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ON DISCRETE DUALITY FINITE VOLUME DISCRETIZATION

OF GRADIENT AND DIVERGENCE OPERATORS IN 3D

BORIS ANDREIANOV AND MOSTAFA BENDAHMANE

Abstract. This work is intended to provide a convenient tool for the mathematical analysis of a
particular kind of finite volume approximations which can be used, for instance, in the context of
nonlinear and/or anisotropic diffusion operators. Following the approach developed by F. Hermeline

and by K. Domelevo and P. Omnès, we consider a “double” covering T of a three-dimensional domain
by a rather general primal mesh and by a well-chosen “dual” mesh. The associated discrete divergence
operator divT is obtained by the standard finite volume approach. Then a consistent discrete gradient

operator ∇T is defined in such a way that −divT , ∇T enjoy an analogue of the integration-by-parts
formula known as the “discrete duality property”. We discuss the implications of these properties and

give a brief survey of other “discrete calculus” tools for “double” finite volume schemes.
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1. Introduction

“Discrete duality” finite volume (DDFV) discretization of linear and nonlinear diffusion operators,
introduced in papers [15, 26] (cf. also [30, 31]), is one of possible discretization strategies which applies to
a large variety of PDEs including the Stokes problem, Maxwell equations, nonlinear and linear anisotropic
diffusion and convection-diffusion problems (see e.g. [6, 3, 8, 10, 13, 14, 15, 25, 26, 27, 28, 30, 31]
and references therein). Among different finite volume approaches intended to resolve the difficulties
coming from anisotropy/nonlinearity of the PDE under consideration or from the need of working on
non-orthogonal, non-conformal, locally refined meshes, let us mention those of [1, 5, 12, 17, 16, 29, 19,
20, 21, 22]. The closest to the DDFV strategy is the “complementary volumes” strategy as described
by Handlovičová, Mikula and Sgallari in [23]. The same idea was used, in slightly different ways, in
[2] and in [7] (see also [4, Sec.2.1], where the discrete duality formulas in 2D are shown for a typical
complementary finite volume scheme). For extensive references on related works, we refer to Eymard,
Gallouët and Herbin [18, 22] and Hermeline [28]. Benchmarks that reflect the behaviour of some of the
above methods were presented by Herbin and Hubert in [24].
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2 B. ANDREIANOV AND M. BENDAHMANE

A DDFV mesh is a “double” mesh. It usually consists of a primal mesh, which in general can be
non-orthogonal and non-conformal, and of an appropriately chosen “dual” mesh (a more general point of
view is suggested in [6, §IX.B]). The case of dimension two is well studied by now (see e.g. [6, 15, 28] for
description of meshes, convergence results and numerical tests). For an attempt of a unified treatment
of the 2D and 3D cases, the reader can consult [3] (see also Remark 2.1 below).

In 3D, at least three types of “dual” meshes were already proposed.

(A) The construction due to Pierre (see [32, 10]) generalizes quite successfully the 2D case. Here the
dual mesh is rather unusual: it recovers the domain twice.

(B) In the work [28] of Hermeline, a very wide family of finite volume schemes on 3D “double” meshes
is considered; the construction includes e.g. the classical Voronöı double mesh corresponding to a well-
chosen primal mesh. Numerical results of [28] show good convergence properties of such schemes, even on
strongly distorted meshes. In the paper [3] of the authors and K.H. Karlsen, the very particular case of
orthogonal meshes was considered. These meshes are suitable for convergence analysis in the framework
of entropy solutions of nonlinear convection-diffusion problems.

(C) In the recent work [11] of Coudière and Hubert, the meshes are of the same kind as in [28], but in
the finite volume approximation three meshes are involved, making it a “triple” mesh.

This note further explores the approach (B) . Our goal is to provide convenient tools for the mathematical
analysis of “double-mesh” discretizations on three-dimensional domains. More exactly, for a large subclass
of meshes considered in [28], we exibit a consistent discrete gradient operator which possesses the same
“integration-by-parts” property as the 3D scheme of [3] or the usual 2D DDFV schemes (see e.g. [6, 15]).
The discrete duality features are essential for the convergence proofs. Note that different variants of the
“discrete duality property” hold for the schemes of [10, 32], of [17, 16], of [19, 20, 21, 22], of [5]. For
the “complementary finite volumes” schemes as described in [23, 2, 7, 4], a discrete duality property,
completely similar to the one shown in the present paper, is true in 2D (see [4] and Remark 4.2).

The practical implications of the discrete duality formula are discussed in Remark 4.3 in Section 4.

Formulae (6),(8),(7),(5) (respectively, (12),(13)) define the discrete gradient operator ∇T (resp., the
discrete divergence operator divT ). The meaning of these formulae is explained in Remark 2.5 and
Remark 2.7. Related scalar products are introduced in formulae (14),(15). The main results are those
of Remark 2.6 and Proposition 3.2; the link between consistency and discrete duality is provided by
the “reconstruction property” of Lemma 2.2. For simplicity, we restrict our attention to the case of
convex primal volumes, and impose constraints on the choice of the “centres” of volumes and faces; these
constraints can be relaxed (see Remarks 4.6, 4.7 and Example 4.8).

At the final section we also provide some comments as to the use of “double” schemes and briefly
discuss the “discrete calculus” tools needed for their theoretical analysis. For the detailed techniques of
the convergence analysis for DDFV discretizations of linear and nonlinear diffusion operators we refer to
Domelevo and Omnès [15], Andreianov, Boyer and Hubert [6], Andreianov, Bendahmane and Karlsen [3].

2. Double meshes and the associated gradient and divergence operators

Let Ω be a polyhedral open bounded subset of R
3 . In what follows, we introduce the notation related

to “double” finite volume schemes; each piece of new notation is given in italic script. The notation is
redundant in many cases, which is convenient because the role of objects we introduce is often multi-fold.
Most of the notations are illustrated with the help of figures.

Throughout the paper, ‖~a‖ denotes the euclidean norm of ~a ∈ R
3 ; ~a ·~b (respectively, ~a×~b ) denotes

the scalar product (respectively, the vector product) of ~a,~b ∈ R
3 ; 〈~a,~b,~c 〉 denotes the mixed product

of ~a,~b,~c ∈ R
3 . We use extensively the geometric meaning and the properties of these products.

2.1. Construction of “double” meshes.

• A partition of Ω is a finite set of disjoint open polyhedral subsets of Ω such that Ω is contained
in their union, up to a set of zero three-dimensional measure.

A “double” finite volume mesh of Ω is a triple T =
(

M,M∗,D
)

described below.

• We take M a partition of Ω into open polyhedra. We assume them convex.

Each K ∈ M is called control volume and supplied with an arbitrarily chosen centre xK ; for simplicity,
we assume xK ∈ K . We call ∂M the set of all faces of control volumes that are included in ∂Ω . These



ON DISCRETE DUALITY FINITE VOLUME DISCRETIZATION IN 3D 3

faces are considered as boundary control volumes ; for K ∈ ∂M , we choose a centre xK ∈ K . We denote
by M the union M ∪ ∂M . We call vertex (of M ) any vertex of any control volume K ∈ M .

