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ON 3D DDFV DISCRETIZATION

OF GRADIENT AND DIVERGENCE OPERATORS. I.

MESHING, OPERATORS AND DISCRETE DUALITY.

B. ANDREIANOV, M. BENDAHMANE, F. HUBERT, AND S. KRELL

Abstract. This work is intended to provide a convenient tool for the mathematical analysis of
a particular kind of finite volume approximation which can be used, for instance, in the context
of nonlinear and/or anisotropic diffusion operators in 3D. Following the approach developed by
F. Hermeline and by K. Domelevo and P. Omnès in 2D, we consider a “double” covering T of
a three-dimensional domain by a rather general primal mesh and by a well-chosen “dual” mesh.
The associated discrete divergence operator divT is obtained by the standard finite volume
approach. A simple and consistent discrete gradient operator ∇T is defined by local affine
interpolation that takes into account the geometry of the double mesh. Under mild geometrical
constraints on the choice of the dual volumes, we show that −divT , ∇T are linked by the
“discrete duality property”, which is an analogue of the integration-by-parts formula. The
primal mesh need not be conformal, and its interfaces can be general polygons.

We give several numerical examples for anisotropic linear diffusion problems; good conver-
gence properties are observed. The sequel [3] of this paper will summarize some key discrete
functional analysis tools for DDFV schemes and give applications to proving convergence of
DDFV schemes for several nonlinear degenerate parabolic PDEs.
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1. Introduction

1.1. The context of DDFV and related schemes. “Discrete duality” finite volume (DDFV)
discretization of linear and nonlinear diffusion operators, introduced for the Laplace problem in
2D by Hermeline in [43] and by Domelevo and Omnès in [29] (some key ideas appear already
in the works of Nicoläıdes [54] and Nicoläıdes and Hu [47, 54]), is one of possible discretization
strategies which applies to very general meshes and to a large variety of PDEs including the
Stokes problem, the Maxwell equations, nonlinear and linear anisotropic diffusion and convection-
diffusion problems (see e.g. [5, 9, 13, 15, 21, 24, 27, 28, 29, 42, 43, 44, 45, 47, 48, 49, 54, 55] and
references therein). The name “DDFV” stresses one important aspect of this 2D scheme, namely
the duality between the discrete gradient and the discrete divergence operators in use. Yet this
property is shared by various numerical schemes (e.g. the mimetic ones, for which the discrete
duality property underlies the definition of the scheme); actually, the name DDFV refers also to
the strategy of using “double” meshes in 2D with both cell and vertex unknowns.

Among different discretization approaches intended to resolve the difficulties coming either
from anisotropy/nonlinearity of the PDE under consideration or from the need of working on
non-orthogonal, non-conformal, locally refined meshes, let us mention those of [1, 2, 7, 16, 17, 26,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 51, 52, 57]; this list is by no means exhaustive. Several of
the above works present dimension-independent constructions, others are specific to 2D and their
extension to 3D requires new ideas (this is the case of the DDFV schemes). A 2D Benchmark that
reflects the behaviour of some of the above methods on linear diffusion problems was presented
by Herbin and Hubert in [40].

Among the aforementioned works, the closest to the DDFV strategy is the “complementary
volumes” strategy (Walkington [57]) as described by Handlovičová, Mikula and Sgallari in [39]
(see also [53, 38]). The same idea was used, in slightly different ways, in [2] and in [10] (see also [4,
Sec.2.1]). From a different viewpoint, the DDFV methodology of [29] is inspired by the gradient
reconstruction strategy “per diamond” introduced by Coudière, Vila and Villedieu [26].

In contrast to the above complementary volumes methods, a 2D DDFV mesh is a “double”
mesh. It consists of a primal mesh, which in general can be non-orthogonal and non-conformal
(e.g., locally refined), and of an appropriately chosen “dual” mesh. A discrete function is then
a superposition of two constant per volume functions, one on the primal mesh and the other
one on the dual mesh. From the primal and the dual mesh, a “diamond mesh” is generated (a
more general point of view is suggested in [9, §IX.B]); the “gradient” of a discrete function is
reconstructed as a constant per diamond vector field. Convergence analysis techniques for these
2D schemes are well developed by now (see e.g. [9, 13, 29] for details).

In 3D, several types of methods inspired by the 2D DDFV methodology were already proposed.
They differ by the number and the interpretation of their unknowns and/or by the construction of
the additional control volumes. We have recently learned of another interpretation, developed by
Pierre [56], in which the DDFV methods are seen as standard finite volume methods associated
to only one mesh.

(A) The construction due to Pierre (see [55] and [23, 25, 22]) involves, like in the 2D case,
unknowns at both centers and vertices of the initial (primal) mesh. The faces of the primal
mesh are either triangles or quadrangles. The dual mesh used by Pierre et al. is rather
unusual: it recovers the domain twice. The discrete duality property does hold for this
construction (see [55, 25]), making it a DDFV method.

From the practical point of view, the method of [55] was successfully applied to dis-
cretization of the elliptic-parabolic bidomain cardiac system in [23, 24, 25].

(B) Two constructions generalizing the 2D case are due to Hermeline. The one of [45] provides
a very wide family of finite volume schemes using various kinds of 3D “double” meshes.
In this approach, additional unknowns are added at the faces of the primal mesh; they
are linked to unknowns at the vertices through interpolation in order to overcome the
difficulties of gradient reconstruction. No study of duality features was conducted for this
method and, except in some particular situations, the discrete duality fails.
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From the practical point of view, this method showed good convergence properties on
several tests including mild heterogeneity and anisotropy, see [45]; but it was supplanted
by the more constrained method [46] of the same author where the face unknown is
eventually eliminated. Numerically, the method of [46] improves over the one of [45], e.g.,
on strongly distorted meshes. The improved method of Hermeline does enjoy the discrete
duality property, see [46, Th. 1]; and it is presented with specific adaptation to the more
delicate case of discontinuous diffusion coefficients (cf. [13] for the 2D case).

In [46], the faces of the initial mesh are either triangles or quadrangles, and the face
centers are barycenters. These restrictions can be bypassed. Indeed, the method of [46]
actually enters the framework (C) below1 when the diffusion tensor is continuous.

(C) The construction of Karlsen and the first two authors [4, 5] differs from the one of (A) by
the form of the dual cells, which is more conventional (see Sections 2,4 for details). Yet
(A) and (C) lead to the same matrices on linear diffusion problems (see [22]); only the
projection operators differ and this induces slightly different discretization of the source
term. The improved construction of Hermeline [46] that took over the method (B) actually
amounts to the same method (C).

The focus in [5] was on the orthogonal (Delaunay-Voronöı, according to [45, 46]) meshes
with triangular faces, while the gradient reconstruction announced in [4] is applicable for
the general case. In the present paper, we restrict ourselves to the strategy (C), describe
this approach for a wide class of meshes (no restriction on number of face vertices appears;
neither orthogonality nor conformity is needed) and, most importantly, we assess the
essential discrete duality feature of the DDFV method, for this wide class of meshes.

From the practical point of view, the method (C) was used in [6] for a further numerical
study of the bidomain cardiac model.

(D) The last scheme developed by Coudière and the third author in [18, 19] modified the idea
of [45] and added unknowns not only at faces, but also at the edges of the primal mesh.
These unknowns used for gradient reconstruction are not interpolated, contrarily to [45].
Both face and edge points are seen as the cell centers for a new mesh which does not
appear in the previous constructions. Consequently, in the finite volume approximation
of [18, 19] three meshes are involved, making it a “triple” mesh. The discrete duality
property for this construction was shown in [19]. The approach of [19] recently gave rise
to the scheme on 3D primal meshes with quadrangular faces, as sketched in [37, Sec. 2.2];
this is a 3D analogue of the 2D construction in [9, IX.B]. Let us point out that the scheme
of [37, Sec. 2.2] can be rather naturally re-interpreted as a DDFV scheme of kind (A).

From the practical point of view, the DDFV method (D) was successfully applied in [19]
(for Leray-Lions elliptic problems or general meshes) and in [50] (for the Stokes problem).

Numerical results of all these schemes [23, 45, 46, 19, 6] show good convergence properties, even
on strongly distorted meshes. A direct comparison of these schemes will be held through the 3D
anisotropic benchmark [11, 20, 22] and [41].

According to the location of unknowns wrt the primal mesh, one can qualify the methods
(A), (B) in the version [46], and (C), as CeVe-DDFV methods (cell and vertex unknowns); and
the method (D), as a CeVeFE-DDFV method (cell, vertex and face+edge unknowns). We have
already pointed out (cf. [6, 22]) that discretizations originating form (A),(B) (version of [46])
and (C) coincide, up to details that are not of prime importance. While (D) appears as a quite
different method (in particular, the data structure used for implementation is different), a strong
connection exists when the primal meshes have quadrangular faces. Indeed, the method (A) can
be put in correspondence with the version [37] of the method (D) (upon splitting the dual mesh
of (A) into two meshes each of them recovering the domain only once). Further, the method (C)
on cartesian meshes (see Section 2.3) rewrites as a variant of (D), see the proof of [3, Prop. 3.7].

1The meshes and discrete divergence of [45] coincide (up to unnecessary restrictions) with those of our paper;
thus the discrete gradients also coincide, since the discrete duality property that holds for both schemes. Yet the
motivations behind the reconstruction of the discrete gradient of [46] (see also [55]) and the ours are rather different.
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1.2. The goal of the paper. This paper gives a detailed account on the CeVe-DDFV scheme in
its version (C) , on general meshes, and it prepares the ground for the sequel [3] where we pro-
vide convenient tools for the mathematical analysis of DDFV discretizations on three-dimensional
domains. We exhibit a consistent discrete gradient operator which possesses the same kind of
“integration-by-parts” property as the 3D schemes of [55], [5], [19] or as the 2D DDFV schemes
(see [9, 29]). This means that the discrete gradient operator ∇T is dual to the usual finite volume
discrete divergence operator −divT on the double mesh, for appropriately defined L2 pairings
of discrete functions and of discrete vector fields. A brief summary of our 3D DDFV construction
and of the discrete duality result, along with an application on Delaunay-Voronöı meshes detailed
in [5], were given in [4] by Karlsen and the first two authors; with respect to [4], the present paper
gives a simpler (but equivalent) formula for the discrete gradient, many generalizations, examples
and numerical tests.

