup ||pp.all, <
aces
C.
By Fubini's theorem

E

> Aa€aPpa

aesS

> Aa€aPpa

aesS

P
] do,

p
R
T
p
and by Khinchin’s inequalities we have

P N , ) p/2
Z)‘aeapp,a = Z|)‘a| |pp,a| .

aesS a€eS

E

Now, sincep < 2, we have

Aal? 21/2< o|? pl/p
Z‘ a| ‘pp,a| > Z‘ a‘ ‘pp,a| )

aesS aesS

and hence

/2]

> Aa€aPpa

aesS

p
[ dr < [ (Sl bl?) 2 = 32 Il il

aesS aesS
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p
E Z Aa€aPp.a < sup ||pp,aH§ H)‘H§7
= » aesS
|

and consequently the theorem holds.

[AI02]

[AmO08]
[AmO08]
[BM67]
[Ca58]
[Dy92]
[FI95]
[Fro9]
[HSS04]

[HNP81]

[Levob]

[LT77]
[LZ69]
[LS97]
[Ni78]

[NiS6]
[Ni02]

[Pe60]
[Re72]

[Ro77]

REFERENCES

A.B. AleksandrovOn embedding theorems for coinvariant subspaces of theagdefator. Il, (Rus-
sian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inskl@&te(POMI) 262 (1999), Issled. po
Linein. Oper. i Teor. Funkts. 27, 5-48, 231, translation .ilvi&ith. Sci. (New York)110 (2002),
no. 5, 2907-2929.

E. Amar,On linear extension for interpolating sequenc8tudia Mathl86(2008), no. 3, 251-265.

, On interpolation of interpolating sequencgésdag. Math. (N.S.18(2007), no. 2, 177-187.
A. Beurling & P. Malliavin, On the closure of characters and the zeros of entire funstidota Math.
118(1967), 79-93.

L. CarlesonAn interpolation problem for bounded analytic functipgner. J. Math.80 (1958),
921-930.

K.M. Dyakonoy, Interpolating functions of minimal norm, star-invarianilsspaces and kernels of
Toeplitz operatorsProc. Amer. Math. Sod16(1992), no. 4, 1007-1013.

K.M. Flornes,Sampling and interpolation in the Paley-Wiener spatés 0 < p < 1, Publ. Mat.42
(1998), no. 1, 103-118.

E. Fricain,Propriétes geonetriques des suites de noyaux reproduisants dans les espaoeles
Thése de doctorat, Université Bordeaux I, 1999.

A. Hartmann, D. Sarason & K. SeiBurjective Toeplitz operatordicta Sci. Math. (Szegedj0
(2004), no. 3-4, 609-621.

Hruscev, Nikolski & Pavlov S.V. Hruscv, N.K. Nikeki, B.S. PavlovUnconditional bases of expo-
nentials and of reproducing kernel€omplex analysis and spectral theory (Leningrad, 197119
pp. 214-335, Lecture Notes in Math., 864, Springer, Bexaw York, 1981.

B.Ya Levin,Lectures on entire functiont collaboration with and with a preface by Yu. Lyubarskii,
M. Sodin and V. Tkachenko. Translated from the Russian maipidy Tkachenko. Translations of
Mathematical Monographs, 150. American Mathematical &gcProvidence, RI, 1996. xvi+248 pp.
J. Lindenstrauss & L. TsafrirClassical Banach Spaces | and €lassics in Mathematics, Springer-
Verlag Berlin Heidelberg New York, 1996.

J. Lindenstrauss & M. ZippirBanach spaces with a unique unconditional badig-unctional Anal-
ysis3(1969), 115-125.

Yu. Lyubarskii & K. Seip,Complete interpolating sequences for Paley-Wiener spandsMucken-
houpt's(A4,) condition Rev. Mat. Iberoamericari (1997), no. 2, 361-376.

N.K. Nikolskii, Bases of invariant subspaces and operator interpolat{®ussian) Spectral theory
of functions and operators. Trudy Mat. Inst. Steklov. 13878), 50-123, 223, english translation in
Proc. Steklov Inst. Math 1979, no. 4, 55-132.

, Treatise on the Shift Operator

, Operators, Functions, and Systems: An easy rea8ipectral function theory. With an ap-
pendix by S. V. HrusCev [S. V. Khrushchv] and V. V. Pellerafislated from the Russian by Jaak
Peetre. Grundlehren der Mathematischen Wissenschafted@ifnental Principles of Mathematical
Sciences], 273. Springer-Verlag, Berlin, 1986. xii+491 pp

A. PelczynskiProjections in certain Banach spaceétudia Math19 (1960) 209-228.

R.M. RedhefferTwo consequences of the Beurling-Malliavin thedPyoc. Amer. Math. Soc36
(1972), 116-122.

R. RochbergToeplitz operators on weightel? spaces Indiana Univ. Math. J26 (1977), no. 2,
291-298.




22
[Schs98]
[Schs00]
[Se92]
[Se95]
[SS61]
[Sing70]

[TV96]

ERIC AMAR & ANDREAS HARTMANN

A.P. Schuster & K. Seipgy Carleson-type condition for interpolation in Bergman seg J. Reine
Angew. Math.497(1998), 223-233.

A.P. Schuster & K. Seifeak conditions for interpolation in holomorphic spacBsibl. Mat.44
(2000), no. 1, 277-293

K. Seip,Density theorems for sampling and interpolation in the Baagin-Fock space.,lJ. Reine
Angew. Math.429(1992), 91-106.

, On the connection between exponential bases and certaitetekequences ib?(—r, ),
J. Funct. Anal130(1995), no. 1, 131-160.

H.S. Shapiro & A.L. Shield©n some interpolation problems for analytic functipAsner. J. Math.
83(1961) 513-532.

I. SingerBases in Banach spacedlie Grundlehren der mathematischen Wissenschaften, Bahd
Springer-Verlag, New York-Berlin, 1970. viii+668 pp.

S.R. Treil & A.L. Volberg, Weighted embeddings and weighted norm inequalities foHitwmert
transform and the maximal operatohlgebra i Analiz7 (1995), no. 6, 205-226; translation in St.
Petersburg Math. Z.(1996), no. 6, 1017-1032.

EQUIPE DA NALYSE & GEOMETRIE, INSTITUT DE MATHEMATIQUES DE BORDEAUX, UNIVERSITE BOR-
DEAUX |, 351 COURS DE LALIBERATION, 33405 TRLENCE, FRANCE

E-mail addressEr i c. Amar @mat h. u- bor deaux1. fr
E-mail addressAndr eas. Har t mrann@rat h. u- bor deaux1. fr