• We call neighbours of K , all control volumes L ∈ M such that K and L have a common face. The
set of all neighbours of K is denoted by N(K) . Note that if L ∈ N(K) , then K ∈ N(L) ; in this case
we simply say that K and L are (a couple of) neighbours.

• If K and L are neighbours, we denote by K|L the interface (face) ∂K ∩ ∂L between K and L .

• A generic vertex of M is denoted by xK∗ ; it will be associated later with a unique dual control

volume K∗ ∈ M
∗ . Each face K|L is supplied with a face centre xK|L which should lie in K|L (the more

general situation is discussed in Remarks 4.6,4.7). For two neighbour vertices xK∗ and xL∗ (i.e., vertices
of M joined by an edge of some polygon K|L ), we denote by xK∗|L∗ the middlepoint of the segment
[xK∗ , xL∗ ] .

• Now if K ∈ M and L ∈ N(K) , assume xK∗ , xL∗ are two neighbour vertices of the interface K|L .
We denote by T

K

K∗,K∗|L∗ the tetrahedre formed by the points xK , xK∗ , xK|L, xK∗|L∗ . A generic tetrahedre
T

K

K∗,K∗|L∗ is called an element of the mesh and denoted by T (see Fig. 3); the set of all elements is denoted
by T .

• Define the volume K∗ associated with a vertice xK∗ of M as the union of all elements T ∈ T

having xK∗ for one of its vertices. The collection M
∗ of all such K∗ forms another partition of Ω .

If xK∗ ∈ Ω , we say that K∗ is a dual control volume and write K∗ ∈ M
∗ ; and if xK∗ ∈ ∂Ω , we say

that K∗ is a boundary dual control volume and write K∗ ∈ ∂M
∗ . Thus M

∗ = M
∗ ∪ ∂M

∗ . We call

dual vertex (of M
∗ ) any vertex of any dual control volume K∗ ∈ M

∗ . Note that by construction, the
set of vertices coincides with the set of dual centres xK∗ ; the set of dual vertices consists of centers xK ,
face centers xK|L and edge centers (middlepoints) xK∗|L∗ .

• We denote by N
∗(K∗) the set of (dual) neighbours of a dual control volume K∗ , and by K∗|L∗ , the

(dual) interface ∂K∗ ∩ ∂L∗ between dual neighbours K∗ and L∗ .

• Finally, we introduce the partitions of Ω into diamonds and subdiamonds1.

If K, L ∈ M are neighbours, then the convex hull of xK , xL and of K|L is called diamond and denoted
by D

K|L . In the sequel, to each diamond we will prescribe an orientation by fixing arbitrarily the
orientation of the segment [xK , xL] .

If K, L ∈ M are neighbours, and xK∗ , xL∗ are neighbour vertices of the corresponding interface K|L ,
then the union of the four elements T

K

K∗,K∗|L∗ , T
K

L∗,K∗|L∗ , T
L

K∗,K∗|L∗ , and T
L

L∗,K∗|L∗ is called subdiamond and

denoted by S
K|L

K∗|L∗ . In this way, each diamond D
K|L gives rise to l subdiamonds (where l is the number

of vertices of K|L ). Each subdiamond is associated with a unique interface K|L , and thus with a unique
diamond D

K|L . We will write S ∼ D to signify that S is associated2 with D .

We denote by D , S the sets of all diamonds and the set of all subdiamonds, respectively. Generic
elements of D , S are denoted by D , S , respectively. Notice that D is a partition of Ω .

• (see Figure 1) Whenever the orientation of a diamond D should be cared of, the primal vertices defin-
ing it will be denoted by xK⊙ , xK⊕ in such a way that the vector −−−−−→xK⊙xK⊕ has the positive orientation.
The oriented diamond is then denoted by D

K⊙|K⊕ . We denote by ~eK⊙,K⊕ the corresponding unit vector,
and by dK⊙,K⊕ , the length of −−−−−→xK⊙xK⊕ . We denote by ~nK⊙|K⊕ the unit normal vector to K⊙|K⊕ such
that ~nK⊙|K⊕ · ~eK⊙,K⊕ > 0 .

The normal vector ~nK⊙|K⊕ to K⊙|K⊕ being fixed, this induces the orientation in the corresponding face
K⊙|K⊕ , which is a convex polygon with l vertices : we denote the vertices of K⊙|K⊕ by xK

∗
i

, i ∈ [[1, l]] ,
enumerated in the direct sense. By convention, we assign xK

∗
l+1

:= xK
∗
1

. We denote by ~eK
∗
i
,K∗

i+1
the unit

normal vector pointing from xK
∗
i

towards xK
∗
i+1

, and by dK
∗
i
,K∗

i+1
, the length of −−−−−→xK

∗
i
xK

∗
i+1

.

In order to lighten the notation, we will drop the K ’s in the subscripts and denote the objects introduced
above by x⊙ , x⊕ , ~e⊙,⊕ , d⊙,⊕ , ~n⊙,⊕ and by x∗

i , ~e ∗
i,i+1 , d∗i,i+1 whenever D

K⊙|K⊕ is fixed. We also denote
by x∗

i,i+1
the middlepoint xK

∗
i
|K∗

i+1
of the segment [xi, xi+1] , and by x∗

⊙,⊕ , the centre xK⊙|K⊕ of K⊙|K⊕ .

1Their definitions should be generalized if the constraint xK ∈ K is dropped; see Remark 4.6.
2Because we have made the assumption that xK|L ∈ K|L , the relation S ∼ D simply means that S is included in D .

We will develop a more general point of view in Remark 4.7.
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Figure 1. 3D neighbour volumes, diamond, subdiamond. Zoom on a subdiamond.

• For a diamond D = D
K⊙|K⊕ , we denote by Proj

D
the operator of orthogonal projection of R

3 on
the line < ~eK⊙,K⊕ > ; we denote by Proj∗

D
the operator of orthogonal projection of R

3 on the plane
containing the interface K⊙|K⊕ .

• For K ∈ M , we denote by V(K) the set of all subdiamonds S ∈ S such that xK is a vertice of

S . In the same way, for K∗ ∈ M
∗ we define the set V

∗(K∗) of subdiamonds with vertice xK∗ .

• We denote by Vol(A) the three-dimensional Lebesgue measure of A which can stand for a control

volume, a dual control volume, or a diamond. For a subdiamond S = S
K⊙|K⊕

K
∗
i
|K∗

i+1
, we have the formula

Vol(S) = 1
6 〈

−−→x⊙x⊕,
−−−−−→
x∗
⊙,⊕x∗

i,i+1
,
−−−−→
x∗

i x
∗
i+1 〉 . Note the mixed product is positive, thanks to our conventions on the

orientation in D
K⊙|K⊕ and because we have assumed that x∗

⊙,⊕ ∈ K⊙|K⊕ .