The reason we focus on the discrete duality features is that they make the finite volume dis-
cretization of numerous elliptic operators “structure-preserving”; and they underlie the conver-
gence proofs (see, e.g., [29, 9, 13, 5, 19, 6] and the sequel [3] of this paper).

Note that different variants of the “discrete duality property” hold for the schemes of [31, 30], of
[32, 33, 36, 34], of [7]. For the “complementary finite volumes” schemes as described in [39, 2, 10, 4],
a discrete duality property, completely similar to the one shown in the present paper, is true in
2D (see [4] and Remark 4.6). For the mimetic finite difference (MFD) schemes, the discrete
duality is built into the definition of the schemes (so that the MFD schemes can be defined
through only one of the two discrete operators). Also note that the discrete duality property can
be somewhat relaxed. Eymard, Herbin and Guichard introduced in [37] the notion of “gradient
scheme”, including some 3D DDFV schemes. “Gradient schemes” according to [37] fulfill an
approximate discrete duality property, property that is sufficient to infer convergence at least for
the linear test cases as those considered in Section 5 of the present paper (see [37, Sec.2]).

1.3. Brief description of the operators. In the 3D DDFV framework (C) we postulate, inde-

pendently one from another2, quite natural definitions for both ∇T (of a discrete field ~F ) and
−div T (of a discrete function uT ) on a double mesh T . Namely (up to notational details; cf.
Section 2.2),

• −div T ~F is obtained by the Green-Gauss formula from the integration of − ~F · ~n on
the boundaries of the volumes of the double mesh (this is the core of any finite volume
approach);

xL
Diamond with three
dual vertices

xK

xM∗

xL∗

xK∗

xL
Diamond with l=4
dual vertices

xK∗
1

xK
xK∗

2

xK∗
3

xK∗
4

Figure 1. (a) A diamond: the simplest case (b) The general case (here, l = 4 )

• ∇TuT is reconstructed piecewise constant per diamond, by a well-chosen interpolation
of the vertex values; the interpolation is consistent with affine functions.

Consider the simplest case, where a generic diamond D = D
K,L
K∗,L∗,M∗ is built on two

“primal vertices” xK, xL and on three “dual vertices” xK∗ , xL∗ , xM∗ of the double mesh
(see Figure 1(a)). In this case, the vector ~g =: ∇Du

T is assembled from its projection

2 at this point, our approach differs in its spirit from the one of mimetic finite difference (MFD) schemes
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~p := Proj
D
~g on the direction −−−→xKxL and from its projection ~p ∗ := Proj∗

D
~g on the plane

passing by xK∗ , xL∗ , xM∗ . Each of the projections is uniquely determined from the values
of uT at the vertices of D ( Proj

D
~g is obtained by two-point interpolation on a line

of the values uK, uL at the points xK, xL ; similarly, Proj∗
D
~g comes from three-point

interpolation of the values uK∗ , uL∗ , uM∗ attached to the points xK∗ , xL∗ , xM∗ in a plane).

When a diamond spans l > 3 dual vertices xK
∗
1
, . . . , xK

∗
l

(see Figure 1(b)), there
are infinitely many consistent ways to interpolate the values uK

∗
1
, . . . , uK

∗
l
of uT at these

vertices. We fix a “canonic” choice of the interpolation induced by the remarkable identity
of Lemma 5.1 (its role can be compared to the role played by the “magical formula” of [31,
Lemma 6.1]). This choice being the most technical part of the construction, we postpone
its justification to Appendix A.

To give an example, 3D DDFV schemes on cartesian meshes are described in Section 2.3, and
the associated discrete operators are written down explicitly.

1.4. Outline of the paper. Along with the construction itself, the key theoretical results of
the paper are those of Proposition 2.3 and Proposition 3.2. The link between consistency and
discrete duality is based upon the “reconstruction property” of Lemma 5.1 (Appendix A) which
is of independent interest.

For simplicity, in Section 2 we restrict our attention to the case of convex primal volumes, and
impose constraints on the choice of the “centers” of volumes and faces; these constraints can be
relaxed (see Remarks 4.1, 4.2 and Example 4.3 in Section 4 devoted to generalizations).

The proof of the discrete duality property given in Section 3 requires a rather involved notation,
including a convention on the orientation of the diamonds. The notation is introduced in Section 2
and in Lemma 3.3, and illustrated with the help of figures. One benefit from the notation is that
we are able to give closed-form formulas for the discrete gradient and for the discrete divergence
in terms of vector products and mixed products in R

3 .
Let us point out that the notation in terms of discrete operators, discrete functions and fields

and their scalar products as introduced in Section 2 is also aimed to guide the reader through the
convergence proofs presented in the sequel [3] of this paper. This notation stresses the far-reaching
analogy between the continuous framework and the discrete DDFV framework.

While convergence proofs and some numerical experiments for several degenerate parabolic
problems will be briefly presented in [3], numerical tests on linear anisotropic diffusion problems
are the object of Section 5. These tests are based on the 3D benchmark for linear anisotropic
diffusion problems prepared by R. Herbin and the third author, [41]. Convergence of the method in
these test cases is easily established using the discrete duality property and the tools of [29, 9, 13, 3].

2. Double meshes and the associated gradient and divergence operators

Let Ω be a polyhedral open bounded subset of R
3 . In what follows, we introduce the notation

related to “double” finite volume schemes; each piece of new notation is given in italic script. The
notation is redundant in many cases, which is convenient because the role of objects we introduce
is often multifold. Most of the notations are illustrated with the help of figures.

Throughout the paper, ‖~a‖ denotes the euclidean norm of ~a ∈ R
3 ; ~a ·~b (respectively, ~a×~b )

denotes the scalar product (respectively, the vector product) of ~a,~b ∈ R
3 ; 〈~a,~b,~c 〉 denotes the

mixed product of ~a,~b,~c ∈ R
3 . We use extensively the geometric meaning of these products.

2.1. Construction of “double” meshes.
• A partition of Ω is a finite set of disjoint open polyhedral subsets of Ω such that Ω is
contained in their union, up to a set of zero three-dimensional measure.

A “double” finite volume mesh of Ω is a triple T =
(

M
o,M∗,D

)

described below.

• We take M
o a partition of Ω into open polyhedra. We assume them convex.

Each K ∈ M
o is called control volume and supplied with an arbitrarily chosen center xK ;

for simplicity, we assume xK ∈ K . We call ∂Mo the set of all faces of control volumes that are
included in ∂Ω . These faces are considered as boundary control volumes ; for K ∈ ∂Mo , we
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choose a center xK ∈ K . We denote by M
o the union M

o ∪ ∂Mo . We call vertex (of M
o )

any vertex of any control volume K ∈ M
o .

• In the case of conformal meshes, we call neighbours of K , all control volumes L ∈ M
o such

that K and L have a common face. In the non-conformal case, it is enough that ∂K and ∂L

intersect along a set of non-zero two-dimensional measure.
The set of all neighbours of K is denoted by N(K) . Note that if L ∈ N(K) , then K ∈ N(L) ;

in this case we simply say that K and L are (a couple of) neighbours.
If K and L are neighbours, we denote by K|L the interface (face) (or its part, in the non-

conformal case) ∂K ∩ ∂L that separates K and L . Due to the convexity of K, L , the interface
K|L is planar.

• A generic vertex of M
o is denoted by xK∗ ; it will be associated later with a unique dual

control volume K∗ ∈ M
∗ . Each face K|L is supplied with a face center xK|L which should lie in

K|L (the more general situation is discussed in Remarks 4.1, 4.2). For two neighbour vertices xK∗

and xL∗ (i.e., vertices of M
o joined by an edge of some polygon K|L ), we denote by xK∗|L∗ the

middlepoint of the segment [xK∗ , xL∗ ] .

• Now if K ∈ M
o and L ∈ N(K) , assume xK∗ , xL∗ are two neighbour vertices of the interface

K|L . We denote by T
K;L
K∗;L∗ the tetrahedron formed by the points xK , xK∗ , xK|L, xK∗|L∗ .

A generic tetrahedron T
K;L
K∗;L∗ is called an element of the mesh and denoted by T (see Figure 4);

the set of all elements is denoted by T . If xK is a vertice of T ∈ T , then we say that T is
associated3 with the volume K , and we write T ∼ K .

• Define the volume K∗ associated with a vertice xK∗ of M
o as the union of all elements

T ∈ T having xK∗ for one of its vertices. The collection M
∗ of all such K∗ forms another

partition of Ω .
If xK∗ ∈ Ω , we say that K∗ is a dual control volume and write K∗ ∈ M

∗ ; and if xK∗ ∈ ∂Ω , we

say that K∗ is a boundary dual control volume and write K∗ ∈ ∂M∗ . Thus M
∗ = M

∗ ∪ ∂M∗ .

We call dual vertex (of M
∗ ) any vertex of any dual control volume K∗ ∈ M

∗ . Note that by
construction, the set of vertices coincides with the set of dual centers xK∗ ; the set of dual vertices
consists of centers xK , face centers xK|L and edge centers (middlepoints) xK∗|L∗ .

Picturing dual volumes in 3D is a hard task; an idea of how the dual volumes look like can be
inferred from a deformation of the example given in Section 2.3 (see Figure 3).

If xK∗ is a vertice of T ∈ T , then we say that T is associated with the volume K∗ , and we
write T ∼ K∗ .

• We denote by N
∗(K∗) the set of (dual) neighbours of a dual control volume K∗ , and by K∗|L∗ ,

the (dual) interface ∂K∗ ∩ ∂L∗ between dual neighbours K∗ and L∗ .

• For an element T = T
K;L
K∗;L∗ , we denote by σT the face of T contained within the plane K|L .

The area of σT is denoted by mT ; finally, ~nS denotes the unit normal vector to σT exterior
to T . Similarly, we denote by σ∗

T
the face of T contained within the plane K∗|L∗ . The area of

σ∗
T

is denoted by m∗
T
,and ~n ∗

T
is the corresponding exterior unit normal vector.

• Finally, we introduce the partition of Ω into diamonds.
If K, L ∈ M

o are neighbours, then the union of the convex hull of xK and K|L with the convex
hull of xL and K|L is called diamond and denoted by D

K|L . In the sequel, to each diamond we
will prescribe an orientation by fixing arbitrarily the orientation of the segment [xK , xL] .

We denote by D the set of all diamonds. Generic diamond in D is denoted by D . Notice
that D is a partition of Ω . We will write T ∼ D to signify that the element T ∈ T is included
within D (or, more generally, is associated with D ; see Section 4).

• (see Figure 2) Whenever the orientation of a diamond D should be cared of, the primal vertices
defining it will be denoted by xK⊙ , xK⊕ in such a way that the vector −−−−−→xK⊙xK⊕ has the orientation
prescribed for the diamond. The oriented diamond is then denoted by D

K⊙|K⊕ . We denote by

3Because we have made the assumption that xK|L ∈ K|L , the relation T ∼ K simply means that T is included
in K . We will develop a more general point of view in Remark 4.2. The same observation applies to the notation
T ∼ K

∗ , T ∼ D , S ∼ D introduced later on.
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xK⊕

xK⊕

xK⊕

volume
K⊙

xK∗
3
|K∗

1

K⊙|K⊕

xK⊙

xK⊙

xK∗
3
|K∗

1

xK⊙

xK∗
3

xK∗
3
|K∗

1
xK∗

1

xK∗
1

xK∗
3

xK⊙|K⊕

xK∗
1

volume

xK⊙|K⊕

orientation

xK⊙|K⊕

xK∗
2

interface

xK∗
3

xK∗
2

K⊕

diamond

DK⊙|K⊕

subdiamond

S
K⊙|K⊕
K∗
3
|K∗

1

x⊕

x∗
3

x∗
1

x∗
2

subdiamond

−−−→
x∗
3
x∗
1

x⊙

−−−→
x∗⊙,⊕x

∗
3,1

x∗
3,1

S
K⊙|K⊕
K∗
3|K

∗
1

Simplified notation

in a diamond

~e⊙,⊕

~n⊙,⊕

x∗
⊙,⊕

Figure 2. 3D neighbour volumes, diamond, subdiamond. Zoom on a subdiamond.

~eK⊙,K⊕ the corresponding unit vector, and by dK⊙,K⊕ , the length of −−−−−→xK⊙xK⊕ . We denote by
~nK⊙|K⊕ the unit normal vector to K⊙|K⊕ such that ~nK⊙|K⊕ · ~eK⊙,K⊕ > 0 .

The normal vector ~nK⊙|K⊕ to K⊙|K⊕ being fixed, this induces the orientation in the corre-
sponding face K⊙|K⊕ , which is a convex polygon with l vertices : we denote the vertices of K⊙|K⊕

by xK
∗
i
, i ∈ [[1, l]] , enumerated in the direct sense. By convention, we assign xK

∗
l+1

:= xK
∗
1
. We

denote by ~eK
∗
i
,K∗

i+1
the unit normal vector pointing from xK

∗
i

towards xK
∗
i+1

, and by dK
∗
i
,K∗

i+1
,

the length of −−−−−→xK
∗
i
xK

∗
i+1

.

In order to lighten the notation in an oriented diamond (and in its subdiamonds, introduced in
Section 3 below and pictured in Figures 2, 4), we will drop the K ’s in the subscripts and denote
the objects introduced above by x⊙ , x⊕ , ~e⊙,⊕ , d⊙,⊕ , ~n⊙,⊕ and by x∗

i , ~e ∗
i,i+1 , d∗i,i+1 whenever

D
K⊙|K⊕ is fixed. We also denote by x∗

i,i+1
the middlepoint xK

∗
i
|K∗

i+1
of the segment [xi, xi+1] , and

by x∗
⊙,⊕ , the center xK⊙|K⊕ of K⊙|K⊕ .

• For a diamond D = D
K⊙|K⊕ , we denote by Proj

D
the operator of orthogonal projection of R

3

on the line < ~eK⊙,K⊕ > ; we denote by Proj∗
D

the operator of orthogonal projection of R
3 on

the plane containing the interface K⊙|K⊕ .

• We denote by Vol(A) the three-dimensional Lebesgue measure of A which can stand for a
control volume, a dual control volume, an element, a diamond, etc..

Remark 2.1. Diamonds permit to define the discrete gradient operator (see (3),(4) below). In
turn, elements (and, even more conveniently, the subdiamonds introduced later on) permit to
define the discrete divergence operator (see (1),(2) and (11) below).

In the context of 2D “double” schemes, introducing diamonds is quite standard (see e.g. [9,
29]). Subdiamonds are “hidden” in the 2D construction : they actually coincide with diamonds.

The above definitions are illustrated and generalized in Remark 4.2 at the end of the paper.

2.2. Spaces of discrete functions and fields, discrete divergence and gradient operators.

• A discrete function on Ω is a set wT =
(

wM
o
, wM

∗)

consisting of two sets of real values

wM
o
= (wK)K∈M

o and wM
∗
= (wK∗)K∗∈M

∗ . The set of all such functions is denoted by R
T .

A discrete function on Ω is a set wT =
(

wM
o
, wM

∗
;w∂M

o
, w∂M

∗)

≡
(

wT;w∂T

)

consisting of

wM
o
= (wK)K∈M

o , wM
∗
= (wK∗)K∗∈M

∗ , w∂M
o
= (wK)K∈∂M

o , w∂M
∗
= (wK∗)K∗∈∂M

∗ .

The set of all such functions is denoted by R
T . In case all the components of w∂T =

(

w∂M
o
, w∂M

∗)

are zero, we write wT ∈ R
T

0 .
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• A discrete field on Ω is a set ~FT =
(

~FD

)

D∈D
of vectors of R

3 . The set of all discrete fields

is denoted by (R3)D . If ~FT is a discrete field on Ω , we assign ~FT = ~FD whenever T ∼ D .

• On the set (R3)D of discrete fields ~FT , we define the operator div T[·] of discrete divergence
by

(1) divT : ~FT ∈ (R3)D 7→ divT ~FT =
(

(

divK ~FT
)

K∈M
o ,

(

divK∗ ~FT
)

K∗∈M
∗

)

∈ R
T,

where the entries divK ~FT , divK∗ ~FT of the discrete function divT ~FT on Ω are given by

(2) divK ~FT =
1

Vol(K)

∑

T∼K

mT
~FT · ~nT , divK∗ ~FT =

1

Vol(K∗)

∑

T∼K∗
m∗

T
~FT · ~n ∗

T
.

Formulas (2) correspond to the standard procedure of finite volume discretization applied on each
part of the double mesh T . A more explicit formula (11) for the discrete divergence is given in
(11) and (14) in Section 3.

By construction, it is clear that the discrete divergence operator is consistent. Its consistency
(in the weak sense; cf. [3, Prop. 3.1(iii)]) can also be inferred from the one of the discrete gradient
operator (see Proposition 2.3) and from the discrete duality property that is the object of the next
section.

• On the set R
T of discrete functions wT on Ω , we define the operator ∇T[·] of discrete

gradient

(3) ∇T : wT ∈ R
T 7→ ∇TwT =

(

∇Dw
T
)

D∈D
∈ (R3)D

where the entry ∇Dw
T of the discrete field ∇TwT corresponding to D = D

K⊙|K⊕ is given by
(4)

∇Dw
T is s.t.



















Proj
D
(∇Dw

T) =
w⊕ − w⊙

d⊙,⊕

~e⊙,⊕,

Proj∗
D
(∇Dw

T)=
2

∑l
i=1 〈~n⊙,⊕,

−−−−−→
x∗
⊙,⊕x

∗
i,i+1,

−−−−→
x∗
i x

∗
i+1 〉

l
∑

i=1

(w∗
i+1 − w∗

i )
[

~n⊙,⊕ ×
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

.

with w⊙ = wK⊙ , w⊕ = wK⊕ , w∗
i = wK

∗
i
, etc. (we use the simplified notation in the diamond

D = D
K⊙|K⊕ , as depicted in Figure 2).

Remark 2.2. In (4), the primal mesh M
o serves to reconstruct one component of the gradient,

which is the one in the direction ~e⊙,⊕ . The dual mesh M
∗ serves to reconstruct, with the help

of the formula (25) of Appendix A, the two other components which are the components in the
plane containing K⊙|K⊕ .

The above choice of the discrete gradient is explained in the Introduction; the specific choice
of Proj∗

D
(∇Dw

T) stems from the analysis of Appendix A. Now we point out the crucial fact that
(4) and Corollary 5.2 in Appendix A imply the consistency of our gradient approximation:

Proposition 2.3. Let w⊙, w⊕, (w
∗
i,i+1)

l
i=1 be the values at the points x⊙, x⊕, (x

∗
i,i+1

)li=1 , respec-

tively, of an affine on D = D
K⊙|K⊕ function w . Then ∇Dw

T coincides with the value of ∇w
on D .

Now let us give a more explicit representation of ∇Dw
T .

Lemma 2.4. The definition (4) of ∇Dw
T is equivalent to the representation

(5) ∇Dw
T =

1

6Vol(D)

l
∑

i=1

{ 〈−−→x⊙x⊕,
−−−−−→
x∗
⊙,⊕x

∗
i,i+1,

−−−−→
x∗
i x

∗
i+1 〉

−−→x⊙x⊕ · ~n⊙,⊕

(w⊕−w⊙)~n⊙,⊕+2(w∗
i+1−w∗

i )
[−−→x⊙x⊕×

−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

}

.

Notice that in formula (5), we can substitute the mixed product 〈−−→x⊙x⊕,
−−−−−→
x∗
⊙,⊕x

∗
i,i+1,

−−−−→
x∗
i x

∗
i+1 〉 by

6Vol(S
K⊙|K⊕

K
∗
i
|K∗

i+1
) , where S

K⊙|K⊕

K
∗
i
|K∗

i+1
is the subdiamond introduced later on (see Figure 4).
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Proof. First, notice that if ~p = Proj
D
(∇Dw

T) , ~p∗ = Proj
D
(∇Dw

T) are given, we have

(6) ∇Dw
T = ~p∗ +

~e⊙,⊕ · (~p− ~p∗)

~e⊙,⊕ · ~n⊙,⊕

~n⊙,⊕.

Consider the contribution of the term (w∗
i+1 − w∗

i )
[

~n⊙,⊕ ×
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

in ~p∗ into formula (6). It
amounts to

(w∗
i+1 − w∗

i )

~e⊙,⊕ · ~n⊙,⊕

{

[

~n⊙,⊕ ×
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

(~e⊙,⊕ · ~n⊙,⊕)− ~n⊙,⊕(
[

~n⊙,⊕ ×
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

· ~e⊙,⊕)
}

.