Remark 2.1. Diamonds permit to define the discrete gradient operator, while subdiamonds permit to
define the discrete divergence operator (see (6), (7) and (12), (13) below, respectively).

In the context of 2D “double” schemes, introducing diamonds is quite standard (see e.g. [6, 15]).
Subdiamonds are “hidden” in the 2D construction : they actually coincide with diamonds.

The above definitions are illustrated and generalized in Remark 4.7 at the end of the paper.

2.2. Discrete functions and fields.

• A discrete function on Ω is a set wT =
(

wM, wM
∗)

consisting of two sets of real values wM =

(wK)K∈M and wM
∗

= (wK∗)K∗∈M
∗ . The set of all such functions is denoted by R

T .

A discrete function on Ω is a set wT =
(

wM, wM
∗
, w∂M, w∂M

∗)

≡
(

wT, w∂M, w∂M
∗)

consisting of

wM= (wK)K∈M, wM
∗
= (wK∗)K∗∈M

∗ , w∂M= (wK)K∈∂M, w∂M
∗
= (wK∗)K∗∈∂M

∗ .

The set of all such functions is denoted by R
T . In case all the components of w∂M and of w∂M

∗
are

zero, we write wT ∈ R
T

0 .

• A discrete field on Ω is a set ~FT =
(

~FD

)

D∈D
of vectors of R

d . The set of all discrete fields is

denoted by (Rd)D . If ~FT is a discrete field on Ω , we assign ~FS = ~FD whenever S ∼ D .

2.3. A reconstruction property in the plane.

Now we motivate the definition of the discrete gradient operator. Although Lemma 2.2 is a purely two-
dimensional property, it is convenient to use the 3D formalism. The subsequent notation corresponds to
Figure 2; within this paragraph, the reader may ignore all “asterisk” superscripts.

Let Π be a plane in R
3 with a fixed unit normal vector ~n , and σ ⊂ Π be a polygon with l vertices

( l ≥ 3 ) denoted x∗
1, . . . , x

∗
l , numbered in the direct sense with respect to the orientation of Π induced

by ~n . This means that for i ∈ [[1, l]] , x∗
i and x∗

i+1 are neighbour vertices of the polygon σ , and

< ~ν ∗
i,i+1, ~e

∗
i,i+1, ~n >= 1 ; here ~e ∗

i,i+1 =
−−−−→
x∗

i x
∗
i+1/‖

−−−−→
x∗

i x
∗
i+1‖ and ~ν ∗

i,i+1 is the unit normal vector to [x∗
i , x

∗
i+1]

lying in Π and pointing outside σ . Here and in the sequel, x∗
l+1 stands for x∗

1 .

Further, introduce the barycenter (i.e., the middlepoint) x∗
i,i+1

of [x∗
i , x

∗
i+1] . For a point x∗

σ ∈ Π and

i ∈ [[1, l]] such that x∗
i,i+1

6= x∗
σ , denote ~τ ∗

i,i+1 =
−−−−→
x∗

σx∗
i,i+1

/‖
−−−−→
x∗

σx∗
i,i+1

‖ and ~a ∗
i,i+1 = ~n × ~τ ∗

i,i+1 . In this way,
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for each i ∈ [[1, l]] , Π is supplied with a couple of orthonormal bases (~ν ∗
i,i+1, ~e

∗
i,i+1) and (~τ ∗

i,i+1,~a
∗
i,i+1) ,

both oriented in the direct sense.

Finally, denote by θ∗i,i+1 the angle between ~ν ∗
i,i+1 and ~τ ∗

i,i+1 ; this is also the angle between ~e ∗
i,i+1 and

~a ∗
i,i+1 . Set

(1) mi,i+1 =
1

2
〈~n,

−−−−→
x∗

σx∗
i,i+1

,
−−−−→
x∗

i x
∗
i+1 〉

(

we have mi,i+1 =
1

2
‖
−−−−→
x∗

i x
∗
i+1‖ ‖

−−−−→
x∗

σx∗
i,i+1

‖ cos θ∗i,i+1

)

;

this is the (signed) area of the triangle x∗
i x

∗
σx∗

i+1 . Denote the area of σ by m ; it is easily seen that

m =
∑l

i=1 mi,i+1 . We also have 2
mi,i+1

cos θ∗
i,i+1

~a ∗
i,i+1 = ‖

−−−−→
x∗

i x
∗
i+1‖

[

~n ×
−−−−−→
x∗

σx∗
i,i+1

]

. In the case mi,i+1 = 0 (this

happens, e.g., if x∗
i,i+1

= x∗
σ ), the left-hand side of the above expression is meant to be zero.

x∗
2

x∗
4

x∗
1,2

Case x∗

σ /∈ σPolygon σ⊂Π , oriented by ~n⊥Π

x∗σ

~n

area m2,3

x∗
3

x∗
1,2 x∗

5
≡x∗

1
x∗
2

x∗
4
≡x∗

1

area m3,4

x∗σ

negative
area m3,4

~n

x∗
3

~e ∗
1,2

~τ ∗
1,2~ν ∗

1,2

~e ∗
1,2

~τ ∗
1,2~ν ∗

1,2

~a ∗
1,2

~a ∗
1,2

Figure 2. 2D Reconstruction property (zoom on a primal interface)

Lemma 2.2. With the notation above, for all vector ~r parallel to Π we have

(2) ~r =
2

m

l
∑

i=1

mi,i+1

cos θ∗i,i+1

(~r · ~e ∗
i,i+1)~a

∗
i,i+1 =

1

m

l
∑

i=1

(~r ·
−−−−→
x∗

i x
∗
i+1)

[

~n ×
−−−−→
x∗

σx∗
i,i+1

]

.

Note that, if σ admits a circumscribed circle and x∗
σ is chosen to be its center, then ~τ ∗

i,i+1 is parallel
to ~ν ∗

i,i+1 ; in this case (2) reduces to the reconstruction property used in [3].

Proof : Thanks to the choice of the barycenter for x∗
i,i+1

, we can apply [17, Lemma 6.1] which is a
consequence of the Green-Gauss integration-by-parts formula. Note that the assumptions “ σ is convex,
x∗

σ ∈ σ ” of this lemma can be dropped. Using in addition (1), we get for all vector ~r parallel to Π ,

(3) ~r =
1

m

l
∑

i=1

‖
−−−−→
x∗

i x
∗
i+1‖ (~r ·

−−−−→
x∗

σx∗
i,i+1

)~ν ∗
i,i+1 =

2

m

l
∑

i=1

mi,i+1

cos θ∗i,i+1

(~r · ~τ ∗
i,i+1)~ν ∗

i,i+1.