Using the well-known “BAC minus CAB” identity (~b · ~a)~c − (~c · ~a)~b and the fact that ~n⊙,⊕ ×
[

~n⊙,⊕ ×
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

=
−−−−−→
x∗
⊙,⊕x

∗
i,i+1 , we transform the above expression into

(w∗
i+1−w∗

i )

~e⊙,⊕·~n⊙,⊕

[

~e⊙,⊕ ×
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

=
(w∗

i+1−w∗
i )

−−−→x⊙x⊕·~n⊙,⊕

[−−→x⊙x⊕ ×
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

. Further, notice that

(−−→x⊙x⊕ · ~n⊙,⊕)〈~n⊙,⊕,
−−−−−→
x∗
⊙,⊕x

∗
i,i+1,

−−−−→
x∗
i x

∗
i+1 〉 = 〈−−→x⊙x⊕,

−−−−−→
x∗
⊙,⊕x

∗
i,i+1,

−−−−→
x∗
i x

∗
i+1 〉,

and that
l

∑

i=1

〈−−→x⊙x⊕,
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

,
−−−−→
x∗
i x

∗
i+1 〉 = 6Vol(D).

Finally, the contribution of ~p into (6) amounts to
~e⊙,⊕· ~p

~e⊙,⊕·~n⊙,⊕
~n⊙,⊕ = w⊕−w⊙

d⊙,⊕~e⊙,⊕·~n⊙,⊕
~n⊙,⊕ =

w⊕−w⊙
−−−→x⊙x⊕·~n⊙,⊕

~n⊙,⊕ . Combining the obtained identities, we get (5) from (6). �

2.3. Cartesian DDFV meshes in 3D. Let us give one very simple yet important concrete
example of a 3D DDFV mesh as described above. It is suitable for parallelepiped domains and
their unions.

For the sake of simplicity, we take the unit cube Ω = [0, 1]3 and partition it into N3 primal
cubic volumes of edge 1

N (neither the cubic form, nor the uniformity of the meshes is important;
the construction generalizes to non-uniform cartesian meshes). Then one easily sees that diamonds
are octahedrons built on two primal cubes’ centers xK⊙ , xK⊕ and on the square interface K⊙|K⊕

between them. If one chooses for xK⊙|K⊕ the center of symmetry of K⊙|K⊕ , then the interior dual

volumes are also cubes of the same edge 1
N centered at the vertices of the primal mesh that do

not lie on ∂Ω . The boundary dual volumes are either 1/8th of the standard cube (at the corners
of Ω ) or the quarter-cubes (at the edges of Ω , excepting the corners) or the half-cubes (on the
faces of Ω , excepting the edges).

Primal volume K⊙Primal volume K

xK⊙
xK

Dual volume K∗

xK∗

Four primal cells
and a dual cell

xK⊕

A primal interface
and its diamond

Diamond D
K⊙,K⊕

Interface K⊙|K⊕

Primal volume K⊕

xK
∗
SE

xK
∗
NW

xK
∗
NE

xK
∗
SW

Figure 3. Cartesian DDFV mesh in 3D and an associated diamond
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To give the entries of the associated discrete gradient, for the sake of being definite we consider
a diamond D = D

K⊙|K⊕ with the interface K⊙|K⊕ parallel to the horizontal plane xOy and with
−−→x⊙x⊕ pointing up in the direction Oz (see Figure 3). We take the convention that the Ox axis
points from West to East and the Oy axis points from South to North. Then we mark the vertices
of the square K|L counterclockwise (with respect to the orientation given by Oz and −−→x⊙x⊕ ) by
xK

∗
SW

, xK
∗
SE
, xK

∗
NE

and xK
∗
NW

, with an obvious “cartographic” interpretation of the notation.
With this notation, applying the reconstruction formula (4) one finds that the entry ∇Dw

T

of ∇TwT is computed as

(7)
∇Dw

T =
wK⊕− wK⊙

1/N
~k

+
1

2

(wK
∗
NE
− wK

∗
NW

1/N
+

wK
∗
SE
− wK

∗
SW

1/N

)

~i+
1

2

(wK
∗
NE
− wK

∗
SE

1/N
+

wK
∗
NW

− wK
∗
SW

1/N

)

~j

(recall that dK⊙,K⊕ = dK
∗
NE

,K∗
NW

= . . .= 1
N ); here the triple

(

~i,~j,~k
)

is the canonical basis of R
3 .

Further, let K be an interior primal volume. For the six diamonds that intersect K , we intro-
duce the specific notation Dabv(K),Dblw(K) , DE(K),DW(K) and DN(K),DS(K) . For instance,
DS(K) contains the south-ward face of K (the exterior unit normal vector to ∂K ∩DS(K) is the

vector −~j ), and Dabv(K) contains the upper face of K (the corresponding exterior normal vec-

tor is ~k ). With this notation, applying formula (2) one finds that the entry divK ~FT of divT ~FT

is computed as

divK ~FT =
1

1/N3

{ 1

N2
( ~FDE(K)− ~FDW(K)) ·~i+

1

N2
( ~FDN(K)− ~FDS(K)) ·

~j +
1

N2
( ~FDabv(K)

− ~FDblw(K)) ·~k
}

.

The formula for the entries of divK∗ ~FT has an entirely similar form.
The above meshes and discrete operators can be compared to the 2D constructions of [7, 8] and

to the 2D and 3D “complementary volumes” constructions of [38, 39, 53]. As the schemes of [8]
and of [38], the above DDFV scheme tends to avoid preferred orientations (cf. the discussion in
[38]).

3. The discrete duality property

Let us define the convenient multiplication of discrete functions/discrete fields and state our
main result.

• Recall that R
T is the space of all discrete functions on Ω . For wT, vT ∈ R

T , set

(8)
[[

wT, vT

]]

Ω
=

1

3

∑

K∈M
o
Vol(K) wKvK +

2

3

∑

K∗∈M
∗
Vol(K∗) wK∗vK∗ ;

it is clear that
[[

· , ·
]]

Ω
is a scalar product on R

T .

Remark 3.1. Notice that, contrarily to the 2D DDFV method, the role of the primal and the
dual meshes in 3D CeVe-DDFV methods is not symmetric; this asymmetry is also reflected by
Remark 2.2. In R

d , the primal mesh would account for 1
d of the product, and the dual mesh,

for d−1
d (see [5]).

Note that in the 3D CeVe-DDFV scheme developed by Pierre et al. (see [55, 23, 24, 22]), the
weights in the scalar product (8) are both equal to 1

3 ; but, because the dual mesh in [55, 23, 24, 22]

covers twice the domain Ω ⊂ R
3 , its “weight” is doubled with respect with the “weight” of the

primal mesh. This is similar to what happens in our formula (8). As to the 3D CeVeFE-DDFV
scheme developed by Coudière and Hubert (see [18, 19, 20]), a “triple” mesh is involved, and the
associated scalar product takes the contributions of each of the meshes with the equal weights 1

3 .

• Recall that (R3)D is the space of all discrete fields on Ω . For ~FT, ~GT ∈ (R3)D , set

(9)
{{

~FT, ~GT

}}

Ω
=

∑

D∈D

Vol(D) ~FD · ~GD;

it is clear that
{{

· , ·
}}

Ω
is a scalar product on (R3)D .



3D DDFV DISCRETIZATION OF GRADIENT AND DIVERGENCE OPERATORS. I 11

Proposition 3.2. The discrete divergence and gradient operators −divT , ∇T defined in Sec-
tion 2 are linked by the following duality property :

(10) ∀ wT ∈ R
T

0 ∀ ~FT ∈ (R3)D
[[

− divT ~FT , wT

]]

Ω
=

{{

~FT , ∇TwT

}}

Ω
.

Before turning to the proof, let us introduce the partition of Ω into subdiamonds (cf. [5, 4]),
as used in the proof, and give two more formulas for the discrete divergence operators (namely,
(11) and (14) below).

If K, L ∈ M
o are neighbours, and xK∗ , xL∗ are neighbour vertices of the corresponding in-

terface K|L , then the union of the four elements4 T
K;L
K∗;L∗ , T

K;L
L∗,K∗ , T

L;K
K∗,L∗ , and T

L;K
L∗,K∗ is called

subdiamond and denoted by S
K|L

K∗|L∗ . In this way, each diamond D
K|L gives rise to l subdiamonds

( l being the number of vertices of K|L ).
We denote by S the set of all subdiamonds. Generic suddiamond in S is denoted by S .

Each subdiamond is associated with a unique interface K|L , and thus with a unique diamond

D
K|L . We will write S ∼ D to signify that S is associated with D ; in this case, we set ~FS = ~FD

for a discrete field ~F . Further, if xK (resp., xK∗ ) is a vertice of S , then we write S ∼ K

(resp., S ∼ K∗ ).

Lemma 3.3. Formulas (2) can be rewritten under the form

(11)

divK
~FT =

1

2Vol(K)

∑

S∼K

(−1)ǫ
K

S 〈 ~FS,
−−−−−→
x∗
⊙,⊕x

∗
i,i+1

,
−−−−→
x∗
i x

∗
i+1 〉,

divK∗ ~FT =
1

2Vol(K∗)

∑

S∼K∗

(−1)ǫ
K∗

S 〈 ~FS,
−−→x⊙x⊕,

−−−−−→
x∗
⊙,⊕x

∗
i,i+1 〉.

In formulas (11), we mean that each subdiamond S associated with K (resp., with K∗ ) has

the form S = S
K⊙|K⊕

K
∗
i
|K∗

i+1
, with some K⊙,K⊕,K

∗
i ,K

∗
i+1 ; the notation under the sign “

∑

” refers to

S = S
K⊙|K⊕

K
∗
i|K

∗
i+1

(see Figure 2). Because K may coincide either with K⊙ or with K⊕ (similarly, K∗

may be K
∗
i or K

∗
i+1 ), the “sign selectors”

(12) ǫK
S
:=

{

0, if K = K⊙

1, if K = K⊕

, ǫK
∗

S
:=

{

0, if K∗ = K
∗
i

1, if K∗ = K
∗
i+1

are introduced in (11).

xK⊕

T
K⊕ ;K⊙

K∗
1 ;K∗

3

element

xK∗
3
|K∗

1

xK∗
2

xK∗
3

xK∗
1

xK⊙

xK⊙|K⊕

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
����������
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

x⊕

α⊙,⊕

x∗
i

x∗
i,i+1

x∗
i+1

(part of K⊙|K⊕)
interface σS

interface σ∗
S⊙x⊙

(part of Ki|Ki+1)

~e⊙,⊕

interface σ∗
S⊕

~nS⊕

S
K⊙|K⊕
K∗
i
|K∗

i+1
(part of Ki|Ki+1)

subdiamond

~n⊙,⊕

~e⊙,⊕

~nS≡~n⊙,⊕

x∗
⊙,⊕

angle

Figure 4. Element. Subdiamond: σS, σS⊕ , σS⊙ and their normal vectors.

Proofof Lemma 3.3 : Fix a subdiamond S ∈ S , S = S
K⊙|K⊕

K
∗
i
|K∗

i+1
. The subdiamond contributes

twice to each of the formulas (2) corresponding to K = K⊙ , to K = K⊕ , to K∗ = K
∗
i , and to

4This definition should be generalized if the constraint xK ∈ K is dropped; see Remark 4.1.
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K∗ = K
∗
i+1 ; each contribution is brought by two of the four elements T ∈ T that constitute S .

We denote the four elements by

T
⊙
i := T

K⊙;K⊕

K
∗
i
;K∗

i+1
, T

⊙
i+1 := T

K⊙;K⊕

K
∗
i+1

;K∗
i+1

and T
⊕
i := T

K⊕;K⊙

K
∗
i
;K∗

i+1
, T

⊕
i+1 := T

K⊕;K⊙

K
∗
i+1

,K∗
i+1
.

It is convenient to split S = S
K⊙|K⊕

K
∗
i
|K∗

i+1
into the “lower” and the “upper” parts

S⊙ := T
⊙
i ∪ T

⊙
i+1 and S⊕ := T

⊕
i ∪ T

⊕
i+1

(see Figure 4). Each of the two parts contains one flat portion of the interface K
∗
i|K

∗
i+1 , and they

are separated by the common face K⊙|K⊕ ∩ S . We denote these faces as follows:

σS := K⊙|K⊕ ∩ S, σ∗
S⊙

:= K
∗
i|K

∗
i+1 ∩ S⊙, σ∗

S⊕
:= K

∗
i|K

∗
i+1 ∩ S⊕.

The areas of σS , σ∗
S⊙

, σ∗
S⊕

are denoted by mS , m∗
S⊙

, m∗
S⊕

, respectively; one calculates them

from the areas of faces of the elements T
⊙
i , T

⊕
i , T

⊙
i+1 , T

⊕
i+1 .

We denote by ~nS , ~n∗
S⊙

, ~n∗
S⊕

the unit normal vectors to σS , σ∗
S⊙

, σ∗
S⊕

, respectively, with the
orientations that are chosen so that to satisfy

(13) ~nS = ~n⊙,⊕ and 〈~n∗
S⊙
, ~n⊙,⊕,

−−−−−→
x∗
⊙,⊕x

∗
i,i+1

〉 ≥ 0, 〈~n∗
S⊕
, ~n⊙,⊕,

−−−−−→
x∗
⊙,⊕x

∗
i,i+1 〉 ≥ 0.

Thanks to the constraints x⊙ ∈ K⊙ , x⊕ ∈ K⊕ and to the orientation choice ~nS ·
−−→x⊙x⊕ = d⊙,⊕ ~n⊙,⊕ ·

~e⊙,⊕ > 0 , vector ~nS points from K⊙ to K⊕ ; thus by definition (12) of ǫK
S
, the vector (−1)ǫ

K

S ~nS

is the unit normal vector to σS ⊂ ∂K exterior to K , in the case K = K⊙ and also in the case
K = K⊕ . Thus for K = K⊙ and for K = K⊕ , for all element T ⊂ S such that T is associated

to K , we have ~nT = (−1)ǫ
K

S ~nS .
Similarly, having chosen x∗

⊙,⊕ ∈ K⊙|K⊕ we ensured that ~n∗
S⊙

, ~n∗
S⊕

point from K
∗
i to K

∗
i+1 ,

thanks to (13) and to the fact that the vertices of K⊙|K⊕ are numbered according to the orientation

of ~n⊙,⊕ . By (12), (−1)ǫ
K∗

S ~n∗
S⊙

, (−1)ǫ
K∗

S ~n∗
S⊕

are the unit normal vectors to the flat portions σ∗
S⊙

,

σ∗
S⊕

of ∂K∗ , exterior to K∗ . Thus for K∗ = K
∗
i and for K∗ = K

∗
i+1 , for all element T ⊂ S⊙ (resp.,

T ⊂ S⊕ ) such that T ∼ K∗ , we have ~n ∗
T
= (−1)ǫ

K∗

S ~n∗
S⊙

(resp., ~n ∗
T
= (−1)ǫ

K∗

S ~n∗
S⊕

).

Now we see that (2) rewrites under the form

(14)

divK
~FT=

1

Vol(K)

∑

S∼K

mS
~FS · (−1)ǫ

K

S~nS,

divK∗ ~FT=
1

Vol(K∗)

∑

S∼K∗

~FS · (−1)ǫ
K∗

S

(

m∗
S⊙
~n∗
S⊙
+m∗

S⊕
~n∗
S⊕

)

.

Finally, notice that the above definitions and the standard properties of the inner product “ × ”
of R

3 yield

(15)
mS~nS =

1
2

−−−−−→
x∗
⊙,⊕x

∗
i,i+1 ×

−−−−→
x∗
i x

∗
i+1,

m∗
S⊙
~n∗
S⊙

+m∗
S⊕
~n∗
S⊕

= 1
2

−−−→
x⊙x

∗
⊙,⊕ ×

−−−−−→
x∗
⊙,⊕x

∗
i,i+1

+ 1
2

−−−→
x∗
⊙,⊕x⊕ ×

−−−−−→
x∗
⊙,⊕x

∗
i,i+1 =

1
2
−−→x⊙x⊕ ×

−−−−−→
x∗
⊙,⊕x

∗
i,i+1.

Using equalities (15), from (14) we deduce (11). �

Proofof Proposition 3.2 : The proof is by direct calculation, using the summation-by-parts
procedure.

Denote the product
[[

− divT ~FT , wT

]]

Ω
by Z . First, we put together the terms in Z corre-

sponding to adjacent couples of primal and dual volumes. This amounts to make the summation
over all subdiamonds S = S

K⊙|K⊕

K
∗
i
|K∗

i+1
(see Figures 2, 4 for the notation in S ); ghost terms corre-

sponding to the boundary volumes can be added, because wT is zero on the boundary volumes.

With the expression (8) of
[[

· , ·
]]

Ω
, using formulas (11) of Lemma 3.3, taking into account the
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signs selectors’ convention (12) while summing by parts, we find

Z =
∑

S∈S,S=S
K⊙|K⊕
K∗
i
|K∗

i+1

~FS ·
(

1
3 (w⊕ − w⊙)

[−−−−−→
x∗
⊙,⊕x

∗
i,i+1 ×

−−−−→
x∗
i x

∗
i+1

]

+ 1
3 (w

∗
i+1−w∗

i )
[−−→x⊙x⊕ ×

−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

)

=
∑

S∈S,S=S
K⊙|K⊕
K∗
i
|K∗

i+1

~FS ·
(

Vol(S
K⊙|K⊕

K
∗
i
|K∗

i+1
) w⊕−w⊙
−−−→x⊙x⊕·~n⊙,⊕

~n⊙,⊕ + 1
3 (w

∗
i+1−w∗

i )
[−−→x⊙x⊕ ×

−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

)

.

Next, we put together the terms corresponding to the subdiamonds S associated with the same

diamond D ; since ~FS = ~FD in this case, this amounts to make the summation over all diamonds

D = D
K⊙|K⊕ (see Figures 2, 6 for the notation in D ). We get Z =

∑

D∈D

~FD · ~ZD with

~ZD :=
∑

S∼D,S=S
K⊙|K⊕
K∗
i
|K∗

i+1

(

Vol(S
K⊙|K⊕

K
∗
i
|K∗

i+1
) w⊕−w⊙
−−−→x⊙x⊕·~n⊙,⊕

~n⊙,⊕ + 1
3 (w

∗
i+1−w∗

i )
[−−→x⊙x⊕ ×

−−−−−→
x∗
⊙,⊕x

∗
i,i+1

]

)

.

Thanks to Lemma 2.4, the above expression ~ZD equals Vol(D) ∇T

D
wT . According to the ex-

pression (9) of
{{

· , ·
}}

Ω
, we have justified that

[[

− divT ~FT , wT

]]

Ω
= Z =

{{

~FT, ∇TwT

}}

Ω
.

�

4. On the choice of the face centers xK|L and other generalizations

Here we provide a series of remarks that discuss and generalize the above construction.

Remark 4.1. (an overview of the different constraints)
Given a partition of Ω into convex disjoint open subsets K , one can always construct a “double”
mesh T satisfying the constraints on the choice of xK , xK|L , xK∗|L∗ imposed in Section 2. But if
one wants to use some simpler constructions such as the classical Voronöı dual mesh in Example 4.3
below, some of the below generalizations are needed.

• The barycenter (middlepoint) choice xK∗|L∗ = 1
2 (xK∗+ xL∗) on the edges cannot be relaxed.

This choice is in the heart of the consistency property of Proposition 2.3 (see the proof of
Lemma 5.1).

• The constraint xK|L ∈ K|L can be relaxed, and this generalization is important.

In particular, it may be convenient (as e.g. in Example 4.3 below) to let xK|L be the point
of intersection of the plane containing the interface K|L with the line passing through the
centers xK , xL . Even if xK ∈ K and the volumes are convex, the intersection point can
fall outside K|L .

In fact, the property xK|L∈ K|L is only needed to ensure that the subdiamond volume,

Vol(S) = 1
6 〈

−−→x⊙x⊕,
−−−−−→
x∗
⊙,⊕x

∗
i,i+1,

−−−−→
x∗
i x

∗
i+1〉 , is positive. Yet, this positivity restriction does not

appear in Lemma 5.1, Corollary 5.2 and Proposition 2.3. Let us stress that all the formulas
in terms of vector and mixed products given in this note can be used without changes, if
xK|L belongs to the plane containing K|L (see in particular Remark 5.3). But it becomes
necessary to generalize the notions of K∗ and Vol(K∗) , allowing for subdiamonds and
elements with negative volume. We througly illustrate the situation in Remark 4.2 below.

• The requirement that xK belong to K can be relaxed, which is important as well.