Furthermore, for all i ∈ [[1, l]] , we have cos θ∗i,i+1 ~r = (~r · ~τ ∗
i,i+1)~ν ∗

i,i+1 + (~r · ~e ∗
i,i+1)~a

∗
i,i+1 . For the proof, it

suffices to take the scalar product by ~τ ∗
i,i+1 , and then by ~e ∗

i,i+1 , of the both sides of the relation.

Therefore

(4) 2~r =
2

m

l
∑

i=1

mi,i+1

cos θ∗i,i+1

(

(~r · ~τ ∗
i,i+1)~ν ∗

i,i+1 + (~r · ~e ∗
i,i+1)~a

∗
i,i+1

)

.

Subtracting (3) from (4) term by term, we deduce (2). ⋄

Corollary 2.3. With the above notation, take (w∗
i )l

i=1 ⊂ R , w∗
l+1 := w∗

1 . Consider the expression

(5)
1

∑l
i=1 mi,i+1

l
∑

i=1

(w∗
i+1 − w∗

i )
[

~n ×
−−−−→
x∗

σx∗
i,i+1

]

.

In the case w∗
i are the values of an affine function w at the vertices x∗

i of the polygon σ , expression
(5) gives the projection Proj∗(∇w) of ∇w on the plane Π .

Proof : It is sufficient to note that Proj∗(∇w) ·
−−−−→
x∗

i x
∗
i+1 = ∇w ·

−−−−→
x∗

i x
∗
i+1 = w∗

i+1 −w∗
i , and to substitute

m =
∑l

i=1 mi,i+1 into the right-hand side of (2). ⋄
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Remark 2.4. Notice that Lemma 2.2 and Corollary 2.3 hold for all choice of x∗
σ in the plane Π ; the

restriction x∗
σ ∈ σ is not necessary. This restriction is equivalent to the positivity of mi,i+1 for all i .

Remark 2.5. Let us point out that, unless l = 3 , formula (5) determines one among infinitely many
linear forms in

(

w∗
i )l

i=1 which share the property of Corollary 2.3. The choice of (5) is motivated by
the calculation of Proposition 3.2: in fact, it is the discrete duality property that leads to (5). If l = 3 ,
then (5) is equivalent to any of the formulas for three-point affine interpolation in the plane Π .

We guess that the affine interpolation formula (5) is well known, but to the best of our knowledge, it
was not yet exploited in the context of finite volume schemes.

2.4. The discrete gradient operator.

• On the set R
T of discrete functions wT on Ω , we define the operator ∇T[·] of discrete gradient

(6) ∇T : wT ∈ R
T 7→ ∇TwT =

(

∇DwT
)

D∈D
∈ (Rd)D

where ∇TwT is the discrete field on Ω with the values ∇DwT satisfying, for D = D
K⊙|K⊕ ,

(7) ∇DwT is s.t.











Proj
D
(∇DwT) = w⊕−w⊙

d⊙,⊕
~e⊙,⊕, with w⊙ =wK⊙ , w⊕ =wK⊕ ;

Proj∗
D
(∇DwT) is the vector defined by formulae (5),(1)

with w∗
i = wK

∗
i
, ~n = ~n⊙,⊕, x∗

σ = x∗
⊙,⊕.

Remark 2.6. Thus, the primal mesh M serves to reconstruct one component of the gradient, which is

the one in the direction ~e⊙,⊕ . The dual mesh M
∗ serves to reconstruct, with the help of formula (5),

the two other components which are the components in the plane Π containing K⊙|K⊕ .

For an explicit formula, note that if ~p = Proj
D
(∇DwT) , ~p∗ = Proj

D
(∇DwT) are given, we have

(8) ∇DwT = ~p∗ +
~e⊙,⊕ · (~p − ~p∗)

~e⊙,⊕ · ~n⊙,⊕

~n⊙,⊕.

Notice that (7) and Corollary 2.3 imply the consistency of our gradient approximation :

Remark 2.7. Let w⊙, w⊕, (w∗
i,i+1)

l
i=1 be the values at the points x⊙, x⊕, (x∗

i,i+1
)l
i=1 , respectively, of an

affine on D = D
K⊙|K⊕ function w . Then ∇DwT coincides with the value of ∇w on D .

2.5. The discrete divergence operator.

• (see Figure 3) In a generic subdiamond, we use the following notation. Consider S ∈ S ; it is
associated with a unique oriented diamond which we denote D

K⊙|K⊕ , so that S is of the form S =
S

K⊙|K⊕

K
∗
i
|K∗

i+1
. We further split S it into the two parts S⊙ := T

K⊙

K
∗
i
,K∗

i
|K∗

i+1
∪ T

K⊙

K
∗
i+1

,K∗
i
|K∗

i+1
, S⊕ := T

K⊕

K
∗
i
,K∗

i
|K∗

i+1
∪

T
K⊕

K
∗
i+1

,K∗
i
|K∗

i+1
(each one contains one flat part of the interface K

∗
i|K

∗
i+1 ). We denote σS := S ∩ K⊙|K⊕ ,

σ∗
S⊙

:= S⊙ ∩K
∗
i|K

∗
i+1 , σ∗

S⊕
:= S⊕ ∩K

∗
i|K

∗
i+1 . The areas of σS , σ∗

S⊙
, σ∗

S⊕
are denoted by mS , m∗

S⊙
, m∗

S⊕
,

respectively. We denote by ~nS , ~n∗
S⊙

, ~n∗
S⊕

the unit normal vectors to σS , σ∗
S⊙

, σ∗
S⊕

, respectively.
Their orientations are chosen so that to satisfy

(9) ~nS = ~nK⊙|K⊕ and 〈~n∗
S⊙

, ~n⊙,⊕,
−−−−−→
x∗
⊙,⊕x∗

i,i+1
〉 ≥ 0, 〈~n∗

S⊕
, ~n⊙,⊕,

−−−−−→
x∗
⊙,⊕x∗

i,i+1
〉 ≥ 0.

This implies that

(10)
mS~nS = 1

2

−−−−−→
x∗
⊙,⊕x∗

i,i+1
×
−−−−→
x∗

i x
∗
i+1,

m∗
S⊙

~n∗
S⊙

+ m∗
S⊕

~n∗
S⊕

= 1
2

−−−→
x⊙x∗

⊙,⊕ ×
−−−−−→
x∗
⊙,⊕x∗

i,i+1
+ 1

2

−−−→
x∗
⊙,⊕x⊕ ×

−−−−−→
x∗
⊙,⊕x∗

i,i+1
= 1

2
−−→x⊙x⊕ ×

−−−−−→
x∗
⊙,⊕x∗

i,i+1
.

Further, for S = S
K⊙|K⊕

K
∗
i
|K∗

i+1
we define

(11) ǫK

S
:=

{

0, if K = K⊙

1, if K = K⊕

, ǫK∗

S
:=

{

0, if K∗ = K
∗
i

1, if K∗ = K
∗
i+1

.