The definition of diamonds and subdiamonds becomes a bit more complicated in this case,
because some elements T ∈ T may have negative volume; the situation in entirely similar
to that of Remark 4.2 below. In order to have Vol(D) > 0 , it suffices to guarantee that
the normal to K⊙|K⊕ vector ~n⊙,⊕ (which, by definition, forms an acute angle with −−→x⊙x⊕ )
point from K⊙ to K⊕ . To this end, the Delaunay property is required in Example 4.3.

• The convexity constraint on the primal volumes K can be relaxed.

E.g., if each volume K is star-shaped with respect to some point xK , the construction
goes on without any change. More generally, we can even admit non-planar faces, by
separating them into planar parts.



14 B. ANDREIANOV, M. BENDAHMANE, F. HUBERT, AND S. KRELL

Remark 4.2. (on the constraint xK|L ∈ K|L and its relaxation)

(i) Under the assumptions that xK ∈ K for all K , xK|L ∈ K|L for all K|L , the set of all elements

T is a partition of Ω , and each of the partitions M
o , M

∗ , D of Ω is obtained by combining
elements. More exactly, we have K =

⋃

T
K;L
K∗;L∗ , where the union runs over all L ∈ N(K) and

all K∗, L∗ which are neighbour vertices of the polygon K|L . Similarly, K∗ =
⋃

T
K;L
K∗;L∗ , where the

union runs over all K, L∗ such that T
K;L
K∗;L∗ makes sense. Finally,

D
K|L =

⋃

(

T
K;L
K∗;L∗ ∪ T

K;L
L∗;K∗ ∪ T

L;K
K∗;L∗ ∪ T

L;K
L∗;K∗

)

=
⋃

S
K|L

K∗|L∗ ,

where the union runs over all couples {K∗, L∗} of neighbour vertices of the interface K|L .
When an element T ∈ T contributes to the construction of K , we say that T is associated

with K , and write T ∼ K . We therefore have K =
⋃

T∼K
T , and Vol(K) =

∑

T∼K
Vol(T) .

Analogous meaning is given to the notation T ∼ K∗ , T ∼ D , and S ∼ D , T ∼ S ; e.g.,

(16) D =
⋃

S∼D

S, and Vol(D) =
∑

S∼D

Vol(S).

In each case, the relation “ ∼ ” simply means the inclusion “ ⊂ ”.

(ii) Now, for one example where xK|L /∈ K|L , let K|L be a triangle with vertices denoted by
xK∗ , xL∗ , xM∗ , with obtuse angle at xL∗ ; let xK|L be the center of circonscribed circle of the
triangle which therefore falls outside K|L (this situation occurs in Example 4.3). Instead of the
decomposition

D
K|L =

⋃

S∼D

S = S
K|L

K∗|L∗ ∪ S
K|L

L∗|M∗ ∪ S
K|L

M∗|K∗ ,

we now have
D

K|L =
(

S
K|L

K∗|L∗ ∪ S
K|L

L∗|M∗

)

\ S
K|L

M∗|K∗ .

But if (with the notation of Figures 2, 4) we keep the formula

(17) Vol(S) =
1

6
〈−−→x⊙x⊕,

−−−−−→
x∗
⊙,⊕x

∗
i,i+1

,
−−−−→
x∗
i x

∗
i+1〉

for the volume of S , we see that Vol(SK|L

M∗|K∗) becomes negative, and cancellations lead to

Vol(DK|L)= |Vol(SK|L

K∗|L∗)|+|Vol(SK|L

L∗|M∗)|−|Vol(SK|L

M∗|K∗)|=Vol(SK|L

K∗|L∗)+Vol(SK|L

L∗|M∗)+Vol(SK|L

M∗|K∗)=
∑

S∼D

Vol(S).

We see that the set-theoretic relation in (16) looses its sense, but the formula for Vol(D) keeps
working. Similarly, a primal volume K is a set of points of Ω that can be obtained by the
operations ” ∪ ”, ” \ ” from the elements T associated with K , and Vol(K) =

∑

S∼K
Vol(T ) ;

the (signed) volume of T can be computed by a formula similar to (17). Let us point out that
sign (Vol(T )) = sign (Vol(S)) when T ⊂ S , and Vol(S) =

∑

T⊂S
Vol(T) .

The general situation is the same as in the above example. Notice that neither T , nor S

form a partition of Ω ; but each one forms a “signed partition” of Ω in the sense that

(18)
∑

T∈T
sign (Vol(T))1lT (x) = 1 and

∑

S∈S

sign (Vol(S))1lS(x) = 1 a.e. on Ω

(here 1lA(·) stands for the characteristic function of a set A ⊂ Ω ).
The situation with dual volumes K∗ can be more intricated: K∗ may in general consist of a

“positive” and a “negative” part, to which no set-theoretical meaning can be given5; but we can
give the sense of

∑

T∼K∗ Vol(T) to Vol(K∗) . In this case, let us call K∗ a generalized dual volume.
Here a constraint appears on the choice of the family (xK|L)K|L of the face centers: one should
keep Vol(K∗) > 0 , in order that (8) be a scalar product.

Similar interpretation can be given to the discrete divergence formulas (11). In (11), the

normal flux of ~FS through σS is automatically taken with the same sign as sign (Vol(S)) , and
the cancellations in the expression

∑

S∈N(K)
mS

~FS · (−1)ǫ
K

S ~nS

5We guess that this problem does not occur in Example 4.3, thanks to the Delaunay condition: the “negative”
part of K

∗ is completely cancelled by its “positive” part, as in the case of the primal volumes.
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make it be equal to the normal flux of the field ~F through ∂K . Notice that the relation
“ S ∼ K ” should be understood in the sense that S ⊃ T for some T ∼ K . Similarly, for a
(possibly generalized) control volume K∗ , the flux through its (possibly generalized) boundary
∂K∗ is the sum of the signed contributions of the normal fluxes through σ∗

S⊙
, σ∗

S⊕
⊂ S with S ∼ K∗ .

Formulas (11) take care of this convention.

(iii) Clearly, these conventions should affect the discretization of source terms on the mesh T . In
the case (i) above, one naturally defines the projection of f ∈ L1(Ω) on the space R

T of discrete

functions by f̄T =
(

(f̄K)K∈M
o , (f̄K∗)K∗∈M

∗

)

with f̄K = 1
Vol(K)

∫

K
f , f̄K∗ = 1

Vol(K∗)

∫

K∗ f . But

in the case (ii), we should rather generalize these formulas and write

(19) f̄K∗ =
1

Vol(K∗)

∑

T∼K∗
sign (Vol(T ))

∫

T

f =
(

∑

T∼K∗
Vol(T )

)−1 ∑

T∼K∗
sign (Vol(T ))

∫

T

f

when K∗ is a generalized volume. The “signed partition” property (18) is a clue to the consistency
of such projection operator. The “discrete functional analysis” properties given in [3] can be
proved also in this generalized framework, under some additional restrictions such as Vol(K∗) > 0 ,
Vol(D) > 0 .

Example 4.3. (Delaunay-Voronöı meshes)
Let the primal mesh M

o of Ω ⊂ R
3 be such that each K ∈ M

o is a polyhedre admitting a
circumscribed ball with center xK (for instance, a tetrahedron), and assume that all neighbour
volumes K , L satisfy the standard Delaunay condition. It follows that each face K|L is an
inscriptable polygon. Take for the dual mesh M

∗ , the standard Voronöı mesh constructed from
the vertices of the primal mesh. This definition of M

∗ enters our framework, with the following
choice:

• the center xK|L of a face K|L is the center of its circumscribed circle;
• the center xK∗|L∗ of an edge K∗|L∗ is its middlepoint.

This construction does not guarantee that xK|L ∈ K|L nor that xK ∈ K ; thus we make appeal to
the generalizations of the above Remarks 4.1, 4.2.

This “Delaunay-Voronöı” double scheme possesses the orthogonality property required for the
approximation of entropy or renormalized solutions of (may be, degenerate) diffusion PDEs. See
[45, 46, 5], for examples of the use of this scheme.

Remark 4.4. Note that in order to get the mesh of Example 4.3, one can also reverse the
construction procedure. Starting from a given set of points xK∗ , one constructs the Voronöı mesh
which will play the role of the dual mesh M

∗ . A tetrahedrical primal mesh M
o is obtained by

joining apropriately the vertices of M
∗ ; a slightly different convention on boundary volumes is

needed in this case.

Remark 4.5. Note that the discrete duality property of Proposition 3.2 is suitable for discrete
functions satisfying the homogeneous Dirichlet condition on ∂Ω . For different boundary condi-
tions, see e.g. [9, 15, 6]. The case of the homogeneous Neumann boundary condition is briefly
discussed in [3].

Remark 4.6. In 2D , the scheme described in [4] is much simpler than the DDFV scheme and
still possesses the discrete duality property; the discrete duality for this scheme follows directly
from the reconstruction property of the Appendix below.

This simpler scheme is well known for the case one starts with a triangulation of Ω ⊂ R
2

(this is essentially the “complementary volumes scheme”, cf. [2, 39, 53, 38, 10, 57]). Elements of
the triangulation play the role of diamonds of the DDFV scheme; in particular, discrete gradient
is reconstructed as being constant per triangle. The dual Voronöı mesh of the triangulation is
the finite volume mesh (these are the “complementary finite volumes”, in the terminology of the
papers [39, 53, 38, 57]) on which one considers constant per volume discrete functions.

In the litterature, generalizations of such schemes to 3D were considered (see in particular [38]).
To the authors’ knowledge, the discrete duality property for the 3D “complementary finite volume”
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scheme only holds for very particular mesh geometries (e.g., uniform tetrahedral or rectangular
meshes); see the discussion of [5, Appendix B].

5. Numerical experiments for linear diffusion problems

For Ω ∈ R
3 , consider the following linear diffusion problem:

(20) − divA(x)∇u = f, u|∂Ω = u,

where f is an L2 source term, (A(x))x∈Ω is a measurable (piecewise smooth, in many appli-
cations) family of uniformly bounded and coercive 3× 3 matrices and u is a sufficiently regular
boundary condition (when u 6≡ 0 , the boundary conditions are taken into account at the centers
of boundary volumes, cf. [9]).

The analogous 2D problem was the example on which many 2D strategies of finite volume
discretization (including the DDFV method) were tested, see in particular [40]. Here we present
some of the analogous results in the 3D case, in three situations. More ample results and
comparison to other methods will be presented in the 3D benchmark [11, 41].

Let P
T denote the projection on the DDFV mesh T (i.e., the components of P

Tf are the

mean values of f ∈ L1(Ω) per primal and per dual volumes, cf. Remark 4.2(iii)). Let ~PT

denote the projection on the diamond mesh D . The heterogeneity of the matrix A is taken

into account by using the diamond-wise projection AT := ~PTA ; similarly, we use fT = P
Tf as

the discrete source term. Boundary data ū are taken into account using the projection P
∂T on

boundary volumes: P
T· :=

(

P
T· ,P∂T·

)

. For a fully practical discretization of A and f (which
are continuous in all our tests), for every element (recall that diamonds, primal volumes and dual
volumes of a DDFV mesh are unions of elements, see Fig. 4) we take the mean value of the four
vertices of the element.

Therefore, for the case of homogeneous boundary condition, given a DDFV mesh T of Ω the
method writes as:

find uT ∈ R
T

0 solution of −divT
[

AT ∇TuT
]

= fT .

More generally, the Dirichlet boundary conditions are prescribed at the centers of the boundary
volumes ∂Mo and ∂M∗ using P

∂Tū ; in this case, uT =
(

uT,P∂Tū
)

with uT unknown.
In each of the test cases described below, we start with a given mesh of the unit cube Ω

(cartesian, tetrahedral, hexagonal, prismal) using it as the primal mesh for the DDFV construction;
we choose the barycenters for the centers of these primal volumes and of their faces. It should be
noticed that the dual mesh is never actually constructed, all the information is “read” from the
primal mesh using in particular (5). The matrix and the source term of the linear system for the
method are assembled per diamond.

Thanks to the duality property, one can easily prove that the resulting scheme is well-posed
and convergent. It is also classical to prove an order h convergence in the H1

0 norm using e.g.
the tools developed in [9, 19, 3]. Whenever the (uniform) discrete Poincare inequality can be
justified, one derives an order h convergence in the L2 norm for the solution. This is the case
if l = 3 (i.e. the primal faces are triangles), but in general one can construct counterexamples to
the discrete Poincaré inequality. Yet numerically, the value of l does not seem important, and
the order h is a rather pessimistic one.

• Measure of errors and convergence orders.

To put the discrete and the exact solutions “at the same level”, we use the projection P
Tue of

the exact solution and the associated discrete gradient reconstruction
−→
∇T

P
Tue , where P

T · =

(PT · ; P∂T · ) . The L2 norms of the errors eT :=uT− P
Tue and

−→
∇TeT :=

−→
∇TuT−

−→
∇T

P
Tue are

measured in terms of the scalar products
[[

· , ·
]]

Ω
on R

T and
{{

· , ·
}}

Ω
on (R3)D : the error

indicators we use are defined, respectively, as

(
[[

eT , eT
]]

[[

PTue , PTue

]]

)1/2

and

(
{{−→

∇TeT ,
−→
∇TeT

}}

{{−→
∇TPTue ,

−→
∇TPTue

}}

)1/2

;

these are relative errors. In all the results we present, the convergence orders are reported wrt the
number of unknowns (#unkw).
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• Laplacian, uniform cartesian meshes and non-conformal checkerboard meshes

In this case, we first take the uniform cartesian DDFV mesh of Section 2.3 (see Fig. 3) and
we take the exact solution ue(x, y, z) = sin(2πx) sin(2πy) sin(2πz) of the homogeneous Dirichlet
problem ( f is calculated accordingly). It should be noted that the solution is smooth and both
the mesh and the problem are symmetric wrt reflexions in each direction. Therefore error analysis
based on cancellations in Taylor expansions (cf. [8] for the more difficult p -laplacian case in 2D )
allows to prove the order h2 convergence for the solution itself (measured in the L2 norm) and
for the discrete gradient (measured in the L2 norm). The numerical results confirm these orders
as optimal ones; indeed, the following table gives results and convergence orders:

#Cubes #unkw ‖PTue−uT‖2 Order ‖∇T
P

Tue−∇TuT‖2 Order
6x6x6 341 0.207E+00 - 0.226E+00 -
9x9x9 1241 0.830E-01 2.118 0.936E-01 2.048

12x12x12 3059 0.451E-01 2.025 0.514E-01 1.993
18x18x18 10745 0.196E-01 1.992 0.225E-01 1.977
24x24x24 25991 0.109E-01 1.982 0.126E-01 1.974
32x32x32 62559 0.612E-02 1.981 0.704E-02 1.976

Then we consider the same problem discretized on non-conformal cartesian meshes; the meshes
are made of cubes of size h of which every second cube is refined into four cubes of size h/2
(the so-called checkerboard meshes). The corresponding results are:

#Cubes #unkw ‖PTue−uT‖2 Order ‖∇T
P

Tue−∇TuT‖2 Order
59 703 0.433E+00 - 0.462E+00 -
599 9835 0.172E+00 1.198 0.172E+00 1.278
5423 101539 0.446E-01 1.835 0.914E-01 0.862
46175 917395 0.110E-01 1.966 0.460E-01 0.962
381119 7788403 0.273E-02 1.977 0.231E-01 0.979

Here we clearly observe the superconvergence order h2 for the solution in L2 norm which
would be much more difficult to justify theoretically; at the same time, the order of the discrete
gradient convergence in the L2 norm falls down to h .

• Mildly anisotropic permeability A , cartesian, tetrahedral and Kershaw meshes

In this test, the permeability matrix A does not vary in space, but it is anisotropic:

A ≡





1 0.5 0
0.5 1 0.5
0 0.5 1



 .

The exact solution is given by the formula ue(x, y, z) = 1 + sin(πx) sin(π(y + 1
2 )) sin(π(z + 1

3 )) ,
the data u and f are calculated accordingly. We use three different kinds of primal meshes.
Firstly, on the same cartesian meshes as in the previous case (see Section 2.3 and Fig. 3) we get
the following results:

#Cubes ‖PTue−uT‖2 Order ‖∇T
P

Tue−∇TuT‖2 Order
6x6x6 0.742E-02 - 0.376E-01 -
9x9x9 0.332E-02 1.867 0.196E-01 1.511

12x12x12 0.187E-02 1.899 0.125E-01 1.505
18x18x18 0.837E-03 1.927 0.666E-02 1.501
24x24x24 0.471E-03 1.948 0.428E-02 1.499
32x32x32 0.265E-03 1.962 0.276E-02 1.498

Here, the h2 convergence for the gradient is lost and h3/2 convergence is observed, cf. [14]
(clearly, the anisotropy the permeability matrix A destroys some of the symmetries that led to
superconvergence in the case of laplacian). Yet an almost h2 convergence in L2 for the solution
itself is still observed.
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Figure 5. Meshes (primal): tetrahedral mesh on the left, Kershaw mesh at the
center, and prismal mesh on the right

Secondly, we use tetrahedral primal meshes (see Fig. 5, left). They do not lead to the Delaunay-
Voronöı DDFV meshes of Example 4.3, because of the barycentric choice for the cell and face
centers; cf. Hermeline [45] for the choice of circumcenters, on slightly different test cases. Actually,
in the below test we have used tetrahedral meshes that do not respect the Delaunay property. Let
us remind that our construction does not impose any specific choice for cell and face centers; only
the edge centers must be fixed to be the middlepoints. The barycentric choice of cell and face
centers leads to rather regular dual meshes. Tetrahedral mesh corresponds to l = 3 , which is
the simple case of the gradient reconstruction formulas that can be understood as straightforward
affine interpolation in K|L . On the corresponding DDFV meshes, we get the following results:

#Tetras #unkw ‖PTue−uT‖2 Order ‖∇T
P

Tue−∇TuT‖2 Order
2003 2187 0.539E-02 - 0.654E-01 -
3898 4301 0.331E-02 2.165 0.488E-01 1.297
7711 8584 0.206E-02 2.069 0.381E-01 1.077
15266 17102 0.135E-02 1.841 0.301E-01 1.018
30480 34343 0.846E-03 1.998 0.240E-01 0.973
61052 69160 0.539E-03 1.934 0.190E-01 1.012

One sees that here, the convergence order for the solution gradient falls down to h , while super-
convergence is still observed for the L2 norm of the solution itself.

Thirdly, we use the so-called Kershaw meshes (see Fig. 5, center) with hexahedral faces6. In
this case, l takes the value 4 ; here (4) is the (non-evident) choice of order one-consistent discrete
gradient that leads to discrete duality, see Remark 5.4 (we have l = 4 also for the case of uniform
cartesian meshes, but the symmetry of uniform meshes makes the gradient reconstruction formula
(7) easy to guess). Starting from the Kershaw primal meshes, the tests provide the following table:

#Hexs #unkw ‖PTue−uT‖2 Order ‖∇T
P

Tue−∇TuT‖2 Order
8x8x8 855 0.501E-01 - 0.484E+00 -

16x16x16 7471 0.156E-01 1.611 0.209E+00 1.160
32x32x32 62559 0.392E-02 1.954 0.677E-01 1.594
64x64x64 512191 0.101E-02 1.936 0.223E-01 1.585

Also here a convergence order slightly below h2 for the solution itself is observed; order h3/2

appears for the gradient, making the results similar to those on cartesian meshes.

6these meshes, generated by K. Lipnikov, are proposed in the 3D benchmark [41] (see
http://www.latp.univ-mrs.fr/latp_numerique/?q=node/11) and can be visualized at the same Web location

http://www.latp.univ-mrs.fr/latp_numerique/?q=node/11
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• Heterogeneous permeability A , prismal meshes

Here, distorted prismal meshes (see Fig. 5, right) with rather deformed faces are used7 The
permeability matrix A is heterogeneous, given by

A(x, y, z) =





y2 + z2 + 1 −xy −xz
−xy x2 + z2 + 1 −yz
−xz −yz x2 + y2 + 1



 ,

and the exact solution of the problem is, ue(x, y, z) = x3y2z+x sin(2πxz) sin(2πxy) sin(2πz) with
the ad hoc source and boundary values f, u . Here, This test was proposed in [12], see also [52].
Starting from these prismal meshes, we obtain the following table:

#Prisms #unkw ‖PTue−uT‖2 Order ‖∇T
P

Tue−∇TuT‖2 Order
1210 3010 0.467E-01 - 0.711E-01 -
8820 24020 0.123E-01 1.931 0.224E-01 1.667
28830 81030 0.554E-02 1.960 0.116E-01 1.634
67240 192040 0.314E-02 1.973 0.728E-02 1.607

Here we see that the quality of approximation is comparable to the one of the previous test
on cartesian and on Kershaw meshes; this makes us think that the scheme supports well mild
heterogeneity of the diffusion tensor (at least for smooth enough dependence on the space variable
and smooth solution), Moreover, elevated number of face vertices (here, we have up to l = 6
vertices per face) does not alter the scheme’s behaviour.