• For K ∈ M , we denote by V(K) the set of all subdiamonds S ∈ S such that K ∩ S 6= ∅ . In the

same way, for K∗ ∈ M
∗ we define the set V

∗(K∗) of the subdiamonds intersecting K∗ .3

• On the set (Rd)D of discrete fields ~FT , we define the operator div T[·] of discrete divergence by

(12) divT : ~FT ∈ (Rd)D 7→ vT = divT[ ~FT] ∈ R
T,

3These definitions should be generalized if the constraint xK|L ∈ K|L is dropped (see Remark 4.7).
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xK⊕

T
K⊕

K∗
1
,K∗

3
|K∗

1

element

xK∗
3
|K∗

1

xK∗
2

xK∗
3

xK∗
1

xK⊙

xK⊙|K⊕

����
����
����
����
����
����
����

����
����
����
����
����
����
��������
����
����
����
����
����
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����

x⊕

α⊙,⊕

x∗
i

x∗
i,i+1

x∗
i+1

(part of K⊙|K⊕)
interface σS

interface σS⊙x⊙
(part of Ki|Ki+1)

~e⊙,⊕

interface σS⊕

~nS⊕

S
K⊙|K⊕

K∗
i
|K∗

i+1

(part of Ki|Ki+1)
subdiamond

~n⊙,⊕

~e⊙,⊕

~nS≡~n⊙,⊕

x∗
⊙,⊕

angle

Figure 3. Element. Subdiamond: σS, σS⊕ , σS⊙ and their normal vectors.

where the discrete function vT =
(

vM, vM
∗)

on Ω with vM = (vK)K∈M , vM
∗

= (vK∗)K∗∈M
∗ taking

the values

(13)

vK=
1

Vol(K)

∑

S∈V(K)

mS
~FS · (−1)ǫ

K

S~nS =
1

2Vol(K)

∑

S∈V(K)

(−1)ǫ
K

S 〈 ~FS,
−−−−−→
x∗
⊙,⊕x∗

i,i+1
,
−−−−→
x∗

i x
∗
i+1 〉,

vK∗=
1

Vol(K∗)

∑

S∈V∗(K∗)

~FS · (−1)ǫ
K∗

S

(

m∗
S⊙

~n∗
S⊙

+m∗
S⊕

~n∗
S⊕

)

=
1

2Vol(K∗)

∑

S∈V∗(K∗)

(−1)ǫ
K∗

S 〈 ~FS,−−→x⊙x⊕,
−−−−−→
x∗
⊙,⊕x∗

i,i+1
〉.

In formulae (13), we mean that each subdiamond S in V(K) (or in V
∗(K∗) ) has the form S = S

K⊙|K⊕

K
∗
i
|K∗

i+1
,

with some K⊙, K⊕, K
∗
i , K

∗
i+1 ; the notations ǫK

S
, ǫK∗

S
, x⊙, x⊕, x∗

⊙,⊕, x∗
i,i+1

, x∗
i , x

∗
i+1 , under the sign “

∑

” refer

to S = S
K⊙|K⊕

K
∗
i
|K∗

i+1
.

Note that we have used (10) to reduce the calculation of vK , vK∗ to a simple mixed product formula.

Remark 2.8. Formulae (13) correspond to the standard procedure of finite volume discretization.

The value Vol(K) vK is the flux of the vector field ~FT through the boundary ∂K , so that it represents
∫

K
div ~FT . Indeed, thanks to the constraints x⊙ ∈ K⊙ , x⊕ ∈ K⊕ and the orientation constraints (we

have ~nS · −−→x⊙x⊕ = d⊙,⊕ ~n⊙,⊕ · ~e⊙,⊕ > 0 ), vector ~nS points from K⊙ to K⊕ ; thus by definition (11) of

ǫK

S
, the vector (−1)ǫ

K

S ~nS is the unit normal vector to σS ⊂ ∂K exterior to K , for K = K⊙ and for
K = K⊕ .

Similarly, having chosen x∗
⊙,⊕ ∈ K⊙|K⊕ we ensured that ~n∗

S⊙
, ~n∗

S⊕
point from K

∗
i to K

∗
i+1 , thanks

to (9) and to the fact that the vertices of K⊙|K⊕ are numbered according to the orientation of ~n⊙,⊕ .

By (11), (−1)ǫ
K∗

S ~n∗
S⊙

, (−1)ǫ
K∗

S ~n∗
S⊕

are the unit normal vectors to the flat portions σ∗
S⊙

, σ∗
S⊕

of ∂K∗ ,

exterior to K∗ . Thus Vol(K∗) vK∗ represents
∫

K∗ div ~FT which is the flux of ~FT through ∂K∗ .

3. The discrete duality property

Let us define the convenient multiplication of discrete functions/discrete fields and state our main result.

• Recall that R
T is the space of all discrete functions on Ω . For wT, vT ∈ R

T , set

(14)
[[

wT, vT

]]

=
1

3

∑

K∈M

Vol(K) wKvK +
2

3

∑

K∗∈M
∗

Vol(K∗) wK∗vK∗ ;

it is clear that
[[

·, ·
]]

is a scalar product on R
T .

Remark 3.1. Notice that the role of the primal and the dual meshes is not symmetric; this asymmetry
is also reflected by Remark 2.5. In R

d , the primal mesh would account for 1
d of the product, and the

dual mesh, for d−1
d (see [3]).

Also notice that in the 3D scheme developed by Pierre (see [10, 32]), the weights in the scalar product
(14) are both equal to 1

3 ; but, because the dual mesh in [10, 32] covers twice the domain Ω ⊂ R
3 , its

“weight” is doubled with respect with the “weight” of the primal mesh. This is similar to what happens
in our formula (14).

As to the 3D scheme proposed by Coudière and Hubert (see [11]), a “triple” mesh is involved, and the
associated scalar product takes the contributions of each of the meshes with the equal weights 1

3 .
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• Recall that (R3)D is the space of all discrete fields on Ω . For ~FT, ~GT ∈ (R3)D , set

(15)
{{

~FT, ~GT

}}

=
∑

D∈D

Vol(D) ~FD · ~GD;

it is clear that
{{

·, ·
}}

is a scalar product on (R3)D .

Proposition 3.2. The discrete divergence and gradient operators −divT , ∇T defined in Section 2 are
linked by the following duality property :

(16) ∀ wT ∈ R
T

0 ∀ ~FT ∈ (Rd)D

[[

− divT[ ~FT] , wT

]]

=
{{

~FT , ∇TwT

}}

.

Proof : The proof is by direct calculation, using the summation-by-parts procedure. Denote the

product
[[

−divT[ ~FT] , wT

]]

by Z . We put together the terms in Z corresponding to adjacent couples

of primal and dual volumes, which amounts to make the summation over all subdiamonds S = S
K⊙|K⊕

K
∗
i
|K∗

i+1

(see Figures 1,3 for the notation in S ); ghost terms corresponding to the boundary volumes can be
added, because wT is zero on the boundary volumes. With (14),(13),(11),(10), we find

Z =
∑

S∈S

~FS ·
(

1
3 (w⊕ − w⊙)mS~n⊙,⊕ + 2

3 (w∗
i+1−w∗

i ) (m∗
S⊙

~n∗
S⊙

+ m∗
S⊕

~n∗
S⊕

)
)

= 1
3

∑

S∈S

~FS ·
(

mSd⊙,⊕
w⊕−w⊙

d⊙,⊕
~n⊙,⊕ + (w∗

i+1−w∗
i ) −−→x⊙x⊕ ×

−−−−−→
x∗
⊙,⊕x∗

i,i+1

)

.

Next, we put together the terms corresponding to the subdiamonds S associated with the same diamond

D ; since ~FS = ~FD in this case, this amounts to make the summation over all diamonds D = D
K⊙|K⊕

(see Figures 1,2 for the notation in D ). We get

(17) Z =
∑

D∈D

~FD · ~ZD with ~ZD :=
∑

S∼D

1

3

(

mSd⊙,⊕

w⊕ − w⊙

d⊙,⊕

~n⊙,⊕ + (w∗
i+1−w∗

i ) −−→x⊙x⊕ ×
−−−−−→
x∗
⊙,⊕x∗

i,i+1

)

.

By (15), it remains to show that the interior sum in the above formula, which we denote ~ZD , equals

Vol(D) ∇T

D
wT . To this end, we calculate separately Proj

D
(~ZD) and Proj∗

D
(~ZD) .

First, let α⊙,⊕ be the acute angle formed by the segment [x⊙, x⊕] and the direction normal to K⊙|K⊕ .
Let m be the area of the face K⊙|K⊕ . We have m =

∑

S∼D
mS and since ~n⊙,⊕ · ~e⊙,⊕ > 0 ,

(18) Vol(D) =
1

3
md⊙,⊕ cos α⊙,⊕ =

1

3
(~n⊙,⊕ · ~e⊙,⊕)

∑

S∼D

mSd⊙,⊕.

Also notice that

(19) −−→x⊙x⊕ = d⊙,⊕cos α⊙,⊕ ~n⊙,⊕ + Proj∗
D
(−−→x⊙x⊕).

Unless
−−−−−→
x∗
⊙,⊕x∗

i,i+1
is zero (this case is trivial), introduce d∗i+1/2 = ‖

−−−−−→
x∗
⊙,⊕x∗

i,i+1
‖ and ~τ ∗

i,i+1 :=
−−−−−→
x∗
⊙,⊕x∗

i,i+1
/d∗i+1/2 ,

~a ∗
i,i+1 := ~n⊙,⊕ × ~τ ∗

i,i+1 ; (~τ ∗
i,i+1,~a

∗
i,i+1) is an orthonormal basis in the plane Π containing K⊙|K⊕ (the so

introduced notation coincides with the notation of Figure 2). We have

(20)
Proj∗

D
(−−→x⊙x⊕ ×

−−−−−→
x∗
⊙,⊕x∗

i,i+1
) = d∗i+1/2

(

〈−−→x⊙x⊕, ~τ ∗
i,i+1, ~τ

∗
i,i+1〉~τ

∗
i,i+1 + 〈−−→x⊙x⊕, ~τ ∗

i,i+1,~a
∗
i,i+1〉~a

∗
i,i+1

)

= d⊙,⊕cos α⊙,⊕ 〈~n⊙,⊕, ~τ ∗
i,i+1,~a

∗
i,i+1〉 d∗i+1/2~a

∗
i,i+1 = d⊙,⊕cos α⊙,⊕ (~n⊙,⊕ ×

−−−−−→
x∗
⊙,⊕x∗

i,i+1
);

here we have used equality (19).

• Now, Proj
D
(−−→x⊙x⊕ ×

−−−−−→
x∗
⊙,⊕x∗

i,i+1
) is zero. Therefore by (17) and (18),

Proj
D
(~ZD) = (~ZD · ~e⊙,⊕)~e⊙,⊕ =

Vol(D)

~n⊙,⊕ · ~e⊙,⊕

w⊕−w⊙

d⊙,⊕

(~n⊙,⊕ · ~e⊙,⊕)~e⊙,⊕ = Vol(D)
w⊕−w⊙

d⊙,⊕

~e⊙,⊕.

By (7), we conclude that Proj
D
(~ZD) = Vol(D) Proj

D
(∇T

D
wT) .

• Similarly, Proj∗
D
(~n⊙,⊕) is zero. By (17),(18),(20) and by the definition (7) of Proj∗

D
(∇T

D
wT) ,

Proj∗
D
(~ZD) =

d⊙,⊕ cos α⊙,⊕

3
m

1

m

∑l

i=1
(w∗

i+1−w∗
i ) (~n⊙,⊕ ×

−−−−−→
x∗
⊙,⊕x∗

i,i+1
) = Vol(D) Proj∗

D
(∇T

D
wT).

⋄
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4. Generalizations and miscellaneous remarks

Remark 4.1. Note that our discrete duality property is suitable for discrete functions satisfying the
homogeneous Dirichlet condition on ∂Ω . For different boundary conditions see e.g. [6, 9].

Remark 4.2. In 2D , let us point out a scheme which is much simpler than the DDFV scheme and that
still possesses the discrete duality property; the discrete duality follows directly from the reconstruction
property of Corollary 2.3 (see [4]).

This simpler scheme is well known for the case one starts with a triangulation of Ω ⊂ R
2 (see e.g. [2, 23,

7]). Elements of the triangulation play the role of diamonds of the DDFV scheme; in particular, discrete
gradient is reconstructed as being constant per triangle. The dual Voronöı mesh of the triangulation is
the finite volume mesh (these are the “complementary finite volumes”, in the terminology of the paper
[23]) on which one considers constant per volume discrete functions.

To the authors’ knowledge, the discrete duality property for the 3D “complementary finite volume”
scheme only holds for very particular mesh geometries (e.g., uniform tetrahedral or rectangular meshes);
see the discussion of [3, Appendix B].

4.1. Implications of the discrete duality property and elements of “discrete calculus”.

Remark 4.3. The discrete duality property (16) is one of the crucial tools of the “discrete calculus” for
“double” schemes. It permits in particular to discretize coercive and monotone diffusion operators such
as the p -laplacian with the help of coercive and monotone finite volume schemes.

E.g. the p -laplacian div~a(∇w) , ~a(~r) = |~r|p−2~r , would be discretized by divT~a(∇TwT) .

Furthermore, (16) ensures that the variational character of a diffusion operator is preserved at the dis-
crete level. If ~a(·) is the gradient of a convex functional Φ(·) , so that the diffusion operator −div~a(∇w)

on W 1,p
0 (Ω) derives from the functional w ∈ W 1,p

0 (Ω) 7→
∫

Ω
Φ(∇w) , then the discrete diffusion operator

−divT~a(∇TwT) derives from the discrete functional

wT ∈ R
T

0 7→
∑

D∈D

Vol(D)Φ(∇TwT)

(see [6]). This property allows to use the convex minimization numerical methods, such as the conjugate
gradient method, in order to calculate discrete solutions in practice.