In conclusion, good convergence properties of the scheme are observed on each of the preceding
meshes, both for anisotropic and for heterogeneous diffusion problems. Superconvergence is ob-
served for the laplacian on uniform cartesian mesh, and the other cases, L2 convergence orders
intermediate between h3/2 and h2 for the solution, and orders h or h3/2 for the gradient, are
manifested. Elevated number l of face vertices seems less damaging than poor shape regularity
of the meshes.

Other properties of schemes are of importance, such as fulfillment or violation of the maximum
principle. While maximum principle can be shown in some situations, specifically on orthogonal
tetrahedral meshes for isotropic problems (see, e.g., [5],[3, Prop.4.3]), for most anisotropic or
heterogeneous diffusion problems the maximum principle is, in general, false. In practice, this
depends however on the stiffness of the solution, on the strength of anisotropy and heterogeneity,
and on shape regularity of the meshes. The numerical observations presented in [11] show that
over- and undershoots do not occur or they remain imperceptible, provided the anisotropy is a
moderate one and the meshes are not strongly distorted.

Appendix: A reconstruction property in the plane

Now we motivate the definition of the discrete gradient operator given in Section 2. Although
Lemma 5.1 below is a purely two-dimensional property, it is convenient to use the 3D formalism.
The subsequent notation corresponds to Figure 6; within this paragraph, the reader may ignore
all “asterisk” superscripts.

Let Π be a plane in R
3 with a fixed unit normal vector ~n , and σ ⊂ Π be a polygon with l

vertices ( l ≥ 3 ) denoted x∗
1, . . . , x

∗
l , numbered in the direct sense with respect to the orientation

of Π induced by ~n . This means that for i ∈ [[1, l]] , x∗
i and x∗

i+1 are neighbour vertices of the

polygon σ , and < ~ν ∗
i,i+1, ~e

∗
i,i+1, ~n >= 1 ; here ~e ∗

i,i+1 =
−−−−→
x∗
i x

∗
i+1/‖

−−−−→
x∗
ix

∗
i+1‖ and ~ν ∗

i,i+1 is the unit

normal vector to [x∗
i , x

∗
i+1] lying in Π and pointing outside σ . Here and in the sequel, x∗

l+1

stands for x∗
1 .

Further, introduce the barycenter (i.e., the middlepoint) x∗
i,i+1

of [x∗
i , x

∗
i+1] . For a point x∗

σ ∈ Π

and i ∈ [[1, l]] such that x∗
i,i+1 6= x∗

σ , denote ~τ ∗
i,i+1 =

−−−−→
x∗
σx

∗
i,i+1/‖

−−−−→
x∗
σx

∗
i,i+1

‖ and ~a ∗
i,i+1 = ~n × ~τ ∗

i,i+1 .

7these meshes, generated by G. Manzini, were also proposed in the benchmark [41]
(http://www.latp.univ-mrs.fr/latp_numerique/?q=node/11); in the primal faces K|L we find two kinds
of values, l = 4 and l = 6 .

http://www.latp.univ-mrs.fr/latp_numerique/?q=node/11
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In this way, for each i ∈ [[1, l]] , Π is supplied with a couple of orthonormal bases (~ν ∗
i,i+1, ~e

∗
i,i+1)

and (~τ ∗
i,i+1,~a

∗
i,i+1) , both oriented in the direct sense.

Finally, denote by α∗
i,i+1 the angle between ~ν ∗

i,i+1 and ~τ ∗
i,i+1 ; this is also the angle between

~e ∗
i,i+1 and ~a ∗

i,i+1 . Set

(21) mi,i+1 =
1

2
〈~n,

−−−−→
x∗
σx

∗
i,i+1,

−−−−→
x∗
i x

∗
i+1 〉

(

we have mi,i+1 =
1

2
‖
−−−−→
x∗
i x

∗
i+1‖ ‖

−−−−→
x∗
σx

∗
i,i+1

‖ cosα∗
i,i+1

)

;

this is the (signed) area of the triangle x∗
i x

∗
σx

∗
i+1 . Denote the area of σ by m ; it is easily seen

that m =
∑l

i=1 mi,i+1 . We also have 2
mi,i+1

cosα∗
i,i+1

~a ∗
i,i+1 = ‖

−−−−→
x∗
i x

∗
i+1‖

[

~n ×
−−−−−→
x∗
σx

∗
i,i+1

]

. In the case

mi,i+1 = 0 (this happens, e.g., if x∗
i,i+1

= x∗
σ ), the left-hand side of the above expression is meant

to be zero.

x∗
2

x∗
4

x∗
1,2

Case x∗

σ /∈ σPolygon σ⊂Π , oriented by ~n⊥Π

x∗σ

~n

area m2,3

x∗
3

x∗
1,2 x∗

5
≡x∗

1
x∗
2

x∗
4
≡x∗

1

area m3,4

x∗σ

negative
area m3,4

~n

x∗
3

~e ∗
1,2

~τ ∗
1,2~ν ∗

1,2

~e ∗
1,2

~τ ∗
1,2~ν ∗

1,2

~a ∗
1,2

~a ∗
1,2

Figure 6. 2D Reconstruction property (zoom on a primal interface)

Lemma 5.1. With the notation above, for all vector ~r parallel to Π we have

(22) ~r =
2

m

l
∑

i=1

mi,i+1

cosα∗
i,i+1

(~r · ~e ∗
i,i+1)~a

∗
i,i+1 =

1

m

l
∑

i=1

(~r ·
−−−−→
x∗
i x

∗
i+1)

[

~n×
−−−−→
x∗
σx

∗
i,i+1

]

.

Note that, if σ admits a circumscribed circle and x∗
σ is chosen to be its center, then ~τ ∗

i,i+1 is

parallel to ~ν ∗
i,i+1 ; in this case (22) reduces to the reconstruction property used in [5].

Proof : Consider ~r parallel to Π . Upon rotating axes, assume Π is the XOY plane, and

forgot temporarily the third coordinate axis. Define the function u : x ∈ Π 7→ ~r ·
−−→
x∗
σx . We have

(r1, r2) = ~r = ∇u = (∂1u, ∂2u) , and the Green-Gauss integration-by-parts formula yields

mr1 =

∫

σ

∂1u =

∫

σ

div
−−−→
(u, 0) =

∫

∂σ

−−−→
(u, 0) · ~ν =

∫

∂σ

u ν1,

where ν = (ν1, ν2) is the exterior unit normal vector to ∂σ . Analogous calculation for the second
component yields mr2 =

∫

∂σ u ν2 . Splitting the integral over ∂σ into l integrals over edges
[x∗

i , x
∗
i+1] , using the definition of u and using the barycenter x∗

i,i+1 of [x∗
i , x

∗
i+1] to evaluate the

integral of the affine function u , we get

(23) ~r =
1

m

l
∑

i=1

‖
−−−−→
x∗
i x

∗
i+1‖ (~r ·

−−−−→
x∗
σx

∗
i,i+1)~ν

∗
i,i+1 =

2

m

l
∑

i=1

mi,i+1

cosα∗
i,i+1

(~r · ~τ ∗
i,i+1)~ν

∗
i,i+1

for all vector ~r parallel to Π (formula (21) is used for the last equality).
Furthermore, for all i ∈ [[1, l]] , we have cosα∗

i,i+1 ~r = (~r ·~τ ∗
i,i+1)~ν

∗
i,i+1 +(~r ·~e ∗

i,i+1)~a
∗
i,i+1 . For the

proof, it suffices to take the scalar product by ~τ ∗
i,i+1 , and then by ~e ∗

i,i+1 , of the both sides of the
relation.
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Therefore

(24) 2~r =
2

m

l
∑

i=1

mi,i+1

cosα∗
i,i+1

(

(~r · ~τ ∗
i,i+1)~ν

∗
i,i+1 + (~r · ~e ∗

i,i+1)~a
∗
i,i+1

)

.

Subtracting (23) from (24) term by term, using the third coordinate axis to represent ~a ∗
i,i+1 by a

vector product, we deduce (22). �

Corollary 5.2. With the above notation, take (w∗
i )

l
i=1 ⊂ R , w∗

l+1 := w∗
1 . Consider the expres-

sion

(25)
1

∑l
i=1 mi,i+1

l
∑

i=1

(w∗
i+1 − w∗

i )
[

~n×
−−−−→
x∗
σx

∗
i,i+1

]

.

In the case w∗
i are the values of an affine function w at the vertices x∗

i of the polygon σ ,
expression (25) gives the projection Proj∗(∇w) of ∇w on the plane Π .

Proof : It is sufficient to note that Proj∗(∇w) ·
−−−−→
x∗
i x

∗
i+1 = ∇w ·

−−−−→
x∗
i x

∗
i+1 = w∗

i+1 − w∗
i , and to

substitute m =
∑l

i=1 mi,i+1 into the right-hand side of (22). �

Remark 5.3. Notice that Lemma 5.1 and Corollary 5.2 hold for all choice of x∗
σ in the plane Π ;

the restriction x∗
σ ∈ σ is not necessary. This restriction is equivalent to the positivity of mi,i+1

for all i .

Remark 5.4. If l = 3 , then (25) is just a non-evident way, suitable for the proof of Propo-
sition 3.2, to express the gradient of the unique function obtained by the three-point affine in-
terpolation. For the practical computation of the discrete gradient, one can take any convenient
formula expressing this three-point interpolation.

Let us point out that, unless l = 3 , formula (25) determines one among infinitely many linear
forms in

(

w∗
i )

l
i=1 which share the property of Corollary 5.2. The choice of (25) gives a particular

role to a given point x∗
σ ; it happens that this choice allows for the calculation of Proposition 3.28.

We guess that the affine interpolation formula (25) is well known, but to the best of our
knowledge, it was not yet exploited in the context of finite volume schemes. It can be used for
different vertex-centered finite volume schemes in the same way as the gradient reconstruction
formula shown in [31, Lemma 6.1], also known as the “magical formula”, is used for the cell-
centered schemes (see e.g. formula (23) in [34]).
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