Remark 4.4. Other crucial “discrete calculus” devices involve a family of meshes Th parametrized by
the “size” h of the mesh; at this stage, uniform constraints on the mesh distortions are required. In the
context of “double” finite volume schemes, we refer e.g. to [15, 6, 3] for partial results on:

• Uniform in h discrete Poincaré-Friedrichs inequalities (note that we expect that the discrete Poincaré-
Friedrichs inequality for the 3D operator ∇T in (13) may fail, unless the restriction l ≤ 4 on the number
l of vertices of K|L is imposed, as in [32]);

• Uniform bounds on the Lebesgue norms of projections P
Thf of functions f on the set R

Th of
discrete functions; asymptotic (as h → 0 ) convergence properties for P

Thf in the Lebesgue spaces;

• Uniform bounds on the discrete gradient ∇ThP
Thw in terms of the gradient ∇w for functions

w in Sobolev spaces (here, the order-one consistency in the sense of Remark 2.6 is used); asymptotic
convergence properties in Sobolev spaces for projections P

Thw ;

• Asymptotic discrete compactness properties for sequences of discrete functions wTh with uniformly
bounded discrete norms of ∇ThwTh .

Concerning the latter point, notice that the discrete Rellich embedding property is delicate, because bounds
on ∇ThwTh do not contain enough information to control the differences (wK − wK∗) . The results of
[6, 3] state convergence of the weighted combination 1

dwMh + d−1
d wM

∗
h , where wMh :=

∑

K∈Mh
wh

K
1lK ,

wM
∗
h :=

∑

K∗∈M
∗
h

wh
K∗1lK∗ . One possibility to enforce the convergence of wMh , wM

∗
h to the same limit

is to introduce into the finite volume scheme a penalization term controlling the differences (wK − wK∗)
for K ∩ K∗ 6= ∅ (see [3]). The penalization term can be chosen to derive from a discrete penalization
functional such as

wT ∈ R
T

0 7→ h−r
∑

K∈M, K∗∈M
∗

Vol(K ∩ K∗)|wK − wK∗ |p

with p ∈ (1,+∞) , r > 0 .

Remark 4.5. The discrete duality property (16) holds without the orthogonality conditions on the meshes
(which are the conditions −−−→xKxL ⊥K|L , −−−−→xK∗xL∗ ⊥K∗|L∗ ). But if one needs discrete versions of certain
nonlinear analysis tools (e.g., while using the techniques of entropy or renormalized solutions), then the
orthogonality condition becomes very helpful (see [4, 3]). It is also needed when one wants to ensure a
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discrete maximum principle. The orthogonality is assumed in most of the classical finite volume schemes
studied in [18].

4.2. On the choice of the face centers xK|L and other generalizations.

Remark 4.6. (i) Given a partition of Ω into convex disjoint open subsets K , one can always con-
struct a “double” mesh T satisfying the constraints on the choice of xK , xK|L , xK∗|L∗ imposed in
Section 2. But if one wants to use some simpler constructions such as the classical Voronöı dual mesh
in Example 4.8 below, some of the below generalizations are needed.

(ii) The barycenter (middlepoint) choice xK∗|L∗ = 1
2 (xK∗+ xL∗) on the edges is in the heart of the consis-

tency property of Remark 2.6 (see the proof of Lemma 2.2); we do not know whether it could be bypassed.

(iii) An important generalization concerns the choice of xK|L . It may be convenient (as e.g. in Exam-
ple 4.8 below) to let xK|L be the point of intersection of the plane containing the interface K|L with the
line passing through the centers xK , xL . Even if xK ∈ K and the volumes are convex, the intersection
point can fall outside K|L .

In fact, the property xK|L ∈ K|L was only used in the statement that Vol(S) = 1
6 〈

−−→x⊙x⊕,
−−−−−→
x∗
⊙,⊕x∗

i,i+1
,
−−−−→
x∗

i x
∗
i+1〉

is positive, and in the second statement of Remark 2.7. In particular, no such restriction appear in
Lemma 2.2, Corollary 2.3 and Remark 2.6.

Let us stress that all the formulae in terms of vector and mixed products given in this note can be used
without changes, if xK|L belongs to the plane containing K|L (see in particular remark 2.3). But it
becomes necessary to generalize the notions of K∗ and Vol(K∗) , allowing for subdiamonds and elements
with negative volume. We illustrate the situation in Remark 4.7 below.

(iv) The requirement that xK belong to K can be relaxed. The definition of diamonds and subdiamonds
becomes a bit more complicated in this case, because some elements T ∈ T may have negative volume;
the situation in entirely similar to that of Remark 4.7 below. In order to have Vol(D) > 0 , it suffices to
guarantee that the normal to K⊙|K⊕ vector ~n⊙,⊕ (which, by definition, forms an acute angle with −−→x⊙x⊕ )
point from K⊙ to K⊕ . To this end, the Delaunay property is required in Example 4.8.

(v) The convexity constraint on the primal volumes K can be relaxed; e.g., if each volume K is star-
shaped with respect to some point xK , the construction goes on without any change.

Remark 4.7.

(i) Under the assumptions that xK ∈ K for all K , xK|L ∈ K|L for all K|L , the set of all elements T is

a partition of Ω , and each of the partitions M , M
∗ , D of Ω is obtained by combining elements.

More exactly, we have K =
⋃

T
K

K∗,K∗|L∗ , where the sum runs over all L ∈ N(K) and all K∗, L∗ which are
neighbour vertices of the polygon K|L . Similarly, K∗ =

⋃

T
K

K∗,K∗|L∗ , where the union runs over all K, L∗

such that T
K

K∗,K∗|L∗ makes sense. Finally,

D
K|L =

⋃

(

T
K

K∗,K∗|L∗ ∪ T
K

L∗,K∗|L∗ ∪ T
L

K∗,K∗|L∗ ∪ T
L

L∗,K∗|L∗

)

=
⋃

S
K|L

K∗|L∗ ,

where the sum runs over all couples {K∗, L∗} of neighbour vertices of the interface K|L .

When an element T ∈ T contributes to the construction of K , we say that T is associated with K ,
and write T ∼ K . We therefore have K =

⋃

T∼K
T , and Vol(K) =

∑

T∼K
Vol(T) .

Analogous meaning is given to the notation T ∼ K∗ , T ∼ D , and S ∼ D , T ∼ S ; e.g.,

(21) D =
⋃

S∼D

S, and Vol(D) =
∑

S∼D

Vol(S).

In each case, the relation “ ∼ ” simply means the inclusion “ ⊂ ”.

(ii) Now, for one example where xK|L /∈ K|L , let K|L be a triangle with vertices denoted by xK∗ , xL∗ , xM∗ ,
with obtuse angle at xL∗ ; let xK|L be the center of circonscribed circle of the triangle which therefore
falls outside K|L (this situation occurs in Example 4.8). Instead of the decomposition

D
K|L =

⋃

S∼D

S = S
K|L

K∗|L∗ ∪ S
K|L

L∗|M∗ ∪ S
K|L

M∗|K∗ ,

we now have
D

K|L =
(

S
K|L

K∗|L∗ ∪ S
K|L

L∗|M∗

)

\ S
K|L

M∗|K∗ .

But if (with the notation of Figures 1,3) we keep the formula

(22) Vol(S) =
1

6
〈−−→x⊙x⊕,

−−−−−→
x∗
⊙,⊕x∗

i,i+1
,
−−−−→
x∗

i x
∗
i+1〉

for the volume of S , we see that Vol(S
K|L

M∗|K∗) becomes negative, and cancellations lead to

Vol(D
K|L)= |Vol(S

K|L

K∗|L∗)|+|Vol(S
K|L

L∗|M∗)|−|Vol(S
K|L

M∗|K∗)|=Vol(S
K|L

K∗|L∗)+Vol(S
K|L

L∗|M∗)+Vol(S
K|L

M∗|K∗)=
∑

S∼D

Vol(S).
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We see that the set-theoretic relation in (21) looses its sense, but the formula for Vol(D) keeps working.
Similarly, a primal volume K is a set of points of Ω that can be obtained by the operations ” ∪ ”, ” \ ”
from the elements T associated with K , and Vol(K) =

∑

S∼K
Vol(T) ; the (signed) volume of T can be

computed by a formula similar to (22). Let us point out that sign (Vol(T)) = sign (Vol(S)) when T ⊂ S ,
and Vol(S) =

∑

T⊂S
Vol(T) .

The general situation is the same as in the above example. Notice that neither T , nor S form a
partition of Ω ; but each one forms a “signed partition” of Ω in the sense that

(23)
∑

T∈T
sign (Vol(T))1lT (x) = 1 and

∑

S∈S

sign (Vol(S))1lS(x) = 1 a.e. on Ω

(here 1lA(·) stands for the characteristic function of a set A ⊂ Ω ).

The situation with dual volumes K∗ can be more intricated: K∗ may in general consist of a “positive”
and a “negative” part, to which no set-theoretical meaning can be given4; but we can give the sense of
∑

T∼K∗ Vol(T) to Vol(K∗) . In this case, let us call K∗ a generalized dual volume. Here a constraint
appears on the choice of the family (xK|L)K|L of the face centers : one should keep Vol(K∗) > 0 , in order
that (14) be a scalar product.

Similar interpretation can be given to the statement of Remark 2.7. In formulae (13), the normal

flux of ~FS through σS is automatically taken with the sign sign (Vol(S)) , and the cancellations in
∑

S∈N(K)mS
~FS · (−1)ǫ

K

S ~nS make it be equal to the normal flux of the field ~F through ∂K . Notice that

the relation “ S ∈ V(K) ” should be understood in the sense that S ⊃ T for some T ∼ K . Similarly, for a
(possibly generalized) control volume K∗ , the flux through its (possibly generalized) boundary ∂K∗ is the
sum of the signed contributions of the normal fluxes through σ∗

S⊙
, σ∗

S⊕
⊂ S with S ∈ V

∗(K∗) . Formulae

(13) take care of this convention.

(iii) Clearly, these conventions should affect the discretization of source terms on the mesh T . In the
case (i) above, one naturally defines the projection of f ∈ L1(Ω) on the space R

T of discrete functions

by f̄T =
(

(f̄K)K∈M, (f̄K∗)K∗∈M
∗

)

with f̄K = 1
Vol(K)

∫

K
f , f̄K∗ = 1

Vol(K∗)

∫

K∗ f . But in the case (ii), we

should rather generalize these formulae and write

(24) f̄K∗ =
1

Vol(K∗)

∑

T∼K∗
sign (Vol(T))

∫

T

f =
(

∑

T∼K∗
Vol(T)

)−1 ∑

T∼K∗
sign (Vol(T))

∫

T

f

when K∗ is a generalized volume. The “signed partition” property (23) is a clue to the consistency of
such projection operator. We guess that the “discrete calculus” properties mentioned in Remark 4.4 can
be proved also in this generalized framework, under some additional restrictions such as Vol(K∗) > 0 ,
Vol(D) > 0 .

Example 4.8. Let the primal mesh M of Ω ⊂ R
3 be such that each K ∈ M is a polyhedre admitting

a circumscribed ball with center xK (for instance, a tetrahedre), and assume that all neighbour volumes
K , L satisfy the standard Delaunay condition. It follows that each face K|L is an inscriptable polygon.
Take for the dual mesh M

∗ , the standard Voronöı mesh constructed from the vertices of the primal
mesh. This definition of M

∗ enters our framework, with the following choice:

• the center xK|L of a face K|L is the center of its circumscribed circle;
• the center xK∗|L∗ of an edge K∗|L∗ is its middlepoint.

This construction does not guarantee that xK|L ∈ K|L nor that xK ∈ K ; thus we refer to the generaliza-
tions of the above Remarks 4.6,4.7.

This “Delaunay-Voronöı” double scheme possesses the orthogonality property mentioned in Remark 4.5.
See [28, 3], for two examples of the use of this scheme.

Remark 4.9. Notice that in order to get the mesh of Example 4.8, one can also reverse the construction
procedure. Starting from a given set of points xK∗ , one constructs the Voronöı mesh which will play
the role of the dual mesh M

∗ . A tetrahedrical primal mesh M is obtained by joining apropriately the
vertices of M

∗ ; a slightly different convention on boundary volumes is needed in this case.

5. Conclusions

This work can be viewed as a complement to the paper [28] by F. Hermeline, where a number of 3D
diffusion problems were discretized with the help of “double” finite volume schemes. Many numerical
examples are given in [28]. Our contribution is the purely theoretical study of the meshes and the

4We guess that this problem does not occur in Example 4.8, thanks to the Delaunay condition: the “negative” part of
K

∗ is completely cancelled by its “positive” part, as in the case of the primal volumes.
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associated gradient approximations leading to the “discrete duality” property, property which underlies
the known convergence proofs for the 2D double schemes.
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[29] Ch. Le Potier. Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages
de triangles non structurés, C. R. Math. Acad. Sci. Paris, 341(12):787–792, 2005.



ON DISCRETE DUALITY FINITE VOLUME DISCRETIZATION IN 3D 13

[30] X.H. Hu and R.A. Nicolaides. Covolume techniques for anisotropic media. Numer. Math., 61:215–234, 1992.

[31] R.A. Nicolaides. Direct discretization of planar div-curl problems. SIAM J. Numer. Anal., 29:32–56, 1992.
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